Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family

- Independent Asynchronous Inputs and Outputs
- Read and Write Operations Can Be Synchronized to Independent System Clocks
- Programmable Almost-Full/Almost-Empty Flag
- Pin-to-Pin Compatible With SN74ACT7882, SN74ACT7884, and SN74ACT7811
- Input-Ready, Output-Ready, and Half-Full Flags
- Expandable in Word Width and/or Word Depth
- Fast Access Times of 11 ns With a 50-pF Load
- High Output Drive for Direct Bus Interface
- Package Options Include 68-Pin Plastic Leaded Chip Carrrier (FN) or 80-Pin Shrink Quad Flat (PN) Package

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NC - No internal connection

description

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. The SN74ACT7881 is organized as 1024×18 bits. The SN74ACT7881 processes data at rates up to 67 MHz and access times of 11 ns in a bit-parallel format. Data outputs are noninverting with respect to the data inputs. Expansion is accomplished easily in both word width and word depth.
The SN74ACT7881 has normal input-bus to output-bus asynchronous operation. The special enable circuitry adds the ability to synchronize independent reads and writes to their respective system clocks.
The SN74ACT7881 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the FN package.

functional block diagram

Terminal Functions

TERMINAL†			DESCRIPTION
NAME	NO.		
AF/AE	33	0	Almost-full/almost-empty flag. The AF/AE boundary is defined by the AF/AE offset value (X). This value can be programmed during reset, or the default value of 256 can be used. AF/AE is high when the FIFO contains $(X+1)$ or fewer words or $(1025-X)$ or more words. AF/AE is low when the FIFO contains between $(X+2)$ and $(1024-X)$ words. Programming procedure for AF/AE - The AF/AE flag is programmed during each reset cycle. The AF/AE offset value (X) is either a user-defined value or the default of $X=256$. Instructions to program AF/AE using both methods are as follows: User-defined X Step 1: Take $\overline{\text { DAF }}$ from high to low. Step 2: If $\overline{\operatorname{RESET}}$ is not already low, take $\overline{\text { RESET }}$ low. Step 3: With $\overline{\text { DAF }}$ held low, take RESET high. This defines the AF/AE using X. Step 4: To retain the current offset for the next reset, keep $\overline{\mathrm{DAF}}$ low. Default X To redefine AF/AE using the default value of $X=256$, hold $\overline{\mathrm{DAF}}$ high during the reset cycle.
$\overline{\text { DAF }}$	27	I	Define-almost-full. The high-to-low transition of $\overline{\mathrm{DAF}}$ stores the binary value of data inputs as the AF/AE offset value (X). With $\overline{\mathrm{DAF}}$ held low, a low pulse on $\overline{\text { RESET }}$ defines the AF/AE flag using X.
D0-D17	$\begin{gathered} 26-19,17, \\ 15-7 \end{gathered}$	I	Data inputs for 18-bit-wide data to be stored in the memory. A high-to-low transition of $\overline{\mathrm{DAF}}$ captures data for the AF/AE offset (X) from D8-D0.
HF	36	0	Half-full flag. HF is high when the FIFO contains 512 or more words and is low when the number of words in memory is less than half the depth of the FIFO.
IR	35	0	Input-ready flag. IR is high when the FIFO is not full and low when the device is full. During reset, IR is driven low on the rising edge of the second WRTCLK pulse. IR is then driven high on the rising edge of the second WRTCLK pulse after RESET goes high. After the FIFO is filled and IR is driven low, IR is driven high on the second WRTCLK pulse after the first valid read.
OE	2	I	Output enable. The Q0-Q17 outputs are in the high-impedance state when OE is low. OE must be high before the rising edge of RDCLK to read a word from memory.
OR	66	0	Output-ready flag. OR is high when the FIFO is not empty and low when the FIFO is empty. During reset, OR is set low on the rising edge of the third RDCLK pulse. OR is set high on the rising edge of the third RDCLK pulse to occur after the first word is written into the FIFO. OR is set low on the rising edge of the first RDCLK pulse after the last word is read.
Q0-Q17	$\begin{gathered} 38-39,41-42, \\ 44,46-47, \\ 49-50,52-53, \\ 55-56,58-59, \\ 61,63-64 \end{gathered}$	0	Data outputs. The first data word to be loaded into the FIFO is moved to Q0-Q17 on the rising edge of the third RDCLK pulse to occur after the first valid write. RDEN1 and RDEN2 do not affect this operation. Following data is unloaded on the rising edge of RDCLK when RDEN1, RDEN2, OE, and OR are high.
RDCLK	5	1	Read clock. Data is read out of memory on the low-to-high transition of RDCLK if OR, OE, RDEN1, and RDEN2 are high. RDCLK is a free-running clock and functions as the synchronizing clock for all data transfers out of the FIFO. OR also is driven synchronously with respect to the RDCLK signal.
RDEN1 RDEN2	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	I	Read enable. RDEN1 and RDEN2 must be high before a rising edge on RDCLK to read a word out of memory. RDEN1 and RDEN2 are not used to read the first word stored in memory.
RESET	1	1	Reset. A reset is accomplished by taking RESET low and generating a minimum of four RDCLK and WRTCLK cycles. This ensures that the internal read and write pointers are reset and that OR, HF, and IR are low, and AF/AE is high. The FIFO must be reset upon power up. With $\overline{\mathrm{DAF}}$ at a low level, a low pulse on RESET defines AF/AE using the AF/AE offset value (X), where X is the value previously stored. With $\overline{\mathrm{DAF}}$ at a high level, a low-level pulse on $\overline{\text { RESET }}$ defines the AF/AE flag using the default value of $X=256$.
WRTCLK	29	1	Write clock. Data is written into memory on a low-to-high transition of WRTCLK if IR, WRTEN1, and WRTEN2 are high. WRTCLK is a free-running clock and functions as the synchronizing clock for all data transfers into the FIFO. IR also is driven synchronously with respect to WRTCLK.
WRTEN1 WRTEN2	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	I	Write enable. WRTEN1 and WRTEN2 must be high before a rising edge on WRTCLK for a word to be written into memory. WRTEN1 and WRTEN2 do not affect the storage of the AF/AE offset value (X).

[^0]
$\dagger \mathrm{X}$ is the binary value on D8-D0.
Figure 1. Reset Cycle: Define AF/AE Flag Using a Programmed Value of X

Figure 2. Reset Cycle: Define AF/AE Flag Using the Default Value of $X=256$

DATA-WORD NUMBERS FOR FLAG TRANSITIONS

TRANSITION WORD		
A	B	C
W513	$\mathrm{W}(1025-\mathrm{X})$	W 1025

Figure 3. Write Cycle

DATA-WORD NUMBERS FOR FLAG TRANSITIONS

TRANSITION WORD						
A	B	C	D	E	F	
W 513	W 514	$\mathrm{~W}(1024-\mathrm{X})$	$\mathrm{W}(1025-\mathrm{X})$	W 1024	W 1025	

Figure 4. Read Cycle

absolute maximum ratings over operating free-air temperature range \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, $\mathrm{V}_{\text {I }}$	-0.5 V to 7 V
Voltage range applied to a disabled 3-state output	-0.5 V to 5.5 V
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 1): FN package	$39^{\circ} \mathrm{C} / \mathrm{W}$
PN package	$62^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions

		MIN	MAX	UNIT
V_{CC}	Supply voltage	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8	V
${ }^{\text {IOH }}$	High-level output current		-8	mA
$\mathrm{I}_{\text {OL }}$	Low-level output current		16	mA
T_{A}	Operating free-air temperature	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP\#	MAX	UNIT
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-8 \mathrm{~mA}$	2.4			V
V OL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=16 \mathrm{~mA}$			0.5	V
I	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0			± 5	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0			± 5	$\mu \mathrm{A}$
ICC§	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or 0				400	$\mu \mathrm{A}$
	One input at 3.4 V ,	Other inputs at V_{CC} or GND			1.2	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		4		pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		8		pF

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ ICC is tested with outputs open.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Figures 1 through 5)

			'ACT7881-15		'ACT7881-20		'ACT7881-30		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			67		50		33.4	MHz
${ }^{\text {tw }}$	Pulse duration	WRTCLK high	5		7		8.5		ns
		WRTCLK low	7		7		11		
		RDCLK high	5		7		8.5		
		RDCLK low	7		7		11		
		$\overline{\text { DAF }}$ high	7		7		10		
${ }_{\text {tsu }}$	Setup time	D0-D17 before WRTCLK \uparrow	5		5		5		ns
		WRTEN1, WRTEN2 high before WRTCLK \uparrow	4		5		5		
		OE, RDEN1, RDEN2 high before RDCLK \uparrow	4		5		5		
		Reset: $\overline{\text { RESET }}$ low before first WRTCLK \uparrow and RDCLK $\uparrow \dagger$	5		6		7		
		Define AF/AE: D0-D8 before $\overline{\mathrm{DAF}} \downarrow$	3		5		5		
		Define AF/AE: $\overline{\mathrm{DAF}} \downarrow$ before $\overline{\text { RESET }} \uparrow$	3		6		7		
		Define AF/AE (default): $\overline{\text { DAF }}$ high before $\overline{\text { RESET }} \uparrow$	4		5		5		
$t_{\text {h }}$	Hold time	D0-D17 after WRTCLK \uparrow	0		0		0		ns
		WRTEN1, WRTEN2 high after WRTCLK \uparrow	0		0		0		
		OE, RDEN1, RDEN2 high after RDCLK \uparrow	0		0		0		
		Reset: $\overline{\text { RESET }}$ low after fourth WRTCLK \uparrow and RDCLK个 \dagger	0		0		0		
		Define AF/AE: D0-D8 after $\overline{\overline{D A F}} \downarrow$	0		0		0		
		Define AF/AE: $\overline{\mathrm{DAF}}$ low after $\overline{\mathrm{RESET}} \uparrow$	0		0		0		
		Define AF/AE (default): $\overline{\text { DAF }}$ high after $\overline{\mathrm{RESET}} \uparrow$	0		0		0		

\dagger To permit the clock pulse to be utilized for reset purposes
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 5)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	'ACT7881-15		'ACT7881-20		'ACT7881-30		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	WRTCLK or RDCLK		67		50		33.4		MHz
$t_{\text {pd }}$	RDCLK \uparrow	Any Q	3	12	3	13	3	18	ns
$t_{p d}{ }^{\ddagger}$	RDCLK \uparrow	Any Q							ns
${ }^{\text {tpd }}$	WRTCLK \uparrow	IR	2	8	2	9.5	2	12	ns
	RDCLK \uparrow	OR	2	8	2	9.5	2	12	
	WRTCLK \uparrow	AF/AE	6	17	6	19	6	22	
	RDCLK \uparrow		6	17	6	19	6	22	
tPLH	WRTCLK \uparrow	HF	6	14	6	17	6	21	ns
tPHL	RDCLK \uparrow	HF	6	14	6	17	6	21	ns
tPLH	$\overline{\text { RESET }} \downarrow$	AF/AE	3	12	3	17	3	21	ns
tPHL	$\overline{\text { RESET }} \downarrow$	HF	3	14	3	19	3	23	ns
ten	OE	Any Q	2	9	2	11	2	11	ns
$\mathrm{t}_{\text {dis }}$	OE	Any Q	2	10	2	14	2	14	ns

\ddagger This parameter is measured with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (see Figure 6).
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT	
C_{pd}	Power dissipation capacitance per 1 K bits	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{f}=5 \mathrm{MHz}$	65	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

PARAMETER		S1
ten	${ }^{\text {tPZH }}$	Open
	tPZL	Closed
${ }^{\text {d }}$ dis	${ }^{\text {t PHZ }}$	Open
	tPLZ	Closed
${ }^{\text {tpd }}$	tPLH	Open
	tPHL	Open

VOLTAGE WAVEFORMS PULSE DURATION

NOTE A: C_{L} includes probe and jig capacitance.
Figure 5. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 6

APPLICATION INFORMATION

expanding the SN74ACT7881

The SN74ACT7881 is expandable in both word width and word depth. Word-depth expansion is accomplished by connecting the devices in series such that data flows through each device in the chain. Figure 8 shows two SN74ACT7881 devices configured for word-depth expansion. The common clock between the devices can be tied to either the write clock (WRTCLK) of the first device or the read clock (RDCLK) of the last device. The output-ready (OR) flag of the previous device and the input-ready (IR) flag of the next device maintain data flow to the last device in the chain whenever space is available.

Figure 9 shows two SN74ACT7881 devices in word-width expansion. Word-width expansion is accomplished by simply connecting all common control signals between the devices and creating composite IR and OR signals. The almost-full/almost-empty (AF/AE) flag and half-full (HF) flag can be sampled from any one device. Word-depth expansion and word-width expansion can be used together.

Figure 7. Word-Depth Expansion: 2048/4096/8192 $\times 18$ Bits, $\mathrm{N}=2$

Figure 8. Word-Width Expansion: 1024×36 Bits

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking $(4 / 5)$	Samples
SN74ACT7881-20FN	LIFEBUY	PLCC	FN	68		TBD	Call TI	Call TI	0 to 70	$\begin{aligned} & \text { SN74 } \\ & \text { ACT7881-20FN } \end{aligned}$	
SN74ACT7881-20PN	LIFEBUY	LQFP	PN	80		TBD	Call TI	Call TI	0 to 70	ACT7881-20	

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4215155/A 03/2017
NOTES:

1. All linear dimensions are in inches. Any dimensions in brackets are in millimeters. Any dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Dimension does not include mold protrusion. Maximum allowable mold protrusion . 01 in [0.25 mm] per side.
4. Reference JEDEC registration MS-018.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

[^0]: \dagger Terminals listed are for the FN package.

