

CDP1852/3, CDP1852C/3

March 1997

High-Reliability Byte-Wide Input/Output Port

Features

- · Static Silicon-Gate CMOS Circuitry
- Parallel 8-Bit Data Register and Buffer
- Handshaking Via Service Request Flip-Flop
- · Low Quiescent and Operating Power
- · Interfaces Directly with CDP1800-Series Microprocessors
- Single Voltage Supply
- · Full Military Temperature Range (-55°C to +125°C)

Ordering Information

PACKAGE	TEMP. RANGE	5V	10V	PKG. NO
SBDIP	-55°C to +125°C	CDP1852CD3	CDP1852D3	D24.6

Pinout

CDP1852/3, CDP1852C/3 (SBDIP) TOP VIEW

Description

The CDP1852/3 and CDP1852C/3 are parallel, 8-bit, modeprogrammable input/output ports. They are compatible and will interface directly with CDP1800-Series microprocessors. They are also useful as 8-bit address latches when used with the CDP1800 multiplexed address bus and as I/O ports in general-purpose applications.

The mode control is used to program the device as an input port (mode = 0) or as an output port (mode = 1). The \overline{SR}/SR output can be used as a signal to indicate when data is ready to be transferred. In the input mode, a peripheral device can strobe data into the CDP1852/3, and microprocessor can read that data by device selection. In the output mode, a microprocessor strobes data into the CDP1852/3, and handshaking is established with a peripheral device when the CDP1852/3 is deselected.

In the input mode, data at the data-in terminals (DI0-DI7) is strobed into the port's 8-bit register by a high (1) level on the clock line. The negative high-to-low transition of the clock latches the data in the register and sets the service request output low (SR/SR = 0). When $CS1/\overline{CS1}$ and CS2 are high $(CS1/\overline{CS1})$ and CS2 = 1, the three-state output drivers are enabled and data in the 8-bit register appear at the data-out terminals (DO0-DO7). When either CS1/CS1 or CS2 goes low (CS1/ $\overline{CS1}$ or CS2 = 0), the data-out terminals are tristated and the service request output returns high $(\overline{SR}/SR = 1)$.

In the output mode, the output drivers are enabled at all times. Data at the data-in terminals (DI0-DI7) is strobed into the 8-bit register when $CS1/\overline{CS1}$ is low $(CS1/\overline{CS1} = 0)$ and CS2 and the clock are high (1), and are present at the dataout terminals (DO0-DO7). The negative high-to-low transition of the clock latches the data in the register. The SR/SR output goes high $(\overline{SR}/SR = 1)$ when the device is deselected $(CS1/\overline{CS1} = 1 \text{ or } CS2 = 0)$ and returns low $(\overline{SR}/SR = 0)$ on the following trailing edge of the clock.

A CLEAR control is provided for resetting the port's register (DO0-DO7 = 0) and service request flip-flop (input mode: $\overline{SR}/SR = 1$ and output mode: $\overline{SR}/SR = 0$).

The CDP1852/3 is functionally identical to the CDP1852C/3. The CDP1852/3 has a recommended operating voltage range of 4V to 10.5V, and the CDP1852C/3 has a recommended operating voltage range of 4V to 6.5V.

The CDP1852/3 and CDP1852C/3 are supplied in 24-lead, dual-in-line side-brazed ceramic packages (D suffix).

CDP1852/3, CDP1852C/3

Absolute Maximum Ratings

Thermal Information

θ _{JA} (°C/W)	θ _{JC} (°C/W)
65	20
	100mW
55 ^c	°C to +125°C
65 ^c	°C to +150°C
ım)	
	+265°C
	65

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Recommended Operating Conditions T_A = Full-Package Temperature Range. For maximum reliability, operating conditions should be selected so that operation is always within the following ranges.

	CPP1	852/3	CDP18		
PARAMETER	MIN	MAX	MIN	MAX	UNITS
DC Operating Voltage Range	4	10.5	4	6.5	V
Input Voltage Range	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V

Static Electrical Specifications $V_{IN} = 0$ or V_{DD} , Except as Noted

			LIMITS				
			-55°C,	+25°C	+12	25°C	1
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current (Note 1)	l _{DD}	V _{DD} = 5V	-	10	-	100	μΑ
		V _{DD} = 10V	-	20	-	300	μΑ
Output Low Drive (Sink) Current	l _{OL}	$V_{DD} = 5V, V_{O} = 0.4V$	2.6	-	1.9	-	mA
		$V_{DD} = 10V, V_{O} = 0.5V$	6.1	-	4.1	-	mA
Output High Drive (Source) Current	I _{OH}	$V_{DD} = 5V, V_{O} = 4.6V$	-1.8	-	-1.3	-	mA
		$V_{DD} = 10V, V_{O} = 9.5V$	-4.4	-	-2.9	-	mA
Output Voltage Low Level	V _{OL}	$V_{DD} = 5V$, $I_{OL} = 0\mu A$	-	0.1	-	0.2	٧
		$V_{DD} = 10V, I_{OL} = 0\mu A$	-	0.1	-	0.2	٧
Output Voltage High Level	V _{OH}	$V_{DD} = 5V$, $I_{OL} = 0\mu A$	4.9	-	4.8	-	٧
		$V_{DD} = 10V, I_{OL} = 0\mu A$	9.9	-	9.8	-	٧
Input Low Voltage	V _{IL}	$V_{DD} = 5V, V_{O} = 0.2, 4.8V$	-	1.5	-	1.5	٧
		$V_{DD} = 10V, V_{O} = 0.2, 9.8V$	-	3	-	3	٧
Input High Voltage	V _{IH}	$V_{DD} = 5V, V_{O} = 0.2, 4.8V$	3.5	-	3.5	-	٧
		$V_{DD} = 10V, V_{O} = 0.2, 9.8V$	7	-	7	-	٧
Input Leakage Low	I _{IL}	V _{DD} = 5V, V _{IN} = 0V	-	-1	-	-5	μΑ
		V _{DD} = 10V, V _{IN} = 0V	-	-1	-	-5	μΑ
Input Leakage High	I _{IH}	V _{DD} = 5V, V _{IN} = 5V	-	1	-	5	μΑ
		V _{DD} = 10V, V _{IN} = 10V	-	1	-	5	μΑ

Static Electrical Specifications $V_{IN} = 0$ or V_{DD} , Except as Noted (Continued)

			LIMITS				
			-55°C,	+25°C	+12	5°C	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Three-State Output Leakage Low	I _{OZL}	$V_{DD} = 5V, V_{O} = 0V$	-	-1	-	-5	μΑ
		$V_{DD} = 10V, V_{O} = 0V$	-	-1	-	-5	μΑ
Three-State Output Leakage High	l _{ozh}	$V_{DD} = 5V, V_{O} = 5V$	-	1	-	5	μΑ
		$V_{DD} = 10V, V_{O} = 10V$	-	1	-	5	μΑ
Input Capacitance	C _{IN}	Note 2	-	10	-	10	pF
Output Capacitance	C _{OUT}	Note 2	-	15	-	15	pF

NOTES:

- 1. The CDP1852C/3 meets all 5V static electrical specifications of the CDP1852/3 except +125 $^{\circ}$ C quiescent device current for which the limit is I_{DD} = 300 μ A.
- 2. Input and output capacitance are guaranteed but not tested.

Static Burn-In Circuit

TYPE NO.	V _{DD}	TEMPERATURE	TIME
CDP1852/3	11V	+125°C	160 Hrs. Min.
CDP1852C/3	7V	+125°C	160 Hrs. Min.

			LIMITS (NOTE 1)				
			-55°C,	+25°C	+12	5°C	
PARAMETER	SYMBOL	V _{DD} VOLTS	(NOTE 1) MIN	MAX	(NOTE 1) MIN	MAX	UNITS
Select Duration	t _{SW}	5	250	-	360	-	ns
		10	150	-	180	-	ns
Clock Pulse Width	t _{ww}	5	150	-	200	-	ns
		10	90	-	110	-	ns
Clear Pulse Width	t _{CLR}	5	110	-	160	-	ns
		10	50	-	80	-	ns
Data-In to Clock Fall Setup Time	t _{DS}	5	-10	-	-10	-	ns
		10	-5	-	-5	-	ns

 $\textbf{Dynamic Electrical Specifications} \quad \text{Mode = 0 Input Port, See Figure 3, Input t_r, $t_f \leq 15 ns$; $C_L = 50 pF$ } \quad \textbf{(Continued)}$

			LIMITS (NOTE 1)				
			-55°C,	+25°C	+125°C		
PARAMETER	SYMBOL	V _{DD} VOLTS	(NOTE 1) MIN	MAX	(NOTE 1) MIN	MAX	UNITS
Data-In After Clock Fall Hold Time	t _{DH}	5	150	-	170	-	ns
		10	70	-	100	-	ns
Propagation Delay Times: Clear to SR	t _{RSR}	5	-	200	-	340	ns
		10	-	110	-	170	ns
Clock to SR	t _{CSR}	5	-	175	-	220	ns
		10	-	110	-	130	ns
Deselect to SR	t _{SSR}	5	-	175	-	240	ns
		10	-	110	-	120	ns

NOTE:

1. Time required by a device to allow for the indicated function.

NOTE:

1. CS1 • CS2 is the overlap of CS1 = 1 and CS2 = 1.

MODE = 0 TRUTH TABLE								
CLOCK	CS1 • CS2 (Note 1)	CLEAR	DATA OUT EQUALS					
Х	0	Х	High Impedance					
0	1	0	0					
0	1	1	Data Latch					
1	1	Х	Data In					

SERVICE REQUEST TRUTH TABLE					
Clock =	CS1 or CS2 = or CLEAR = 0				
SR = 0	SR = 1				

NOTE:

1. CS1 • CS2 = CS1 = 1, CS2 = 1.

FIGURE 3. MODE = 0 INPUT PORT TIMING WAVEFORMS AND TRUTH TABLES

CDP1852/3, CDP1852C/3

 $\textbf{Dynamic Electrical Specification} \qquad \text{Mode} = 1 \text{ Output Port, See Figure 4, Input } tr, tf \leq 15 ns; C_L = 50 pF$

				LIMITS	(NOTE 1)		
			-55°C,	+25°C	+12	5°C	1
PARAMETER	SYMBOL	V _{DD} VOLTS	(NOTE 1) MIN	MAX	(NOTE 1) MIN	MAX	UNITS
Clock Pulse Width	t _{CLK}	5	170	-	260	-	ns
		10	90	-	130	-	ns
Write Width Duration	t _{WW}	5	200	-	260	-	ns
		10	110	-	130	-	ns
Clear Pulse Width	t _{CLR}	5	110	-	135	-	ns
		10	60	-	75	-	ns
Data-In to Clock Fall Setup Time	t _{DS}	5	-10	-	-10	-	ns
		10	-5	-	-5	-	ns
Data Hold from Write Termination	t _{DH}	5	130	-	170	-	ns
		10	70	-	90	-	ns
Select-After Clock-Fall Hold Time	t _{sн}	5	0	-	0	-	ns
		10	0	-	0	-	ns
Propagation Delay Times: Clear to Data	^t RDO	5	-	215	-	290	ns
		10	-	140	-	190	ns
Write to Data Out	t _{WDO}	5	-	250	-	350	ns
		10	-	130	-	190	ns
Data In to Data Out	t _{DDO}	5	-	150	-	200	ns
		10	-	80	-	100	ns
Clear to SR	t _{RSR}	5	-	175	-	240	ns
		10	-	120	-	160	ns
Clock to SR	t _{CSR}	5	-	170	-	240	ns
		10	-	90	-	120	ns
Deselect to SR	t _{SSR}	5	-	170	-	240	ns
		10	-	90	-	120	ns

NOTE:

^{1.} Time required by a device to allow for the indicated function.

NOTES:

- 1. CS1 CS2 is the overlap of the $\overline{CS1}$ = 0 and CS2 = 1.
- 2. Write is the overlap of CS1 CS2 and clock.

MODE = 1 TRUTH TABLE							
CLOCK	<u>CS1</u> • CS2 (NOTE 1)	CLEAR	DATA OUT EQUALS				
0	Х	0	0				
0	Х	1	Data Latch				
Х	0	1	Data Latch				
1	1	Х	Data In				

SERVICE REQUEST TRUTH TABLE	
CS1 _ √	Clock • (CS1 • CS2) →
or	or
CS2	CLEAR = 0
SR = 1	SR = 0

NOTE:

1. CS1 • CS2 = CS1 = 0, CS2 = 1

FIGURE 4. MODE = 1 OUTPUT PORT TIMING WAVEFORMS AND TRUTH TABLES