

PART NUMBER

NLSX3373MUTAG-ROC

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

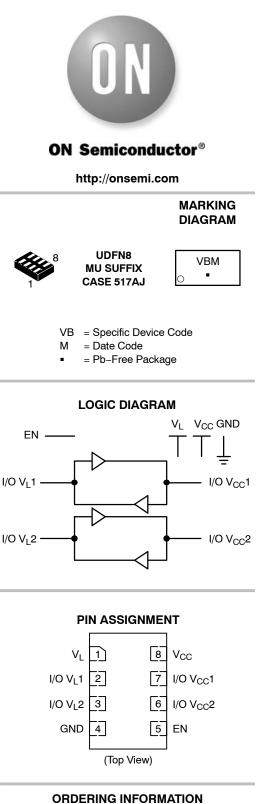
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

2-Bit 20 Mb/s Dual-Supply Level Translator

The NLSX3373 is a 2-bit configurable dual-supply bidirectional auto sensing translator that does not require a directional control pin. The V_{CC} I/O and V_L I/O ports are designed to track two different power supply rails, V_{CC} and V_L respectively. The V_{CC} supply rail is configurable from 1.65 V to 4.5 V while V_L supply rail is configurable to 1.2 V to 4.1 V. This allows lower voltage logic signals on the V_L side to be translated into higher voltage logic signals on the V_{CC} side, and vice-versa.

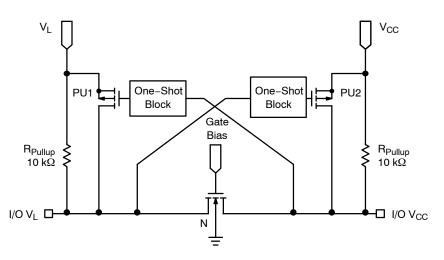
The NLSX3373 translator has open–drain outputs with integrated 10 k Ω pullup resistors on the I/O lines. The integrated pullup resistors are used to pullup the I/O lines to either V_L or V_{CC}. The NLSX3373 is an excellent match for open–drain applications such as the I²C communication bus.

Features


- Wide High–Side V_{CC} Operating Range: 1.65 V to 4.5 V Wide Low–Side V_L Operating Range: 1.2 V to 4.1 V
- High–Speed with 20 Mb/s Guaranteed Date Rate for $V_L > 2.5 V$
- Low Bit-to-Bit Skew
- $\bullet\,$ Enable Input and I/O Lines have Overvoltage Tolerant (OVT) to 4.5 V
- Nonpreferential Powerup Sequencing
- Integrated 10 kΩ Pullup Resistors
- Small Space Saving Package 1.8 x 1.2 x 0.5 mm UDFN8
- This is a Pb–Free Device

Typical Applications

- I²C, SMBus, PMBus
- Low Voltage ASIC Level Translation
- Mobile Phones, PDAs, Cameras


Important Information

• ESD Protection for Power, Enable and I/O Pins: Human Body Model (HBM): ±7.5 kV Machine Model (MM): 400 V

Device	Package	Shipping [†]			
NLSX3373MUTAG	UDFN8	3000/Tape & Reel			
	(Pb-Free)				

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN ASSIGNMENT

Pins	Description	
V _{CC}	V _{CC} Input Voltage	
VL	V _L Input Voltage	
GND	Ground	
EN	Output Enable	
I/O V _{CC} n	V_{CC} I/O Port, Referenced to V_{CC}	
I/O V _L n	V_L I/O Port, Referenced to V_L	

FUNCTION TABLE

EN	Operating Mode	
L	Hi–Z	
н	I/O Buses Connected	

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	High-side DC Supply Voltage	-0.3 to +7.0		V
VL	High-side DC Supply Voltage	-0.3 to +7.0		V
I/O V _{CC}	V _{CC} -Referenced DC Input/Output Voltage	-0.3 to (V _{CC} + 0.3)		V
I/O V _L	V _L -Referenced DC Input/Output Voltage	–0.3 to (V _L + 0.3)		V
V_{EN}	Enable Control Pin DC Input Voltage	-0.3 to +7.0		V
I _{I/O_SC}	Short–Circuit Duration (I/O V_L and I/O V_{CC} to GND)	40	Continuous	mA
T _{STG}	Storage Temperature	-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Мах	Unit
V _{CC}	High-side Positive DC Supply Voltage	1.65	4.5	V
VL	High-side Positive DC Supply Voltage	1.2	4.1	V
V _{EN}	Enable Control Pin Voltage	GND	4.5	V
V _{IO}	Enable Control Pin Voltage	GND	4.5	V
T _A	Operating Temperature Range	-40	+85	°C

			-			
Symbol	Parameter	Test Conditions	Min	Typ (Notes 1, 2)	Max	Unit
VIHC	I/O V _{CC} Input HIGH Voltage		V _{CC} - 0.4	-	-	V
V _{ILC}	I/O V _{CC} Input LOW Voltage		-	-	0.15	V
VIHL	I/O V _L Input HIGH Voltage		V _L – 0.2	-	-	V
V _{ILL}	I/O V _L Input LOW Voltage		-	-	0.15	V
V _{IH}	Control Pin Input HIGH Voltage		V _L – 0.2	-	-	V
V _{IL}	Control Pin Input LOW Voltage		-	-	0.15	V
V _{OHC}	I/O V _{CC} Output HIGH Voltage	I/O V _{CC} Source Current = 20 μ A	2/3 * V _{CC}	-	-	V
V _{OLC}	I/O V _{CC} Output LOW Voltage	I/O V _{CC} Sink Current = 20 μ A	-	-	1/3 * V _{CC}	V
V _{OHL}	I/O V _L Output HIGH Voltage	I/O V _L Source Current = 20 μ A	2/3 * V _L	-	-	V
V _{OLL}	I/O V _L Output LOW Voltage	I/O V _L Sink Current = 20 μ A	-	-	1/3 * V _L	V
IQVCC	V _{CC} Supply Current	I/O V _{CC} and I/O V _L Unconnected, V _{EN} = V _L	-	45	75	μΑ
I _{QVL}	V _L Supply Current	I/O V _{CC} and I/O V _L Unconnected, V _{EN} = V _L	-	1.0	5.0	μΑ
I _{TS-VCC}	V _{CC} Tristate Output Mode Supply Current	I/O V _{CC} and I/O V _L Unconnected, $V_{EN} = GND$	-	0.1	2.5	μΑ
I _{TS-VL}	V _L Tristate Output Mode Supply Current	I/O V _{CC} and I/O V _L Unconnected, $V_{EN} = \text{GND}$	-	0.1	2.5	μΑ
I _{OZ}	I/O Tristate Output Mode Leakage Current	$T_A = +25^{\circ}C$	-	-	2.5	μA
R _{PU}	Pullup Resistor I/O V _L and V _{CC}	T _A = +25°C	-	10	-	kΩ

DC ELECTRICAL CHARACTERISTICS (V_{CC} = 1.65 V to 4.5 V and V_L = 1.2 V to 4.1 V, unless otherwise specified)

1. Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25°C. 2. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

TIMING CHARACTERISTICS - RAIL-TO-RAIL DRIVING CONFIGURATIONS

(I/O test circuit of Figures 2 and 3, C_{LOAD} = 15 pF, driver output impedance \leq 50 Ω , R_{LOAD} = 1 M Ω)

			-40°C to +8 (Notes 3 and			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
+1.2 ≤ V _L ≤	≤ V _{CC} ≤ +4.5 V				•	
t _{RVCC}	I/O V _{CC} Risetime				25	ns
t _{FVCC}	I/O V _{CC} Falltime				37	ns
t _{RVL}	I/O V _L Risetime				30	ns
t _{FVL}	I/O V _L Falltime				30	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				30	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				30	ns
t _{PPSKEW}	Part-to-Part Skew				20	nS
	Maximum Data Rate		8			Mb/s
+1.2 ≤ V _L ≤	≤ V _{CC} ≤ +3.3 V					
t _{RVCC}	I/O V _{CC} Risetime				25	ns
t _{FVCC}	I/O V _{CC} Falltime				30	ns
t _{RVL}	I/O V _L Risetime				30	ns
t _{FVL}	I/O V _L Falltime				30	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O VL)				20	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				20	ns
t _{PPSKEW}	Part-to-Part Skew				10	nS
	Maximum Data Rate		10			Mb/s
+1.8 ≤ V _L ≤	≤ V _{CC} ≤ +2.5 V		- 1 - 1			
t _{RVCC}	I/O V _{CC} Risetime				15	ns
t _{FVCC}	I/O V _{CC} Falltime				15	ns
t _{RVL}	I/O V _L Risetime				15	ns
t _{FVL}	I/O V _L Falltime				15	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				15	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				15	ns
t _{PPSKEW}	Part-to-Part Skew				10	nS
	Maximum Data Rate		16			Mb/s
+2.5 ≤ V _L ≤	≤ V _{CC} ≤ +3.3 V				•	•
t _{RVCC}	I/O V _{CC} Risetime				15	ns
t _{FVCC}	I/O V _{CC} Falltime				15	ns
t _{RVL}	I/O V _L Risetime				15	ns
t _{FVL}	I/O V _L Falltime				15	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O V _L)				15	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				15	ns
tPPSKEW	Part-to-Part Skew				10	nS
	Maximum Data Rate		20			Mb/s

3. Typical values are for V_{CC} = +3.3 V, V_L = +1.8 V and T_A = +25°C. 4. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

TIMING CHARACTERISTICS - OPEN DRAIN DRIVING CONFIGURATIONS

(I/O test circuit of Figures 4 and 5, C_{LOAD} = 15 pF, driver output impedance \leq 50 Ω , R_{LOAD} = 1 M Ω)

			−40°C to +85°C (Notes 5 and 6)			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
+1.2 ≤ V _L ≤	\leq V _{CC} \leq +4.5 V					
t _{RVCC}	I/O V _{CC} Risetime				400	ns
t _{FVCC}	I/O V _{CC} Falltime				50	ns
t _{RVL}	I/O V _L Risetime				400	ns
t _{FVL}	I/O V _L Falltime				60	ns
t _{PDVL-VCC}	Propagation Delay (Driving I/O VL)				1000	ns
t _{PDVCC-VL}	Propagation Delay (Driving I/O V _{CC})				1000	ns
t _{PPSKEW}	Part-to-Part Skew				50	nS
MDR	Maximum Data Rate		2			Mb/s

5. Typical values are for V_{CC} = +3.3 V, V_L = +1.8 V and T_A = +25°C.
6. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design. Limits over the operating temperature range are guaranteed by design.

TEST SETUPS

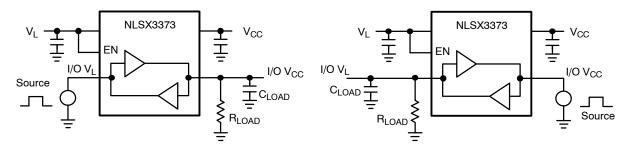


Figure 3. Rail-to-Rail Driving I/O V_{CC}

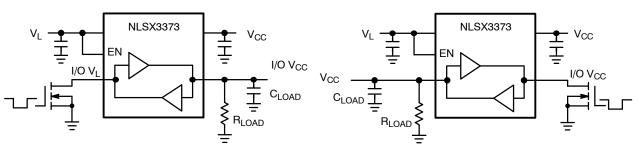


Figure 4. Open–Drain Driving I/O VL

Figure 5. Open–Drain Driving I/O V_{CC}

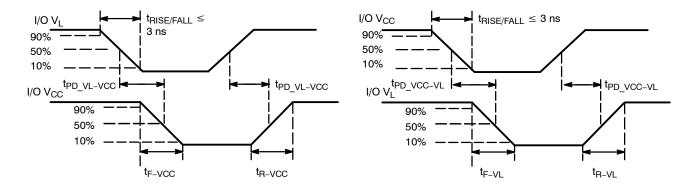
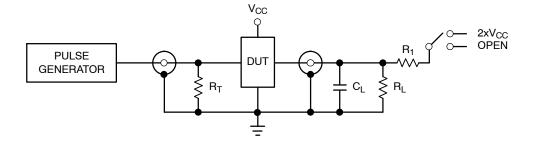
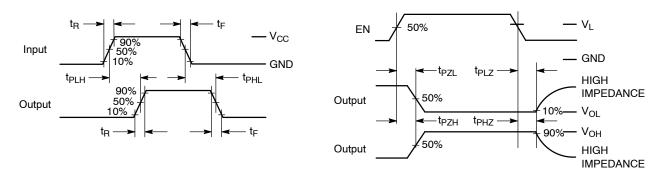




Figure 6. Definition of Timing Specification Parameters

Test	Switch
t _{PZH} , t _{PHZ}	Open
t _{PZL} , t _{PLZ}	$2 \times V_{CC}$

 C_L = 15 pF or equivalent (Includes jig and probe capacitance) R_L = R_1 = 50 k Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Figure 7. Test Circuit for Enable/Disable Time Measurement

Figure 8. Timing Definitions for Propagation Delays and Enable/Disable Measurement

APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX3373 auto sense translator provides bi-directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, V_L and V_{CC} , which set the logic levels on the input and output sides of the translator. When used to transfer data from the V_L to the V_{CC} ports, input signals referenced to the V_L supply are translated to output signals with a logic level matched to V_{CC} . In a similar manner, the V_{CC} to V_L translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_L .

The NLSX3373 consists of two bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. The one-shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the output signal for high-to-low and low-to-high transitions.

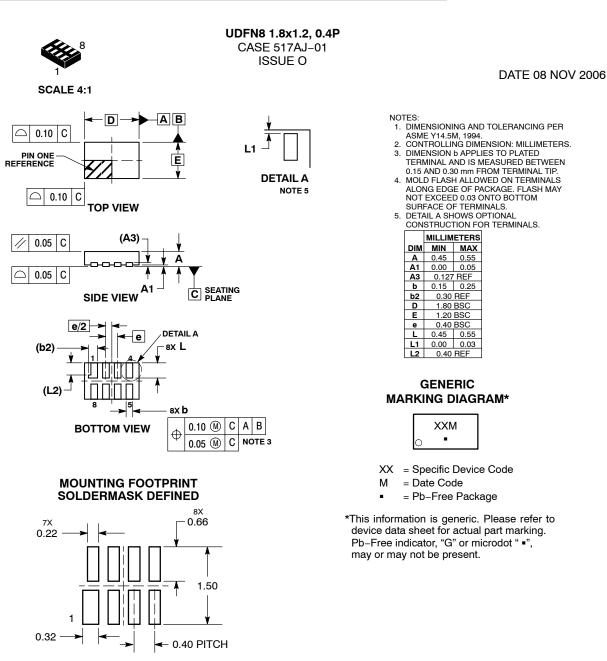
Each input/output channel has an internal 10 k Ω pull. The magnitude of the pullup resistors can be reduced by connecting external resistors in parallel to the internal 10 k Ω resistors.

Input Driver Requirements

The rise (t_R) and fall (t_F) timing parameters of the open drain outputs depend on the magnitude of the pull-up resistors. In addition, the propagation times (t_{PD}), skew (t_{PSKEW}) and maximum data rate depend on the impedance of the device that is connected to the translator. The timing parameters listed in the data sheet assume that the output impedance of the drivers connected to the translator is less than 50 k Ω .

Enable Input (EN)

The NLSX3373 has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O V_{CC} and I/O V_L pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_L supply and has Overvoltage Tolerant (OVT) protection.


Power Supply Guidelines

During normal operation, supply voltage V_L should be less than or equal to V_{CC} . The sequencing of the power supplies will not damage the device during the power up operation.

The enable pin should be used to enter the low current tri-state mode, rather than setting either the V_L or V_{CC} supplies to 0 V. The NLSX3373 will not be damaged if either V_L or V_{CC} is equal to 0 V while the other supply voltage is at a nominal operating value; however, the operation of the translator cannot be guaranteed during single supply operation.

For optimal performance, 0.01 μ F to 0.1 μ F decoupling capacitors should be used on the V_L and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

DIMENSIONS: MILLIMETERS

 DOCUMENT NUMBER:
 98AON23417D
 Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 UDFN8 1.8X1.2, 0.4P
 PAGE 1 OF 1

 ON Semiconductor and (Image) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Electronic versions are uncontrolled except when accessed directly from the Document Repository.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative