

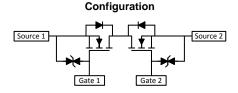
CSD83325L SLPS494B – NOVEMBER 2014 – REVISED FEBRUARY 2017

CSD83325L 12-V Dual N-Channel NexFET™ Power MOSFET

1 Features

- Common Drain Configuration
- Low-On Resistance
- Small Footprint of 2.2 mm x 1.15 mm
- Lead Free
- · RoHS Compliant
- Halogen Free
- · Gate ESD Protection

2 Applications


- Battery Management
- · Battery Protection

3 Description

This 12-V, $9.9\text{-m}\Omega$, $2.2\text{-mm} \times 1.15\text{-mm}$ LGA Dual NexFETTM power MOSFET is designed to minimize resistance and gate charge in a small footprint. Its small footprint and common drain configuration make the device ideal for battery pack applications in small handheld devices.

Top View

(si) (s2)
(si) (s2)

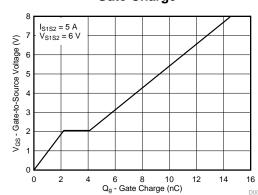
R_{DS(on)} vs V_{GS} $T_C = 25^{\circ}C$, $I_D = 5$ A $T_C = 125^{\circ}C$, $I_D = 5$ A 27 RS1S2(on) - On-State Resistance (mΩ) 24 21 18 15 12 9 3 5 6 8 10 V_{GS} - Gate-to-Source Voltage (V)

Product Summary

T _A = 25°C		TYPICAL V	UNIT		
V _{S1S2}	Source-to-Source Voltage	12	V		
Q_g	Gate Charge Total (4.5 V)	8.4		nC	
Q_{gd}	Gate Charge Gate-to-Drain	1.9	1.9		
		V _{GS} = 2.5 V	17.5	mΩ	
R _{S1S2(on)}	Source-to-Source On Resistance	V _{GS} = 3.8 V	10.9	mΩ	
		V _{GS} = 4.5 V	9.9	mΩ	
V _{GS(th)}	Threshold Voltage	0.95		V	

Device Information(1)

DEVICE	QTY	MEDIA	PACKAGE	SHIP
CSD83325L	3000		2.20-mm x 1.15-mm	Tape
CSD83325LT	250	7-Inch Reel	Land Grid Array (LGA) Package	and Reel


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

$T_A = 25$	s°C	VALUE	UNIT
V_{S1S2}	Source-to-Source Voltage	12	V
V_{GS}	Gate-to-Source Voltage	±10	V
Is	Continuous Source Current ⁽¹⁾	8	Α
I _{SM}	Pulsed Source Current ⁽²⁾	52	Α
P _D	Power Dissipation	2.3	W
V _(ESD)	Human-Body Model (HBM)	2000	V
T _J , T _{stg}	Operating Junction Temperature, Storage Temperature	-55 to 150	°C

- (1) Device operating at a temperature of 105°C.
- (2) Typical min Cu $R_{\theta JA}$ = 150°C/W, pulse duration ≤ 100 μs , duty cycle ≤ 1%.

Gate Charge

Table of Contents

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (January 2016) to Revision B	Page
Added Diode Characteristics (V _{F(S-S)}) in the <i>Electrical Characteristics</i> table	3
Added Figure 9 to Typical MOSFET Characteristics section	4
Added Receiving Notification of Documentation Updates section to Device an	nd Documentation Support section7
Changes from Original (November 2014) to Revision A	Page
Improved graph setup for readability	4
Added Community Resources	

5 Specifications

5.1 Electrical Characteristics

 $T_{\Lambda} = 25^{\circ}C$ (unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC C	CHARACTERISTICS					
BV _{S1S2}	Source-to-source voltage	V _{GS} = 0 V, I _S = 250 μA	12			V
I _{S1S2}	Source-to-source leakage current	V _{GS} = 0 V, V _{S1S2} = 9.6 V			1	μΑ
I _{GSS}	Gate-to-source leakage current	V _{S1S2} = 0 V, V _{GS} = 10 V			10	μΑ
V _{GS(th)}	Gate-to-source threshold voltage	V _{S1S2} = V _{GS} , I _S = 250 μA	0.75	0.95	1.25	V
		V _{GS} = 2.5 V, I _S = 5 A	14.0	17.5	23.0	mΩ
R _{S1S2(on)}	Source-to-source on resistance	V _{GS} = 3.8 V, I _S = 5 A	8.8	10.9	13.0	mΩ
, ,		V _{GS} = 4.5 V, I _S = 5 A	7.9	9.9	11.9	mΩ
9 _{fs}	Transconductance	V _{S1S2} = 1.2 V, I _S = 5 A		36		S
DYNAMIC	CHARACTERISTICS ⁽¹⁾		,		'	
C _{iss}	Input capacitance			902	1170	pF
C _{oss}	Output capacitance	$V_{GS} = 0 \text{ V}, V_{S1S2} = 6 \text{ V}, f = 1 \text{ MHz}$		187	243	pF
C _{rss}	Reverse transfer capacitance			111	144	pF
Qg	Gate charge total (4.5 V)			8.4	10.9	nC
Q _{gd}	Gate charge gate-to-drain			1.9		nC
Q_{gs}	Gate charge gate-to-source	$V_{S1S2} = 6 \text{ V}, I_S = 5 \text{ A}$		2.2		nC
Q _{g(th)}	Gate charge at V _{th}			0.6		nC
Q _{oss}	Output charge	V _{S1S2} = 6 V, V _{GS} = 0 V		2.9		nC
t _{d(on)}	Turnon delay time			205		ns
t _r	tate-to-source leakage current Value to-source threshold voltage Value to-source threshold voltage Value to-source on resistance Value to-source on resistance Value to-source on resistance Value to-source on resistance Value to-source to-source Value tapacitance Value t	V _{S1S2} = 6 V, V _{GS} = 4.5 V,		353		ns
t _{d(off)}	Turnoff delay time	$I_{S1S2} = 5 \text{ A}, R_G = 0 \Omega$		711		ns
t _f	Fall time			589		ns
DIODE CI	HARACTERISTICS	•	•		'	
V _{F(S-S)}	Source-to-source diode forward voltage	I _{SS} = 5 A, V _{G1S1} = 0 V, V _{G2S2} = 4.5 V		0.79	1.0	V

⁽¹⁾ Dynamic characteristics values specified are per single FET.

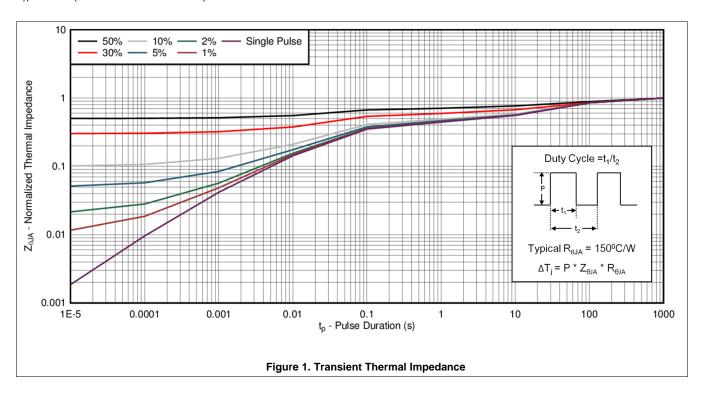
5.2 Thermal Information

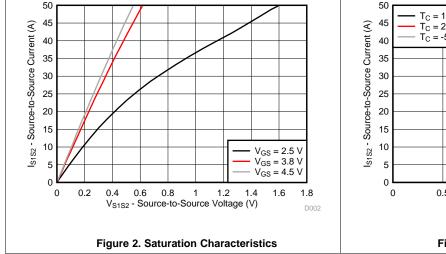
 $T_A = 25$ °C (unless otherwise stated)

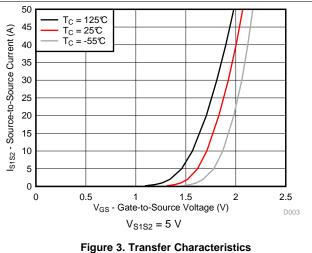
	THERMAL METRIC	MIN	TYP	MAX	UNIT
В	Junction-to-ambient thermal resistance ⁽¹⁾		150		°C/W
$\kappa_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾		55		C/VV

⁽¹⁾ Device mounted on FR4 material with minimum Cu mounting area.

Copyright © 2014–2017, Texas Instruments Incorporated

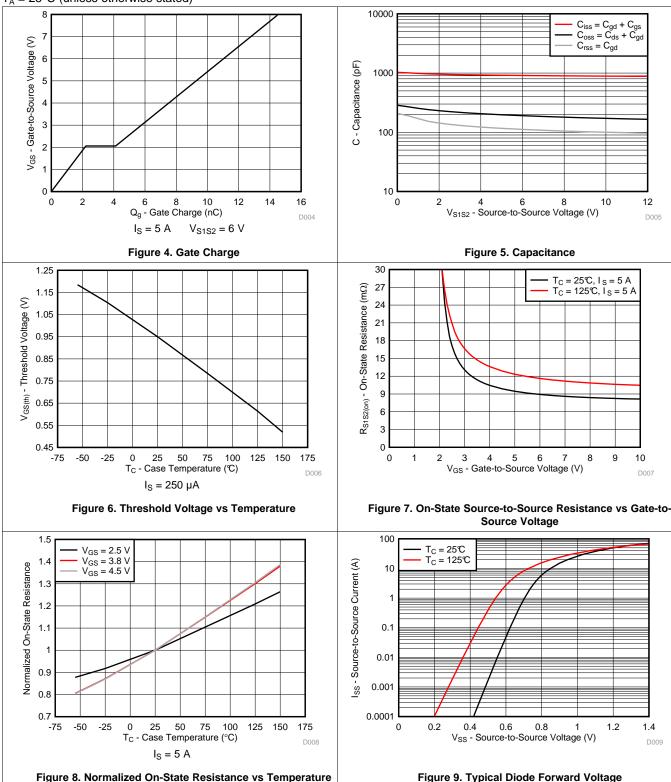

Submit Documentation Feedback


⁽²⁾ Device mounted on FR4 material with 1-in² (6.45-cm²), 2-oz (0.071-mm) thick Cu.



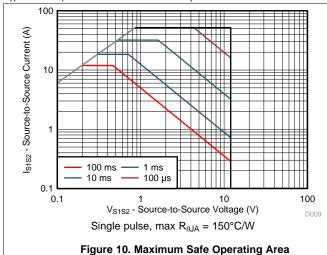
5.3 Typical MOSFET Characteristics

 $T_A = 25$ °C (unless otherwise stated)


Submit Documentation Feedback

Copyright © 2014–2017, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)


 $T_A = 25$ °C (unless otherwise stated)

Typical MOSFET Characteristics (continued)

 $T_A = 25$ °C (unless otherwise stated)

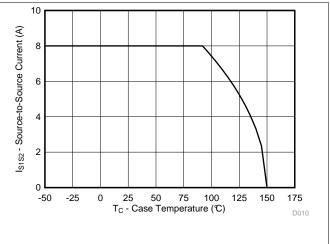


Figure 11. Maximum Source Current vs Temperature

6 Device and Documentation Support

6.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

6.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

6.3 Trademarks

NexFET, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

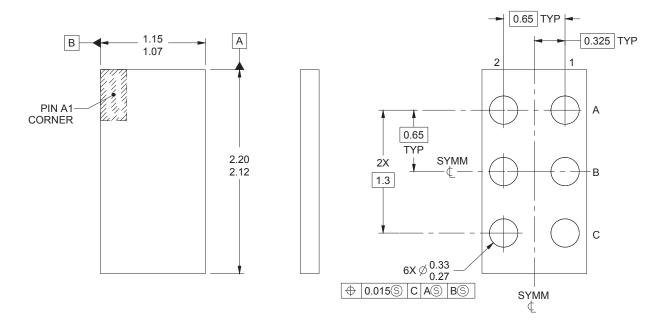
6.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.5 Glossary

SLYZ022 — TI Glossary.

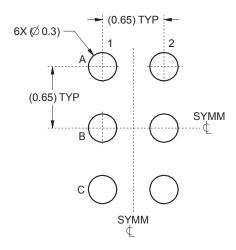
This glossary lists and explains terms, acronyms, and definitions.

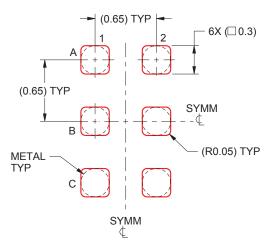

Submit Documentation Feedback

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 Package Dimensions




All dimensions in millimeters.

7.2 Recommended PCB Pattern

7.3 Recommended Stencil Pattern

All dimensions are in millimeters.

PACKAGE OPTION ADDENDUM

29-Jun-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CSD83325L	ACTIVE	PICOSTAR	YJE	6	3000	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM		83325L	Samples
CSD83325LT	ACTIVE	PICOSTAR	YJE	6	250	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM	-55 to 150	83325L	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

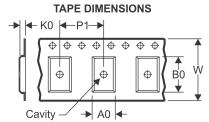
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


29-Jun-2018

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jan-2020

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD83325L	PICOST AR	YJE	6	3000	178.0	8.4	1.25	2.34	0.32	4.0	8.0	Q1
CSD83325LT	PICOST AR	YJE	6	250	178.0	8.4	1.25	2.34	0.32	4.0	8.0	Q1

www.ti.com 18-Jan-2020

*All dimensions are nominal

Device	Package Type	Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
CSD83325L	PICOSTAR	YJE	6	3000	220.0	220.0	35.0	
CSD83325LT	PICOSTAR	YJE	6	250	220.0	220.0	35.0	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated