MC10133

Quad Latch

The MC10133 is a high speed, low power, quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on the negative going transition of the clock.

The outputs are gated when the output enable (\overline{G}) is low. All four latches may be clocked at one time with the common clock (C_C), or each half may be clocked separately with its clock enable (\overline{CE}).

- P_D=310 mW typ/pkg (No Load)
- t_{pd} = 4.0 ns typ
- t_r , $t_f = 2.0$ ns typ (20%-80%)

ON Semiconductor

http://onsemi.com

WL = Wafer Lot YY = Year WW = Work Week

TRUT	H TA	BLE

G	С	D	Q _{n+1}
Н	Х	Х	L
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н

C = CC = CE

ORDERING INFORMATION

Device	Package	Shipping
MC10133L	CDIP-16	25 Units / Rail
MC10133P	PDIP-16	25 Units / Rail
MC10133FN	PLCC-20	46 Units / Rail

ELECTRICAL CHARACTERISTICS

	Symbol	Pin Under Test	Test Limits							
			–30°C		+25°C			+85°C		1
Characteristic			Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	8		82			75		82	mAdo
Input Current	linH	3 4 5 13		390 425 560 560			245 265 350 350		245 265 350 350	μAdc
	l _{inL}	3	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	VOH	2 2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	V _{OL}	2 2 2	-1.890 -1.890 -1.890	-1.675 -1.675 -1.675	-1.850 -1.850 -1.850		-1.650 -1.650 -1.650	-1.825 -1.825 -1.825	-1.615 -1.615 -1.615	Vdc
Threshold Voltage Logic 1	Voha	2 2 2† 2‡ 2 2 2 2 2	-1.080 -1.080 -1.080 -1.080 -1.080 -1.080 -1.080 -1.080		-0.980 -0.980 -0.980 -0.980 -0.980 -0.980 -0.980 -0.980			-0.910 -0.910 -0.910 -0.910 -0.910 -0.910 -0.910 -0.910		Vdc
Threshold Voltage Logic 0	V _{OLA}	2 2 2† 2‡ 2‡		-1.655 -1.655 -1.655 -1.655 -1.655 -1.655 -1.655			-1.630 -1.630 -1.630 -1.630 -1.630 -1.630		-1.595 -1.595 -1.595 -1.595 -1.595 -1.595 -1.595	Vdc
Switching Times (50 Ω Load)										ns
Propagation Delay	^t 3+2+ ^t 4+2+ ^t 5–2+ ^t setup ^t hold	2 2 3 3	1.0 1.0 1.0 2.5 1.5	5.6 5.4 3.2	1.0 1.0 2.5 1.5	4.0 4.0 2.0 0.7 0.7	5.4 5.4 3.1	1.1 1.2 1.0 2.5 1.5	5.9 6.0 3.4	
Rise Time (20 to 80%)	t2+	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	
Fall Time (20 to 80%)	t2-	2	1.0	3.6	1.1	2.0	3.5	1.1	3.8	

 \dagger Output level to be measured after a clock pulse has been applied to the clock input (Pin 4)

──── V_{IHmax} · ─── V_{ILmin}

‡ Data input at proper high/low level while clock pulse is high so that device latches ar proper high/low level for test. Levels are measured after device has latched.

* Latch set to zero state before test.

MC10133

ELECTRICAL CHARACTERISTICS (continued)

				TEST VOLTAGE VALUES (Volts)					
		@ Test Te	mperature	V _{IHmax}	VILmin	VIHAmin	VILAmax	V _{EE}	
		–30°C		-0.890	-1.890	-1.205	-1.500	-5.2	1
			+25°C		-1.850	-1.105	-1.475	-5.2	1
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2]
			Pin	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
Characteristic		Symbol	Under Test	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	VEE	(VCC) Gnd
Power Supply Drain (Current	ΙE	8		13			8	1, 16
Input Current		linH	3	3				8	1, 16
			4	4				8	1, 16
			5 13	5 13				8 8	1, 16 1, 16
		linL	3	10	3			8	1, 16
				2.4	3			8	
Output Voltage	Logic 1	Vон	2 2	3, 4 3, 13				8 8	1, 16 1, 16
Output Voltage	Logic 0	VOL	2	13	3			8	1, 16
			2	3, 5, 13				8	1, 16
			2	4	3			8	1, 16
Threshold Voltage	Logic 1	Vона	2 2	3, 4 4		3	5	8 8	1, 16 1, 16
			2	3, 4		5		8	1, 16
			2†	3				8	1, 16
			2‡					8	1, 16
			2‡				4	8	1, 16
			2 2	3		4 13		8 8	1, 16 1, 16
Threshold Voltage	Logic 0	VOLA	2	3, 4		5		8	1, 16
ge	9		2	4			3	8	1, 16
			2	4				8	1, 16
			2†					8	1, 16
			2‡ 2‡	3 3			13	8 8	1, 16 1, 16
Switching Times	(50Ω Load)			+1.11V		Pulse In	Pulse Out	–3.2 V	+2.0 \
Propagation Delay		t3+2+	2	4	1	3	2	8	1, 16
		t4+2+	2	3*		4	2	8	1, 16
		^t 5–2+	2			5	2	8	1, 16
		^t setup ^t hold	3 3			3 3	2 2	8 8	1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊	2	4		3	2	8	1, 16
Fall Time	(20 to 80%)	t2-	2	4		3	2	8	1, 16

[†]Output level to be measured after a clock pulse has been applied to the clock input (Pin 4)

· — V_{IHmax} · — V_{ILmin}

Data input at proper high/low level while clock pulse is high so that device latches ar proper high/low level for test. Levels are measured after device has latched.

* Latch set to zero state before test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50–ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.