MC10133

Quad Latch

The MC10133 is a high speed, low power, quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on the negative going transition of the clock.

The outputs are gated when the output enable $(\overline{\mathrm{G}})$ is low. All four latches may be clocked at one time with the common clock $\left(\mathrm{C}_{\mathrm{C}}\right)$, or each half may be clocked separately with its clock enable $(\overline{\mathrm{CE}})$.

- $\mathrm{P}_{\mathrm{D}}=310 \mathrm{~mW}$ typ/pkg (No Load)
- $\mathrm{t}_{\mathrm{pd}}=4.0 \mathrm{~ns}$ typ
- $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)$

LOGIC DIAGRAM

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18.

ON Semiconductor

http://onsemi.com

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$-30^{\circ} \mathrm{C}$		+25 ${ }^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	I_{E}	8		82			75		82	mAdc
Input Current	linH	$\begin{gathered} \hline 3 \\ 4 \\ 5 \\ 13 \end{gathered}$		$\begin{aligned} & 390 \\ & 425 \\ & 560 \\ & 560 \end{aligned}$			$\begin{aligned} & 245 \\ & 265 \\ & 350 \\ & 350 \end{aligned}$		$\begin{aligned} & 245 \\ & 265 \\ & 350 \\ & 350 \end{aligned}$	$\mu \mathrm{Adc}$
	linL	3	0.5		0.5			0.3		$\mu \mathrm{Adc}$
Output Voltage Logic 1	V_{OH}	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline-1.060 \\ & -1.060 \end{aligned}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-0.960 \\ & -0.960 \end{aligned}$		$\begin{aligned} & \hline-0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-0.700 \\ & -0.700 \end{aligned}$	Vdc
Output Voltage Logic 0	V OL	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline-1.890 \\ & -1.890 \\ & -1.890 \end{aligned}$	$\begin{aligned} & \hline-1.675 \\ & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.850 \\ & -1.850 \\ & -1.850 \end{aligned}$		$\begin{aligned} & \hline-1.650 \\ & -1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & \hline-1.825 \\ & -1.825 \\ & -1.825 \end{aligned}$	$\begin{aligned} & \hline-1.615 \\ & -1.615 \\ & -1.615 \end{aligned}$	Vdc
Threshold Voltage Logic 1	$\mathrm{V}_{\text {OHA }}$	$\begin{gathered} 2 \\ 2 \\ 2 \\ 2 \dagger \\ 2 \ddagger \\ 2 \ddagger \\ 2 \ddagger \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & \hline-1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \\ & -1.080 \end{aligned}$		$\begin{aligned} & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \\ & -0.980 \end{aligned}$			$\begin{aligned} & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \\ & -0.910 \end{aligned}$		Vdc
Threshold Voltage Logic 0	$\mathrm{V}_{\text {OLA }}$	$\begin{gathered} 2 \\ 2 \\ 2 \\ 2 \\ 2 \dagger \\ 2 \ddagger \\ 2 \ddagger \end{gathered}$		$\begin{aligned} & \hline-1.655 \\ & -1.655 \\ & -1.655 \\ & -1.655 \\ & -1.655 \\ & -1.655 \end{aligned}$			$\begin{aligned} & -1.630 \\ & -1.630 \\ & -1.630 \\ & -1.630 \\ & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & \hline-1.595 \\ & -1.595 \\ & -1.595 \\ & -1.595 \\ & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Switching Times (50Ω Load) Propagation Delay										ns
	$\begin{aligned} & \mathrm{t}_{3+2+} \\ & \mathrm{t}_{4+2+} \\ & \mathrm{t}_{5-2+} \\ & \mathrm{t}_{\text {setup }} \\ & t_{\text {hold }} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 2.0 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.0 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 6.0 \\ & 3.4 \end{aligned}$	
Rise Time (20 to 80\%)	t_{2+}	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	
Fall Time (20 to 80\%)	t_{2}	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	

\dagger Output level to be measured after a clock pulse has been applied to the clock input (Pin 4)

\$ Data input at proper high/low level while clock pulse is high so that device latches ar proper high/low level for test. Levels are measured after device has latched.

* Latch set to zero state before test.

ELECTRICAL CHARACTERISTICS (continued)

@ Test Temperature				TEST VOLTAGE VALUES (Volts)					$\begin{gathered} (\mathrm{VCc}) \\ \text { Gnd } \end{gathered}$	
				$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	$\mathrm{V}_{\text {ILAmax }}$	V_{EE}		
			$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	-0.890	-1.890	-1.205	-1.500	-5.2		
				-0.810	-1.850	-1.105	-1.475	-5.2		
				-0.700	-1.825	-1.035	-1.440	-5.2		
Characteristic		Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
		$\mathrm{V}_{\text {IHmax }}$		$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	$\mathrm{V}_{\text {ILAmax }}$	V_{EE}			
Power Supply Drain Current			IE	8		13			8	1,16
Input Current		linH	3	3				8	1,16	
		4	4				8	1, 16		
		5	5				8	1,16		
		13	13				8	1, 16		
		linL	3		3			8	1,16	
Output Voltage	Logic 1		V_{OH}	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 3,4 \\ 3,13 \end{gathered}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Output Voltage	Logic 0		VOL	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 13 \\ 3,5,13 \\ 4 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$			8 8 8	$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
Threshold Voltage	Logic 1		$\mathrm{V}_{\text {OHA }}$	2	3, 4			5	8	1,16
		2		4		3		8	1,16	
		2		3, 4				8	1,16	
		$2 \dagger$		3				8	1,16	
		2						8	1,16	
		2\$					4	8	1,16	
		2		3		4		8	1,16	
		2		3		13		8	1,16	
Threshold Voltage	Logic 0	$\mathrm{V}_{\text {OLA }}$	2	3, 4		5		8	1, 16	
			2	4			3	8	1,16	
			2	4				8	1, 16	
			$2 \dagger$					8	1, 16	
			2	3				8	1,16	
			2\$	3			13	8	1,16	
Switching Times Propagation Delay	(50 Ω Load)			+1.11V		Pulse In	Pulse Out	-3.2 V	+2.0 V	
		${ }^{\mathrm{t}} 3+2+$ t4+2+ t5-2+ ${ }^{\mathrm{t}}$ setup thold	2	$\begin{gathered} 4 \\ 3^{\star} \end{gathered}$		3	2	8	1, 16	
			2			4	2	8	1,16	
			2			5	2	8	1,16	
			3			3	2	8	1, 16	
			3			3	2	8	1,16	
Rise Time	(20 to 80\%)	t2+	2	4		3	2	8	1, 16	
Fall Time	(20 to 80\%)	t_{2}	2	4		3	2	8	1,16	

\dagger Output level to be measured after a clock pulse has been applied to the clock input (Pin 4)

\$ Data input at proper high/low level while clock pulse is high so that device latches ar proper high/low level for test. Levels are measured after device has latched.

* Latch set to zero state before test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a $50-\mathrm{ohm}$ resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

