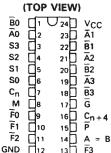
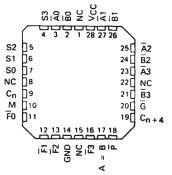
SDLS136 - DECEMBER 1972 - REVISED MARCH 1988


- Full Look-Ahead for High-Speed Operations on Long Words
- Input Clamping Diodes Minimize Transmission-Line Effects
- Darlington Outputs Reduce Turn-Off Time
- Arithmetic Operating Modes:

Addition
Subtraction
Shift Operand A One Position
Magnitude Comparison
Plus Twelve Other Arithmetic
Operations


Logic Function Modes:

Exclusive-OR
Comparator
AND, NAND, OR, NOR
Plus Ten Other Logic Operations

SN54LS181, SN54S181 . . . J OR W PACKAGE SN74LS181, SN74S181 . . . DW OR N PACKAGE

SN54LS181, SN54S181 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

TYPICAL ADDITION TIMES

NUMBER	ADDITI	ON TIMES	PA	CKAGE COUNT	CARRY METHOD
OF	USING 'LS181	USING 'S181	ARITHMETIC/	LOOK-AHEAD	BETWEEN
BITS	AND 'S182	AND 'S182	LOGIC UNITS	CARRY GENERATORS	ALUs
1 to 4	24 ns	11 ns	1		NONE
5 to 8	40 ns	18 ns	2		RIPPLE
9 to 16	44 ns	19 ns	3 or 4	1	FULL LOOK-AHEAD
17 to 64	68 ns	28 ns	5 to 16	2 to 5	FULL LOOK-AHEAD

description

The 'LS181 and 'S181 are arithmetic logic units (ALU)/function generators that have a complexity of 75 equivalent gates on a monolithic chip. These circuits perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the SN54S182 or SN74S182 full carry look-ahead circuits, high-speed arithmetic operations can be performed. The typical addition times shown above illustrate the little additional time required for addition of longer words when full carry look-ahead is employed. The method of cascading 'S182 circuits with these ALUs to provide multi-level full carry look-ahead is illustrated under typical applications data for the 'S182.

If high speed is not of importance, a ripple-carry input (C_n) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

description (continued)

The 'LS181 and 'S181 will accommodate active-high data if the pin designations are interpreted as follows:

٢	PIN NUMBER	2	1	23	22	21	20	19	18	9	10	11	13	7	16_	15	17
Γ	Active-low data (Table 1)	Ā ₀	B ₀	Ā ₁	B ₁	Ā ₂	B ₂	Ā3	Вз	₹ ₀	F ₁	F ₂	F ₃	Cn	Cn+4	P	G
Γ	Active-high data (Table 2)	A ₀	B ₀	A ₁	B ₁	A ₂	B ₂	Аз	Вз	Fo	F ₁	F ₂	F ₃	Cn	C _{n+4}	Х	Υ

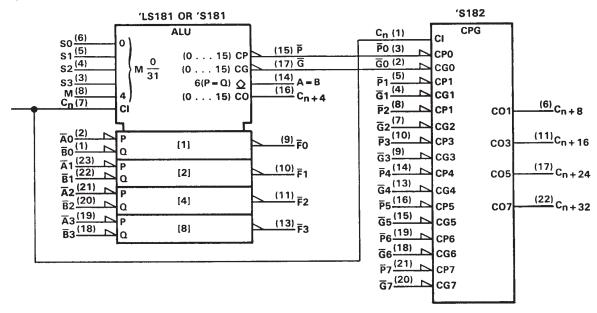
Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

The 'LS181 or 'S181 can also be utilized as a comparator. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A=B). The ALU must be in the subtract mode with $C_{n}=H$ when performing this comparison. The A=B output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU must be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

INPUT Cn	OUTPUT C _{n+4}	ACTIVE-LOW DATA (FIGURE 1)	ACTIVE-HIGH DATA (FIGURE 2)
Н	н	A≥B	A ≤ B
н	L	A < B	A > B
L	н	A > B	A < B
L	L	A ≤ B	A ≥ B

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

Series 54, 54LS, and 54S devices are characterized for operation over the full military temperature range of -55 °C to 125 °C; Series 74LS and 74S devices are characterized for operation from 0 °C to 70 °C.


signal designations

In both Figures 1 and 2, the polarity indicators (\triangle) indicate that the associated input or output is active-low with respect to the function shown inside the symbol, and the symbols are the same in both figures. The signal designations in Figure 1 agree with the indicated internal functions based on active-low data, and are for use with the logic functions and arithmetic operations shown in Table 1. The signal designations have been changed in Figure 2 to accommodate the logic functions and arithmetic operations for the active-high data given in Table 2. The 'LS181 and 'S181, together with the 'S182, can be used with the signal designation of either Figure 1 or Figure 2.

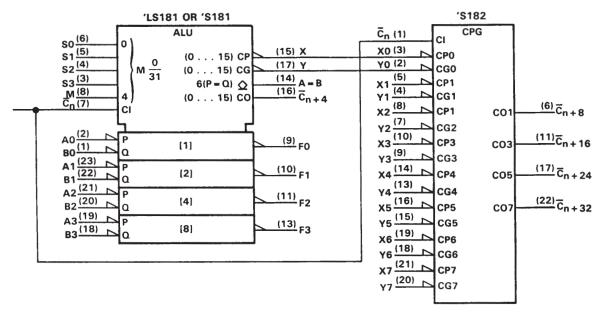
SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

logic symbols[†] and signal designations (active-low data)

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for dual-in-line and "small outline" packages.

FIGURE 1 (USE WITH TABLE 1)

TABLE 1


	051.5				ACTIVE-LOW DA	TA
	SELE	CTION		M = H	M = L; ARITHM	ETIC OPERATIONS
			60	LOGIC	Cn = L	Cn = H
S3	S2	S1	S0	FUNCTIONS	(no carry)	(with carry)
L	L	L	L	F=A	F = A MINUS 1	F = A
L	L	L	н	F = AB	F = AB MINUS 1	F = AB
L	L	Н	L	F = A + B	F = AB MINUS 1	F = AB
L	L	Н	Н	F = 1	F = MINUS 1 (2's COMP)	F = ZERO
L	Н	L	L	F = A + B	F = A PLUS (A + B)	F = A PLUS (A + B) PLUS 1
L	н	L	н	F = B	F = AB PLUS (A + B)	F = AB PLUS (A + B) PLUS 1
L	н	н	L	F = A + B	F = A MINUS B MINUS 1	F = A MINUS B
L	н	н	н	$F = A + \overline{B}$	F = A + B	F = (A + B) PLUS 1
н	L	L	L	F = AB	F = A PLUS (A + B)	F = A PLUS (A + B) PLUS 1
н	L	L	Н	F≈A⊕B	F = A PLUS B	F = A PLUS B PLUS 1
н	L	н	L	F=B	F = AB PLUS (A + B)	F = AB PLUS (A + B) PLUS 1
н	L	н	н	F = A + B	F = (A + B)	F = (A + B) PLUS 1
н	н	L	L	F=0	F = A PLUS A [‡]	F = A PLUS A PLUS 1
н	н	L	н	F ≈ AB	F = AB PLUS A	F = AB PLUS A PLUS 1
н	н	н	L	F = AB	F = AB PLUS A	F = AB PLUS A PLUS 1
Н	Н	н	Н	F = A	F = A	F = A PLUS 1

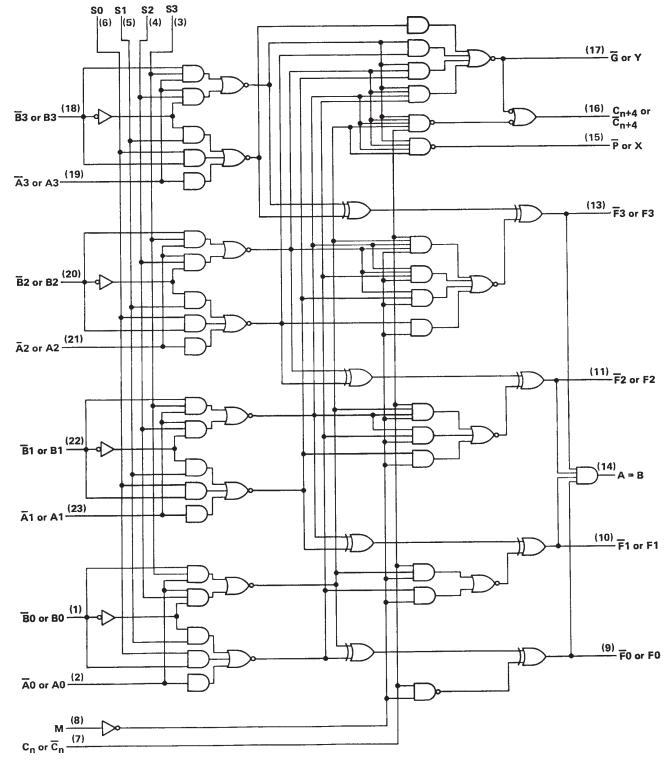
[‡]Each bit is shifted to the next more significant position.

SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

logic symbols[†] and signal designations (active-high data)

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for dual-in-line and "small outline" packages.

FIGURE 2 (USE WITH TABLE 2)


TABLE 2

	CEL E	271021			ACTIVE-HIGH DA	ТА
	2FFF(CTION		M = H	M = L; ARITHM	ETIC OPERATIONS
S3	S2	S1	S0	LOGIC FUNCTIONS	C _n = H (no carry)	C _n = L (with carry)
L	L	L	L	F = A	F = A	F = A PLUS 1
L	L	L	н	F = A + B	F = A + B	F = (A + B) PLUS 1
L	L	н	L	F = AB	F = A + B	$F = (A + \overline{B}) PLUS 1$
L	L	н	н	F=0	F = MINUS 1 (2's COMPL)	F = ZERO
L	Н	L	L	F = AB	F = A PLUS AB	F = A PLUS AB PLUS 1
L	Н	L	Н	F=B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1
L,	н	н	L	F = A (+) B	F = A MINUS B MINUS 1	F = A MINUS B
L	н	н	Н	F = AB	F = AB MINUS 1	F = AB
н	L	L	L	F = A + B	F = A PLUS AB	F = A PLUS AB PLUS 1
н	L	L	н	F = A ⊕ B	F = A PLUS B	F = A PLUS B PLUS 1
н	L	н	L	F=B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1
Н	L	н	н	F = AB	F = AB MINUS 1	F = AB
Н	Н	L	L	F = 1	F = A PLUS A†	F = A PLUS A PLUS 1
н	н	L	н	$F = A + \overline{B}$	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1
н	н	н	L	F = A + B	F = (A + B) PLUS A	$F = (A + \overline{B})$ PLUS A PLUS 1
н	н	н	н	F=A	F = A MINUS 1	F = A

[†] Each bit is shifted to the next more significant position.

logic diagram (positive logic)

Pin numbers shown are for DW, J, N, and W packages.

SN54LS181, SN54S181 SN74LS181, SN74S181

ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

SDLS136 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over recor	mı	me	enc	ded	o b	pe	rat	ing	g f	ree	-ai	ir t	en	npe	era	tur	e ı	an	ge	(ι	ın	les	s c	tl	ner	w	ise	no	ted)
Supply voltage, VCC (see Note 1)																													7 V
Input voltage																												. 5	5.5 V
Interemitter voltage (see Note 2)																												. 5	i.5 V
Operating free-air temperature range:	: 5	SN	54	LS	18	1																			-5	5°	C to	o 12	25°C
	5	SN	74	LS	18	1																				0	°C	to 7	70°C
Storage temperature range																									-6	5°	C to	o 15	50°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each \bar{A} input in conjunction with inputs S2 or S3, and to each \vec{B} input in conjunction with inputs S0 or S3.

recommended operating conditions

	SI	N54LS1	81	SI	174LS1	81	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH (All outputs except A = B)			-400			-400	μΑ
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	BABAI	METER	750	T CONDITIONS	÷	SI	N54LS1	81	SI	N74LS1	81	
	FARA	METER	153	ST CONDITIONS	•	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level in	put voltage				2			2			V
VIL	Low-level in	put voltage						0.7			0.8	V
VIK	Input clamp	voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
V _{OH}	_	utput voltage, except A = B	V _{CC} = MIN, V _{IL} = V _{IL} max,	•••		2.5	3.4		2.7	3.4		٧
ІОН	High-level o	utput current, it only	V _{CC} = MIN, V _{1L} = V _{1L} max,	***				100			100	μΑ
	Laurianal	All outputs			IOL = 4 mA		0.25	0.4		0.25	0.4	
V	Low-level	An outputs	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 8 mA					0.35	0.5	
VOL	output voltage	Output G	V _{IL} = V _{IL} max		I _{OL} = 16 mA		0.47	0.7		0.47	0.7	٧
	vuitage	Output P			I _{OL} = 8 mA		0.35	0.6		0.35	0.5	
	Input	Mode input			•			0.1		,	0.1	
11	current at	Any A or Binput	V _{CC} = MAX,	V E E V				0.3			0.3	0
'1	max. input	Any S input	VCC - MAA,	V - 5.5 V				0.4			0.4	mA
	voltage	Carry input						0.5			0.5	
	High-level	Mode input						20			20	
I _I H	input	Any A or B input	V _{CC} = MAX,	V1 = 27 V				60			60	
1111	current	Any S input	1 VCC INIAA,	V - 2.7 V				80			80	μΑ
	Darrone	Carry input						100			100	
	Low-level	Mode input						-0.4			-0.4	
I _I L	input	Any A or B input	V _{CC} = MAX,	V1 = 0.4 V				-1.2			-1.2	mA
.15	current	Any S input	1 100 111777,	1 0.4 1				-1.6			-1.6	"""
		Carry input						-2			-2	
los		t output current, except A = B §	V _{CC} = MAX			-6		-40	-5		-42	mA
Icc	Supply curr	ent	V _{CC} = MAX,	See Note 3	Condition A		20	32		20	34	A
100	Supply current	VCC - WAA,	Dee Note 3	Condition B		21	35		21	37	mA	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: With outputs open, $I_{\mbox{CC}}$ is measured for the following conditions:

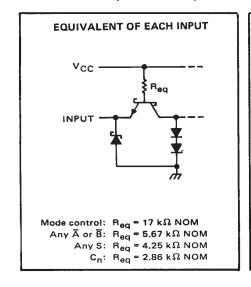
B. S0 through S3 and M are at 4.5 V, all other inputs are grounded.

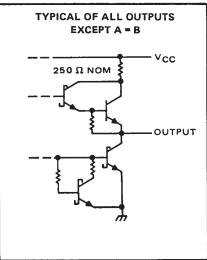
 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}$ C.

[§] Not more than one output should be shorted at a time.

A. S0 through S3, M, and \overline{A} inputs are at 4.5 V, all other inputs are grounded.

ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS SDLS136 – DECEMBER 1972 – REVISED MARCH 1988


switching characteristics, VCC = 5 V, TA = 25°C, (CL = 15 pF, RL = 2 k Ω , see note 4)


PARAMETER†	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
[†] PLH					18	27	ns
^t PHL	C _n	C _{n+4}			13	20	1113
^t PLH	Any \overline{A} or \overline{B}		M = 0 V, S0 = S3 = 4.5 V,		25	38	ns
^t PHL	Ally A OF B	C _{n+4}	S1 = S2 = 0 V (SUM mode)		25	38	""
^t PLH	Any \overline{A} or \overline{B}	<u> </u>	M = 0 V, S0 = S3 = 0 V		27	41	ns
^t PHL	Ally A or B	C _{n+4}	S1 = S2 = 4.5 V (DIFF mode)		27	41	113
^t PLH	_	Any ₹	M = 0 V		17	26	ns
^t PHL	C _n	Anyr	(SUM or DIFF mode)		13	20	1113
^t PLH	Any A or B	Ğ	M = 0 V, S0 = S3 = 4.5 V,		19	29	ns
t _{PHL}	AnyAorb	"	S1 = S2 = 0 V (SUM mode)		15	23] '''
tPLH	Any A or B	Ğ	M = 0 V, S0 = S3 = 0 V,		21	32	ns
tPHL	Any A or B	G	S1 = S2 = 4.5 V (DIFF mode)		21	32	113
tPLH .	Any A or B	P	M = 0 V, S0 = S3 = 4.5 V,		20	30	ns
tPHL.	Any A or B		S1 = S2 = 0 V, (SUM mode)		20	30	""
tPLH		Ē	M = 0 V, S0 = S3 = 0 V,	1	20	30	
tPHL	Any \overline{A} or \overline{B}		S1 = S2 = 4.5 V (DIFF mode)		22	33	ns
tPLH	Ā _i or Ē _i	Fi	M = 0 V, S0 = S3 = 4.5 V,		21	32	ns
tPHL	Ai or Bi	[Fi	S1 = S2 = 0 V (SUM mode)		13	20	113
tPLH	Ā; or B;	-	M = 0 V, S0 = S3 = 0 V,		21	32	ns
tPHL.	Ajorbi	Fi	S1 = S2 = 4.5 V (DIFF mode)		21	32] ''`
tPLH	Ā _i or B̄ _i	F;	M = 4.5 V (logic mode)		22	33	ns
tPHL	Ai or Bi	fi	ivi = 4.5 v (logic mode)		26	38] ''s
tPLH .	A A B	A = B	M = 0 V, S0 = S3 = 0 V,		33	50	ns
tPHL	Any A or B	A = B	S1 = S2 = 4.5 V (DIFF mode)		41	62	_ '''

[†]tpLH ≡ propagation delay time, low-to-high-level output

NOTE 4: Load circuits and voltage wveforms are shown in Section 1. Refer to Parameter Measurement Information page for test conditions.

schematics of inputs and outputs

tpHL ≡ propagation delay time, high-to-low-level output

SDLS136 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																	7 V
Input voltage																	5.5 V
Interemitter voltage (see Note 2)																	5.5 V
Operating free-air temperature: SN54S181	1												-5	55°	C 1	to	125°C
SN74S181	1													() C) to	70°C
Storage temperature range													-6	3 5 °	C.	to	150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each 🛱 input in conjunction with inputs S2 or S3, and to each $\overline{\mbox{B}}$ input in conjunction with inputs S0 or S3.

recommended operating conditions

	S	N54S18	31	5	N74S18	31	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	ONT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH (All outputs except A = B)			-1			-1	mA
Low-level output current, IOI			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					+	S	N54S18	31	S	N74S18	31	UNIT
	PARAN	METER	TE	ST CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level in	put voltage				2			2			٧
VIL	Low-level in	put voltage						0.8			0.8	٧
VIK	Input clamp	voltage	V _{CC} = MIN,	I _I = -18 mA				-1.2			-1.2	>
V _{OH}	•	utput voltage, except A = B	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA		2.5	3.4		2.7	3.4		>
Іон	High-level or A = B output	utput current,	V _{CC} = MIN, V _{1L} = 0.8 V,	V _{IH} = 2 V,				250			250	μА
VOL	Low-level or	utput voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 20 mA				0.5			0.5	٧
ij	Input currer		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
		Mode input						50			50	
	High-level	Any A or B input	1.,	V - 2 F V				150			150	μА
ΉН	input	Any S input	V _{CC} = MAX,	V ₁ = 2.5 V				200			200	
	current	Carry input	1					250			250	
		Mode input						-2			-2	
	Low-level	Any A or B input	1	V - 05 V				-6			-6	mA
111	input	Any S input	V _{CC} = MAX,	V - U.5 V				-8			-8] ''''
	current	Carry input	1					-10			-10	
los		t output current, except A = B §	V _{CC} = MAX			-40		-100	-40		-100	mA
Icc	Supply curr	ent	V _{CC} = MAX, See Note 3	T _A = 125°C,	W package only			195				mA
			V _{CC} = MAX,	See Note 3	All packages		120	220		120	220	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]ddagger$ AII typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

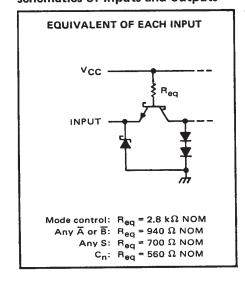
[§]Not more than one output should be shorted at a time.

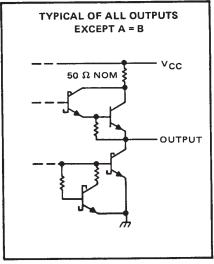
NOTE 3: I_{CC} is measured for the following conditions (the typical and maximum values apply to both):

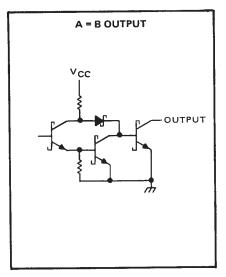
A. S0 through S3, M, and \overline{A} inputs are at 4.5 V, all other inputs are grounded, and all outputs are open.

B. SO through S3 and M are at 4.5 V, all other inputs grounded, and all outputs are open.

SDLS136 – DECEMBER 1972 – REVISED MARCH 1988


switching characteristics, V_{CC} = 5 V, T_A = 25°C (C_L = 15 pF, R_L = 280 Ω , see note 4)


PARAMETER†	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH					7	10.5	ns
tPHL	C _n	C _{n+4}			7	10.5	
tPLH	Any Ā or B	C	M = 0 V, S0 = S3 = 4.5 V,		12.5	18.5	ns
tPHL	Any A or B	C _{n+4}	S1 = S2 = 0 V (SUM mode)		12.5	18.5	
tPLH	Any Ā or B	C _{n+4}	M = 0 V, S0 = S3 = 0 V,		15.5	23	ns
tPHL	Ally A OI B	On+4	S1 = S2 = 4.5 V (DIFF mode)		15.5	23	
tPLH	C	Any F	M = 0 V		7	12	ns
tPHL	- C _n	Ally !	(SUM or DIFF mode)		7	12	
tPLH	Any Ā or B	G	M = 0 V, S0 = S3 = 4.5 V,		8	12	ns
tPHL	Any A or b		S1 = S2 = 0 V (SUM mode)		7.5	12	
t _{PLH}	Any Ā or B	G	M = 0 V, S0 = S3 = 0 V,		10.5	15	ns
tPHL	Any A or B	G	S1 = S2 = 4.5 V (DIFF mode)		10.5	15	
^t PLH	Any A or B	P	M = 0 V, S0 = S3 = 4.5 V,		7.5		l ns
tPHL	AnyAorb	f	S1 = S2 = 0 V (SUM mode)		7.5	12	
^t PLH	Any A or B	P	M = 0 V, S0 = S3 = 0 V,		10.5	15	ns
tPHL	Any A or B		S1 = S2 = 4.5 V (DIFF mode)		10.5	15	
t _{PLH}	A _i or B _i	Fi	M = 0 V, S0 = S3 = 4.5 V,		11	16.5	ns
tPHL	Ai or Bi		S1 = S2 = 0 V (SUM mode)		11	16.5	
tPLH		-	M = 0 V, S0 = S3 = 0 V,		14	20	ns
tPHL	$\overline{A_i}$ or $\overline{B_i}$	F;	S1 = S2 = 4.5 V (DIFF mode)		14	22	113
tPLH	7 . 5	7.	M = 4.5 V (logic mode)		14		ns
tPHL.	Ā _i or \overline{B}_i	F _i	W = 4.5 V (logic filode)		14		
tPLH	A	A = B	M = 0 V, S0 = S3 = 0 V,		15	23	ns
tPHL	Any A or B	A-B	S1 = S2 = 4.5 V (DIFF mode)		20	30	


 $^{^{\}dagger}$ tpLH = propagation delay time, low-to-high-level output

NOTE 4: Load circuits and voltage wveforms are shown in Section 1. Refer to Parameter Measurement Information page for test conditions.

schematics of inputs and outputs

tpHL = propagation delay time, high-to-low-level output

SDLS136 - DECEMBER 1972 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

SUM MODE TEST TABLE

FUNCTION INPUTS: S0 = S3 = 4.5 V, S1 = S2 = M = 0 V

	INPUT	OTHER INPUT SAME BIT		OTHER DA	TA INPUTS	OUTPUT	OUTPUT	
PARAMETER	TEST	APPLY 4.5 V	APPLY GND	APPLY 4.5 V	APPLY GND	TEST	(See Note 4)	
tPLH tPHL	Āi	≅ _i	None	Remaining A and B	Cn	Fi	In-Phase	
tPLH tPHL	Bi	Āi	None	Remaining A and B	Cn	Fi	In-Phase	
tPLH tPHL	Āį	Bi	None	None	Remaining Ā and B, C _n	P	In-Phase	
tPLH tPHL	Bi	Āi	None	None	Remaining Ā and B, C _n	Þ	In-Phase	
tPLH tPHL	Āi	None	Ē;	Remaining B	Remaining A, C _n	G	In-Phase	
tPLH tPHL	Bi	None	Āi	Remaining B	Remaining Ā, C _n	G	In-Phase	
tPLH tPHL	Cn	None	None	AII Ā	AII B	Any F or C _{n+4}	In-Phase	
tPLH tPHL	Āi	None	Bi	Remaining B	Remaining A, C _n	C _{n+4}	Out-of-Phase	
tPLH tPHL	Bi	None	Āi	Remaining B	Remaining A, C _n	C _{n+4}	Out-of-Phase	

DIFF MODE TEST TABLE

FUNCTION INPUTS: S1 = S2 = 4.5 V, S0 = S3 = M = 0 V

	INPUT	OTHER INPUT SAME BIT		OTHER DA	TA INPUTS	OUTPUT	OUTPUT WAVEFORM	
PARAMETER	UNDER	APPLY	APPLY	APPLY	APPLY	TEST	(See Note 4)	
	1531	4.5 V	GND	4.5 V	GND	1651		
^t PLH	Āį	None	B;	Remaining	Remaining	F _i	In-Phase	
tPHL.		140116	١,	Ā	B, C _n	''		
^t PLH	B _i	Āi	None	Remaining	Remaining	F,	Out-of-Phase	
tPHL.	, ₀ ,		140116	Ā	B, C _n	''	Guttorinase	
^t PLH	Āi	None	B _i	None	Remaining	P	In-Phase	
tPHL.	٦' ا	None	"	110110	A and B, C _n			
^t PLH	Ē;	Āį	None	None	Remaining	Ē	Out-of-Phase	
^t PHL	P1	^1			A and B, C _n			
^t PLH	Āi	B _i	None	None	Remaining	G	In-Phase	
tPHL	'''	"	110.10	1100	A and B, C _n			
tPLH .	B _i	None A	Āį	None	Remaining	G	Out-of-Phase	
^t PHL] "	140.14	'''		A and B, C _n			
^t PLH	Āį	None	Bi	Remaining	Remaining	A = B	In-Phase	
tPHL.] '''	1100		Ā	B̄, C _n			
^t PLH	8;	Āi	Ā: None	Remaining	Remaining	A = B	Out-of Phase	
tPHL] [Ā	B, C _n			
^t PLH	Cn	None	None	_ All _	None	Cn+4	In-Phase	
tPHL.] -n			A and B		or any F		
^t PLH	Āį	B _i	None	None	Remaining	Cn+4	Out-of-Phase	
t _{PHL}		-	110		Ā, B, C _n			
^t PLH	B _i	None	Āi	None	Remaining	Cn+4	In -Phase	
^t PHL	<u>'</u>				A, B, C _n			

LOGIC MODE TEST TABLE

FUNCTION INPUTS: S1 = S2 = M = 4.5 V, S0 = S3 = 0 V

PARAMETER	INPUT	OTHER INPUT SAME BIT		OTHER D	ATA INPUTS	OUTPUT	OUTPUT WAVEFORM
	TEST	APPLY 4.5 V	APPLY GND	APPLY 4.5 V	APPLY GND	TEST	(See Note 4)
tPLH tPHL	Āi	Bi	None	None	Remaining Ā and B, C _n	ř,	Out-of-Phase
[†] PLH [†] PHL	B,	Āį	None	None	Remaining A and B, C _n	Fi	Out-of-Phase

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

28-Nov-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
JM38510/07801BJA	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510/ 07801BJA	Samples
M38510/07801BJA	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510/ 07801BJA	Samples
SN54LS181J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54LS181J	Samples
SN54S181J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54S181J	Samples
SN74LS181N3	OBSOLETE	PDIP	N	24		TBD	Call TI	Call TI	0 to 70		
SN74S181J	OBSOLETE	CDIP	J	24		TBD	Call TI	Call TI	0 to 70		
SN74S181N	OBSOLETE	PDIP	N	24		TBD	Call TI	Call TI	0 to 70		
SN74S181N3	OBSOLETE	PDIP	N	24		TBD	Call TI	Call TI	0 to 70		
SNJ54LS181FK	NRND	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 181FK	
SNJ54LS181J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54LS181J	Samples
SNJ54LS181W	NRND	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS181W	
SNJ54S181FK	NRND	LCCC	FK	28	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 181FK	
SNJ54S181J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54S181J	Samples
SNJ54S181JT	NRND	CDIP	JT	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S181JT	
SNJ54S181W	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S181W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

28-Nov-2015

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

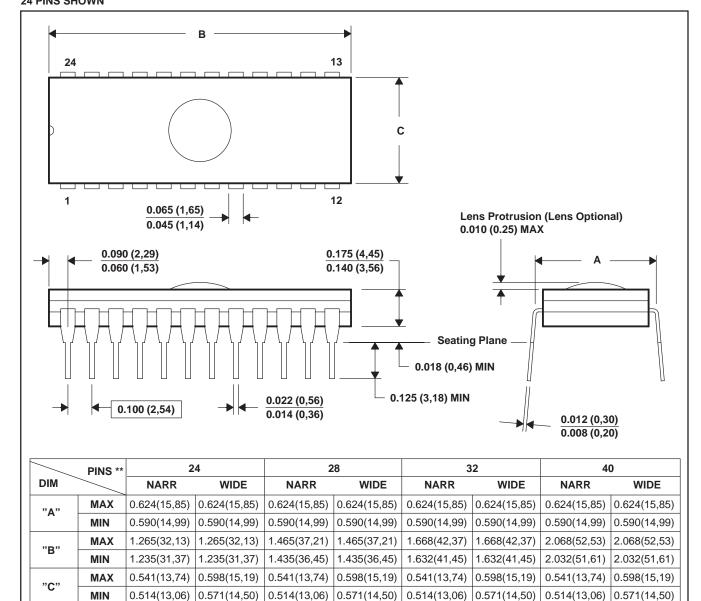
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS181, SN54S181, SN74LS181, SN74S181:

Catalog: SN74LS181, SN74S181

Military: SN54LS181, SN54S181

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

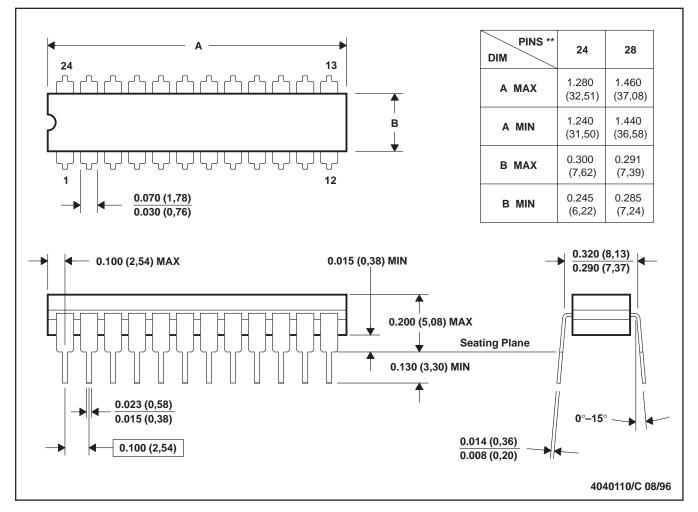
4040084/C 10/97

J (R-GDIP-T**)

24 PINS SHOWN

CERAMIC DUAL-IN-LINE PACKAGE

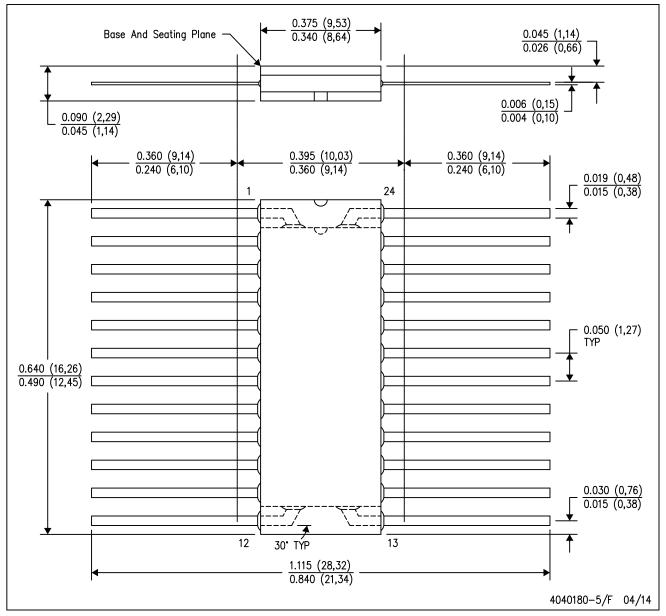
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
- D. This package can be hermetically sealed with a ceramic lid using glass frit.
- E. Index point is provided on cap for terminal identification.

JT (R-GDIP-T**)

24 LEADS SHOWN

CERAMIC DUAL-IN-LINE



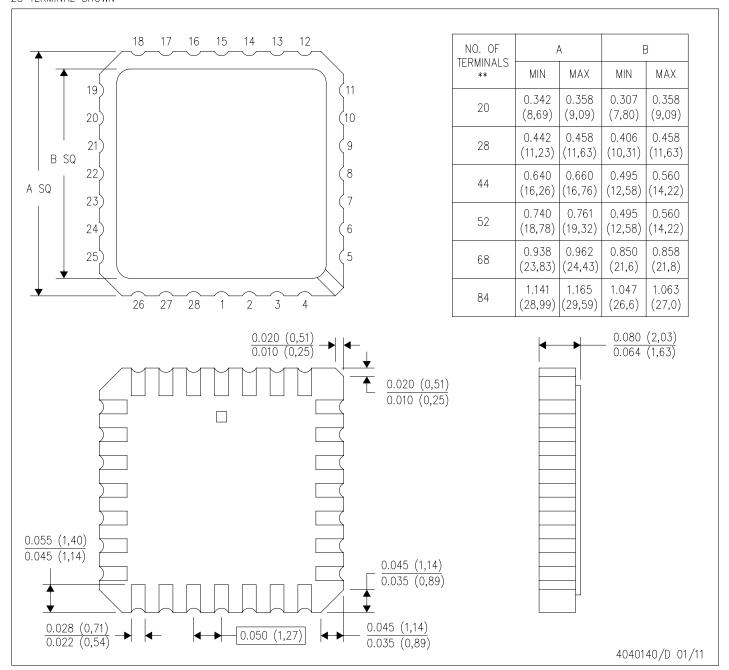
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

W (R-GDFP-F24)

CERAMIC DUAL FLATPACK

NOTES:

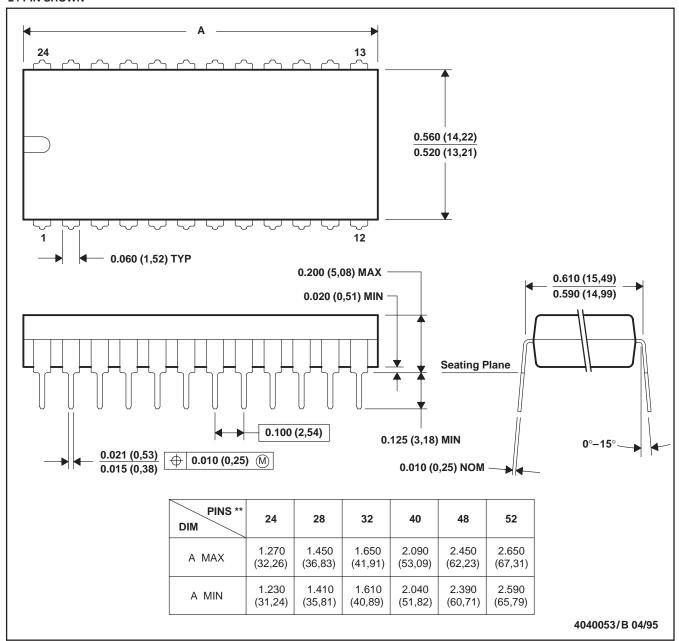

- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only. E. Falls within Mil—Std 1835 GDFP2—F20

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-011
- D. Falls within JEDEC MS-015 (32 pin only)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity