FEATURES

- broadcast quality video multiplier
- 30 MHz at -1.0 dB video and control channel bandwidth
- one external frequency compensation adjustment
- ultra low differential gain and differential phase, (typically 0.01% and 0.01 deg.)
- external DC offset and span trims
- 20 pin PDIP and SOIC packaging

APPLICATIONS

- Production switcher video mixers
- Linear Keyers

PIN CONNECTIONS

20 PIN DIP / SOIC

PIN DESIGNATION

```
-V negative supply voltage
+V
COMPoutput freq'y comp'n R-C
Cos1 control input offset adjust
Cos2 control input offset adjust
S1 span adjust
V REF 0.5volt reference input
S2 span adjust
V
GND ground
REXT current setting resistor
AOS1 A black level adjust (OFFSET)
+IN A A video + input signal
-IN A A video-signal input
AOs2 A black level adjust (OFFSET)
Bos1 B black level adjust (OFFSET)
+IN B B video + signal input
-IN B B video - signal input
Bos2 B black level adjust (OFFSET)
OUT multiplier output
```


ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE
Supply Voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$	$\pm 13.5 \mathrm{~V}$
Operating Temperature Range	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{S}} \leq 150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 Sec $)$	$260^{\circ} \mathrm{C}$
Video Input Voltage $\left(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}\right)$ to ground	$\pm 5 \mathrm{~V}$
Control Input Voltage $\left(\mathrm{V}_{\mathrm{C}}\right)$ to ground	$\pm 5 \mathrm{~V}$
Video Input Differential Voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$	$\pm 5 \mathrm{~V}$
Control Input Differential Voltage $\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{REF}}\right)$	$\pm 5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS $\left(+V_{S}=-V_{S}=10 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$ unless otherwise shown)

	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES	Supply Voltage	$\pm \mathrm{V}_{\mathrm{S}}$	Operating Range	± 9	± 10	± 12	volts
	+ Supply Current	I^{+}	$\mathrm{R}_{\text {EXT }}=1 \mathrm{k} \Omega$	-	24	28	mA
	- Supply Current	I^{-}	$\mathrm{R}_{\text {EXT }}=1 \mathrm{k} \Omega$	-	18	20	mA
SIGNAL CHANNEL	Bandwidth	BW	at $\pm 0.1 \mathrm{~dB} \vee_{\text {SIG }}=150 \mathrm{mVp}-\mathrm{p}$	25	30	-	MHz
	Frequency Response		DC - 10 MHz	-	± 0.05	-	dB
	Differential Gain	$\partial \mathrm{g}$	$\mathrm{V}_{\text {IN }}=40$ IRE at 3.58 MHz	-	0.01	0.03	\%
	Differential Phase	др	$\mathrm{V}_{\text {IN }}=40$ IRE at 3.58 MHz	-	0.01	0.03	degrees
	Signal to Noise	S/N	$\mathrm{V}_{\text {SIG }}=1 \mathrm{volt}, \mathrm{BW}=5 \mathrm{MHz}$	64	70	-	dB
	Gain - open loop	AOL	$100 \mathrm{kHz}(\beta=0 \%)$	54	60	66	dB
	Gain - closed loop	$A_{C L}$	$100 \mathrm{kHz}(B=100 \%)$	-0.01	-0.005	-	dB
	Delay	td SIG		-	-	10	ns
	Off Isolation \& Crosstalk	$\mathrm{V}_{\text {A or }{ }^{\text {B }} / \mathrm{V}_{\mathrm{O}} \text { }}$	$f_{\text {SIG }}=5 \mathrm{MHz}$ (see note 1)	80	85	-	dB
		$\mathrm{V}_{\mathrm{C}} / \mathrm{V}_{\text {A or }} \mathrm{B}$	$f_{\text {SIG }}=5 \mathrm{MHz}$ (see note 2)	90	95	-	dB
CONTROL CHANNEL	Bandwidth	BW	at $\pm 0.1 \mathrm{~dB} \quad \mathrm{~V}_{\text {SIG }}=150 \mathrm{mVp}-\mathrm{p}$	25	30	-	MHz
	Delay	t_{d} CONT		-	-	10	ns
	Linearity			-	1	-	\%
	Control Breakthrough		$\mathrm{V}_{\text {CONT }}=0-1 \mathrm{~V} f=1-10 \mathrm{MHz}$	-	-55	-50	dB
	Crossfade Balance			-	3	5	mVpp
	Control Range	$V_{\text {CONT }}$		0	-	+5	V

NOTE: $\quad 1 \mathrm{~V}_{\mathrm{A}}$ or $\mathrm{B}=1 \mathrm{Vp-p}$ output taken from OUTPUT
$2 \mathrm{~V}_{\text {CONT }}=1 \mathrm{Vp}$-p output taken from V_{A} or V_{B}

DETAILED DESCRIPTION

The GT4122 is a broadcast quality monolithic integrated circuit specifically designed to linearly mix two video signals under the control of a third signal.

Referring to the block diagram, the input signals are applied to conventional differential amplifiers (AMP1 and AMP2). Each amplifier has provisions for individually adjusting the DC offset (OFFSET).

Following each input amplifier, the signals are applied to linear multiplier circuits (XA and XB) whose outputs are the product of the incoming signals and controlling voltages $\left(V_{C A}\right)$ or $\left(\mathrm{V}_{\mathrm{CB}}\right)$. The controlling voltage V_{CA} is the sum of a nominal 0.5 V source $\left(\mathrm{V}_{\text {NOM }}\right)$ and a variable source V_{K} while $\mathrm{V}_{\text {CB }}$ is made up of the sum of the nominal voltage $\mathrm{V}_{\text {Nом }}$ and $-\mathrm{V}_{\text {K }}$.
V_{k} and $-V_{k}$ are themselves proportional to the difference between an externally applied reference voltage ($\mathrm{V}_{\text {REF }}$) and an externally applied CONTROL voltage $\left(\mathrm{V}_{\mathrm{c}}\right)$. The voltages V_{k} and $-V_{K}$ are produced by a differential amplifier (AMP3) whose gain is A_{k}. This gain can be altered by two external resistors, $R_{\text {EXT }}$ and $R_{\text {SPAN }}$ according to the following formula:

$$
A_{K} \approx \frac{0.85 \bullet R_{E X T}}{R_{\text {SPAN }}} \quad\left[1 \mathrm{k} \Omega<R_{E X T}<3 \mathrm{k} \Omega\right]
$$

Note that $R_{\text {EXT }}$ is connected between the $R_{\text {EXT }}$ pin and ground and $\mathrm{R}_{\text {SPAN }}$ is connected between the pins S 1 and S 2 .

Each of the voltages $\left(+V_{k}\right.$ and $\left.-V_{k}\right)$ is applied to summing circuits ($\Sigma 2$ and $\Sigma 3$) whose second inputs are DC voltage sources that can also be slightly varied. The nominal value of these voltage sources is 0.5 volts.

When they are exactly 0.5 V and when $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {REF }}$, the gain of each signal channel of the mixer is 0.5 (50%).

By connecting the ends of an external potentiometer (CONTROL OFFSET) between the offset pins COS1 and COS2, the voltage sources can be altered differentially. If a second potentiometer (50% GAIN) is connected between the wiper of the CONTROL OFFSET potentiometer and the supply voltage, the voltage sources can be varied in a common mode fashion. In this way not only can the control range of the mixer be varied but also the point at which 50% of each input signal appears at the output.

The outputs from the multiplier circuits (XA and XB) are then applied to a summing circuit ($\Sigma 1$) whose output feeds a wideband amplifier (AMP4) and presents the mixed signals to the outside world.

Although there are two separate differential inputs, the usual operational amplifier gain-setting methods can be applied to determine the closed loop gain of the mixer. Usually the mixer will be configured for unity gain by connecting both inverting inputs (-IN A, -IN B) to the common output (OUT). In this case, the general transfer function is:
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{A}} \bullet\left[\mathrm{V}_{\mathrm{NOM}}+\mathrm{A}_{\mathrm{K}} \bullet\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{REF}}\right)\right]+\mathrm{V}_{\mathrm{B}} \bullet\left[\mathrm{V}_{\text {NOM }}-\mathrm{A}_{\mathrm{K}} \bullet\left(\mathrm{V}_{\mathrm{C}}-\right.\right.$ $\left.V_{\text {REF }}\right)$]
(Unity gain configuration)
Where V_{A} and V_{B} are the input analog signals applied to + IN A and +IN B respectively, and V_{C} is the CONTROL voltage.

Note that $\mathrm{V}_{\mathrm{NOM}}$ ranges between $0.45 \mathrm{~V}<\mathrm{V}_{\text {NOM }}<0.55$.

FUNCTIONAL BLOCK DIAGRAM

For normal video mixer operation, the control range (SPAN) is usually 0 to 1 V and will occur when $A_{\mathrm{K}}=1, \mathrm{~V}_{\text {REF }}=0.5 \mathrm{~V}$ and $V_{\text {NOM }}=0.5$ volts. A change in V_{C} from 0 to 1 V will then produce an effect such that the output signal contains 100% of Channel B when V_{C} is 0 V and 100% of Channel A when V_{c} is 1 volt. For the above conditions, the general unity gain transfer function reduces to:

$$
V_{O}=V_{A} \bullet V_{C}+V_{B} \bullet\left(1-V_{C}\right)
$$

Since the operation of the mixer is limited to two quadrants, no signal inversions occur if the control voltage exceeds the range zero to one volt in either direction. The topology is designed so that once the control voltage reaches either end of its range, the channel which is ON remains fully ON and the OFF channel remains fully OFF.

NOTE: C5 is used when the CONTROL VOLTAGE $\left(V_{C}\right)$ is derived from a power supply.
All resistors in ohms, all capacitors in $\mu \mathrm{F}$ unless otherwise stated.

Fig. 1 Test Circuit

Fig. 2 Frequency Response

Fig. 4 Differential Gain \& Phase vs Frequency

Fig. 3 Crosstalk vs Frequency

Fig. 5 Crossfade Balance vs Frequency


```
DOCUMENT
IDENTIFICATION
PRODUCT PROPOSAL
This data has been compiled for market investigation purposes
only, and does not constitute an offer for sale.
ADVANCE INFORMATION NOTE
This product is in development phase and specifications are
subject to change without notice. Gennum reserves the right to
remove the product at any time. Listing the product does not
constitute an offer for sale.
PRELIMINARY DATA SHEET
The product is in a preproduction phase and specifications are
subject to change without notice.
DATA SHEET
The product is in production. Gennum reserves the right to make
changes at any time to improve reliability, function or design, in
order to provide the best product possible
```

