

4-Mbit (512K x 8) Static RAM

Features

High Speed: 70 ns4.5V-5.5V operationLow active power

Typical active current: 2.5 mA @ f = 1 MHz
 Typical active current: 12.5 mA @ f = f_{max}(70 ns)

Low standby current

• Automatic power-down when deselected

• TTL-compatible inputs and outputs

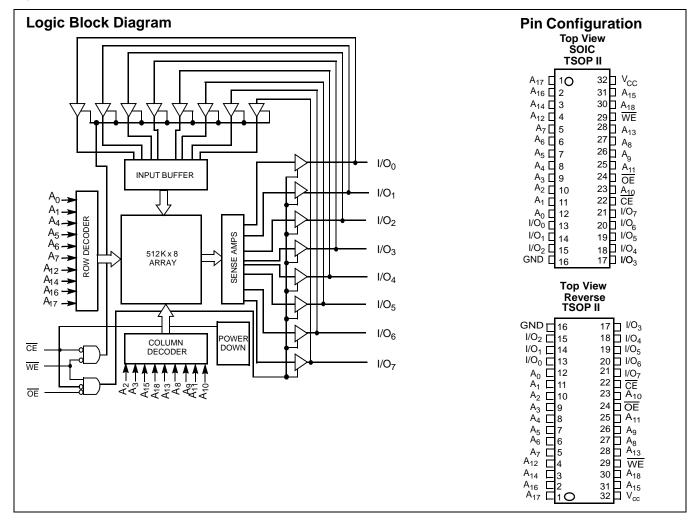
• Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

• CMOS for optimum speed/power

 Available in standard 32-lead (450-mil) SOIC, 32-lead TSOP II and 32-lead Reverse TSOP II packages

Functional Description

The CY62148B is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion


is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 99% when deselected.

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH for read. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY62148B is available in a standard 32-pin 450-mil-wide body width SOIC, 32-pin TSOP II, and 32-pin Reverse TSOP II packages.

Product Portfolio

							Power Di	ssipation	
						Operati	ing, Icc	Standb	y (I _{SB2})
	,	V _{CC} Range	•			f = f	max		
Product	Min.	Тур.	Max.	Speed	Temp.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62148BLL	4.5 V	5.0V	5.5V	70 ns	Com'l	12.5 mA	20 mA	4 μΑ	20 μΑ
					Ind'l				

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage on V_{CC} to Relative GND...... –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to $\rm V_{CC}$ +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V

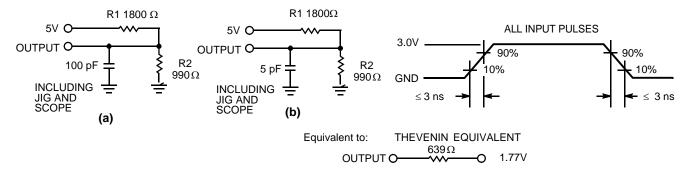
Current into Outputs (LOW)	20 mA
Static Discharge Voltage	2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current>	200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	–40°C to +85°C	

Electrical Characteristics Over the Operating Range

				(CY62148B-	·70	
Parameter	Description	Test Con	ditions	Min.	Typ. [3]	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -	– 1 mA	2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2$	2.1 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}, C$	– 1		+1	μА	
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC}$ $f = 1 \text{ MHz}$	Com/Ind'I I _{OUT} =0 mA V _{CC} = Max.,		12.5 2.5	20	mA mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{split} & \frac{Max.\ V_{CC},}{CE \geq V_{IH}} \\ & V_{IN} \geq V_{IH} \ or \\ & V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{split}$	Com/Ind'I			1.5	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:max_vcc} \begin{split} & \underline{\text{Max}}. \ V_{CC}, \\ & \text{CE} \geq V_{CC} - 0.3 \text{V}, \\ & \text{V}_{IN} \geq V_{CC} - 0.3 \text{V}, \\ & \text{or} \ V_{IN} \leq 0.3 \text{V}, \ f = 0 \end{split}$	Com/Ind'I		4	20	μА


- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "Instant On" case temperature.
- 3. Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

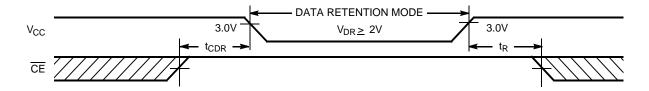
Note:

^{4.} Tested initially and after any design or process changes that may affect these parameters.

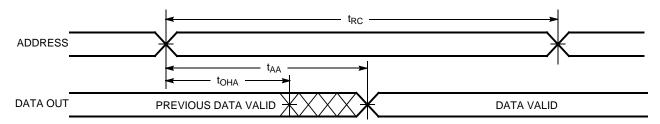
Switching Characteristics^[5] Over the Operating Range

		62148	BLL-70	
Parameter	Description	Min.	Max.	Unit
READ CYCLE		<u>.</u>		
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
WRITE CYCLE ^[8]		<u>.</u>		
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	55		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns

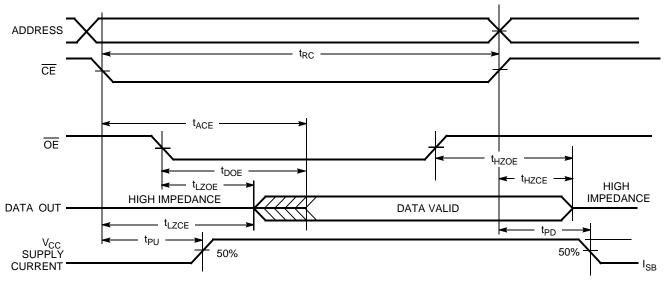
Notes:


<sup>Notes:
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 100-pF load capacitance.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.</sup>

Data Retention Characteristics (Over the Operating Range)


Parameter	Description			Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0			V
I _{CCDR}	Data Retention Current	Com'l LL		No input may exceed			20	μΑ
		Ind'I LL		$V_{CC} + 0.3V$ $\underline{V_{CC}} = V_{DR} = 3.0V$			20	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		$CE > V_{CC} - 0.3V$ $V_{IN} > V_{CC} - 0.3V$ or $V_{IN} < 0.3V$	0			ns	
t _R ^[9]	Operation Recovery Time	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

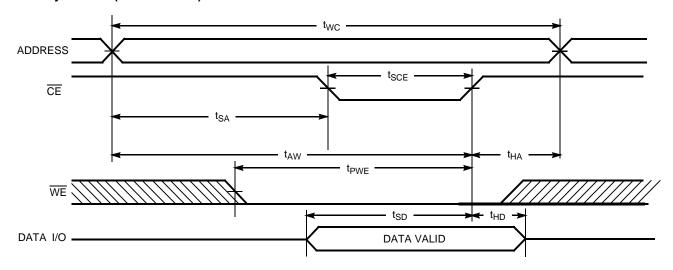


Switching Waveforms

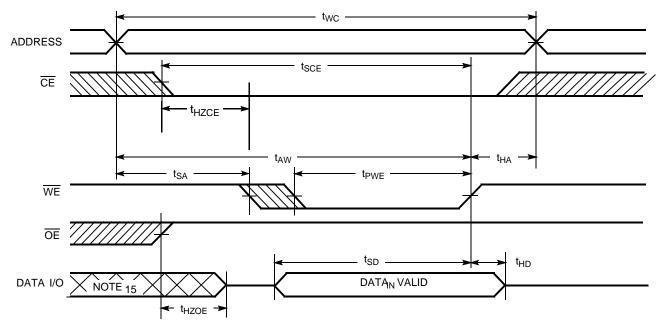
Read Cycle No.1^[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]

Notes:


- Full Device operatin requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{cc(min)} ≥ 100 μs.
 Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.

- 12. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

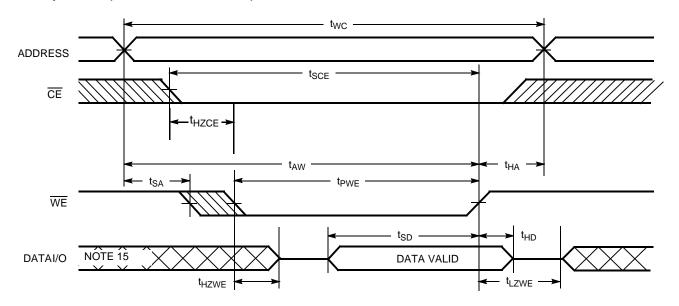


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]

- 13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.


 14. Data I/O is high-impedance if OE = V_{IH}.

 15. During this period the I/Os are in the output state and input signals should not be applied.

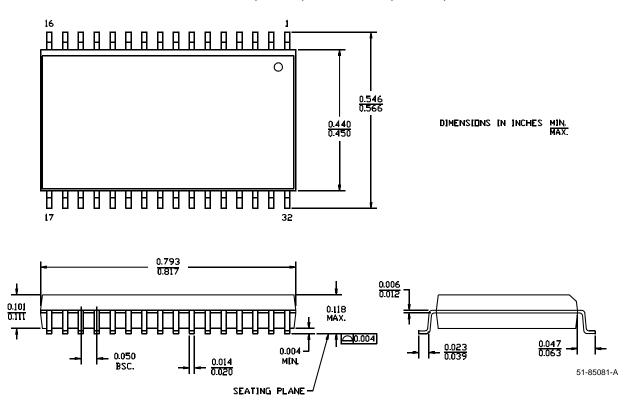
Switching Waveforms (continued)

Write Cycle No.3 (WE Controlled, OE LOW)[13, 14]

Truth Table

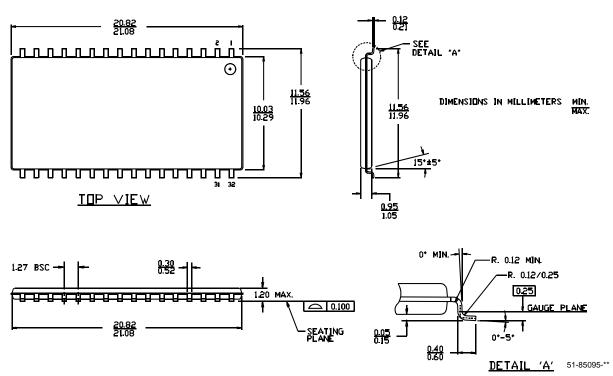
CE	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY62148BLL-70SC	51-85081	32-lead (450-Mil) Molded SOIC	Commercial
	CY62148BLL-70ZC	51-85095	32-lead TSOP II	
	CY62148BLL-70ZRC	51-85138	32-lead RTSOP II	
	CY62148BLL-70SI	51-85081	32-lead (450-Mil) Molded SOIC	Industrial
	CY62148BLL-70ZI	51-85095	32-lead TSOP II	
	CY62148BLL-70ZRI	51-85138	32-lead RTSOP II	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams


32-lead (450 MIL) Molded SOIC (51-85081)

Package Diagrams (continued)

32-lead Thin Small Outline Package Type II (51-85095)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Package Diagrams (continued)

32-lead Reverse Thin Small Outline Package Type II (51-85138)

DIMENSIONS IN MILLIMETERS -SEE DETAIL "A" (\underbrace{f}) 11.56 11.96 11.56 11.96 10.03 10.29 TOP VIEW BOTTOM VIEW 0.95 1.05 0° MIN. R. 0.12 MIN. R. 0.12/0.25 L27 BSC -0.25 GAUGE PLANE L20 MAX <u></u> 0.100 0.05 0°-5* SEATING PLANE DETAIL 'A'

51-85138-**

Document History Page

	nt Title: CY62 nt Number: 3		(312K X 0)	Static KAIVI
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106833	05/01/01	SZV	Change from Spec number 38-01104 to 38-05039
*A	106970	07/16/01	GAV	Modified annotations on Pin Configurations; t _{SD} = 30 ns
*B	109766	10/09/01	MGN	Remove 55-ns devices
*C	485639	See ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Corrected the typo in the Array size in the Logic Block Diagram on page# 1 Renamed Package Name column with Package Diagram in the Ordering Information Table