

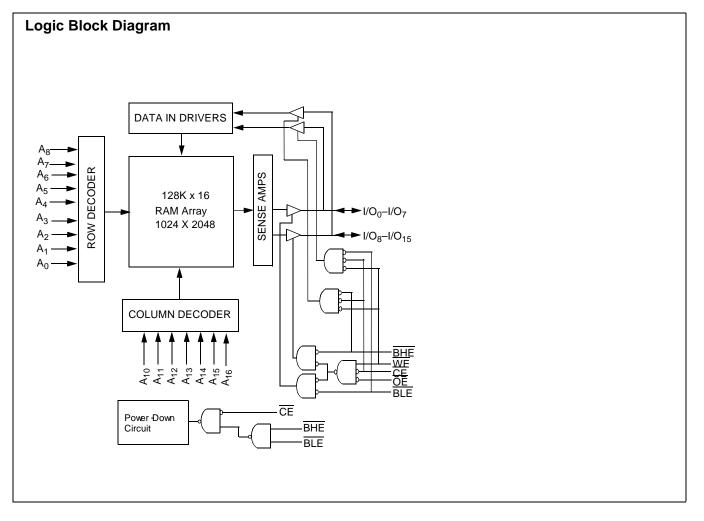
CY62137BV MoBL2™

Features

- Low voltage range: — CY62137BV18: 1.75V–1.95V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

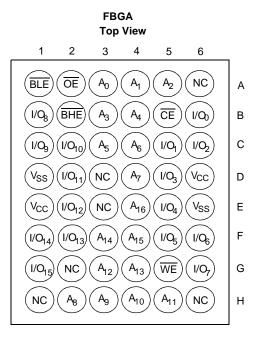
Functional Description

The CY62137BV18 is a high-performance CMOS static RAM organized as 131,072 words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBLTM) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be <u>put</u> into standby mode when deselected (CE HIGH) or when CE is LOW and both BLE and


128K x 16 Static RAM

BHE are HIGH. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (\overline{OE} HIGH), BHE and BLE are disabled (\overline{BHE} , BLE HIGH), or during a write operation (CE LOW, and WE LOW).

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₆).


Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The CY62137BV18 is available in 48-ball FBGA packaging.

Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +2.4V

DC Voltage Applied to Outputs

in High Z State ^[1]	–0.5V to V _{CC} + 0.5V
DC Input Voltage ^[1]	–0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62137BV18	Industrial	–40°C to +85°C	1.75V to 1.95V

Product Portfolio

						Power Di	ssipation (Ir	ndustrial)
	V _{CC} Range				Opera	Operating (I _{CC})		tandby (I _{SB2})
Product	V _{CC(min)}	V _{CC(typ)} ^[2]	V _{CC(max)}	Power	Typ. ^[2]	Max.	Typ. ^[2]	Мах
CY62137BV18	1.75V	1.80V	1.95V	LL	3 mA	7 mA	1 μA	15 μA

Notes:

1. $V_{IL}(min.) = -2.0V$ for pulse durations less than 20 ns.

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

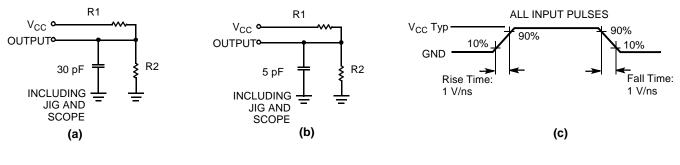
Electrical Characteristics Over the Operating Range

				CY62137BV	/18		
Parameter	Description	Test Condi	Test Conditions			Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{\rm CC} = 1.75 V$	1.5			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{\rm CC} = 1.75 V$			0.2	V
V _{IH}	Input HIGH Voltage		$V_{\rm CC} = 1.95 V$	1.4		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage		$V_{\rm CC} = 1.75 V$	-0.5		0.4	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	±1	+1	μA
I _{OZ}	Output Leakage Current	GND <u><</u> V _O ≤ V _{CC} , Ou	Itput Disabled	-1	+1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ f = f _{MAX} = 1/t _{RC} , CMOS levels	V _{CC} = 1.95V		3	7	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:central_constraint} \hline \hline \hline CE \ge V_{CC}-0.3V, \\ V_{IN} \ge V_{CC}-0.3V \text{ or} \\ V_{IN} \le 0.3V, \text{ f} = \text{f}_{\underline{MAX}} (\underline{Address and} \\ \underline{Data} \text{ Only}), \text{ f=0 (OE, WE, BHE, and} \\ \hline BLE) \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$				100	μA
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ or \ V_{IN} \leq 0.3V, \ f = 0 \end{array}$	V _{CC} = LL 1.95V		1	15	μA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

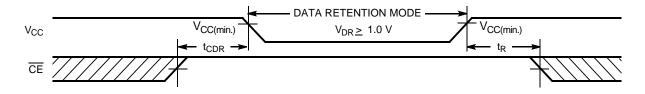
Thermal Resistance


Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[3]		Θ_{JC}	16	°C/W

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


THÉVENIN EQUIVALENT Equivalent to:

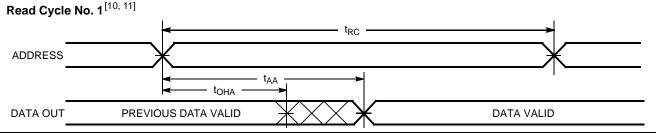
Parameters	1.8V	Unit
R1	15294	Ohms
R2	11300	Ohms
R _{TH}	6500	Ohms
V _{TH}	0.85	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[5]		Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention			1.0		1.95	V
I _{CCDR}	Data Retention Current	$eq:linear_line$	LL		1	7.5	μA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			100			μs

Data Retention Waveform

Notes:


- Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)}≥100 μs or stable at V_{CC(min.)}≥100 μs.
 Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified 5. I_{OL}/I_{OH} and 30 pF load capacitance.

Switching Characteristics Over the Operating Range^[5]

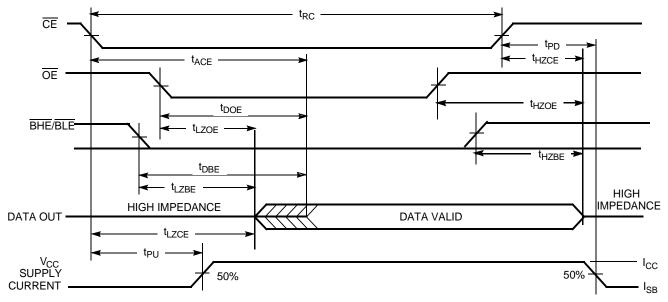
		70) ns		
Parameter	Description	Min.	Max.	Unit	
READ CYCLE					
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
t _{DBE}	BLE / BHE LOW to Data Valid		35	ns	
t _{LZBE}	BLE / BHE LOW to Low Z ^[6, 7]	5		ns	
t _{HZBE}	BLE / BHE HIGH to High Z ^[8]		25	ns	
WRITE CYCLE ^{[8,}	9]				
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{BW}	BLE / BHE LOW to Write End	60		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns	

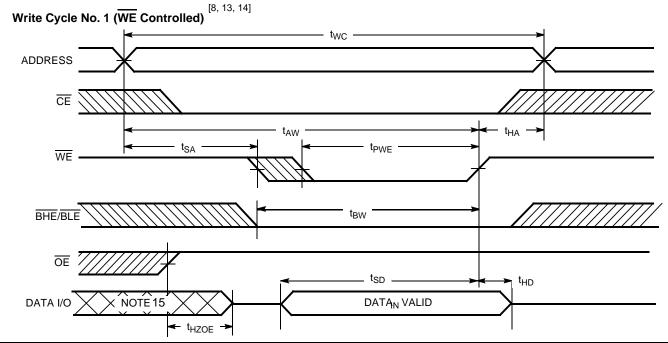
Switching Waveforms

Notes:

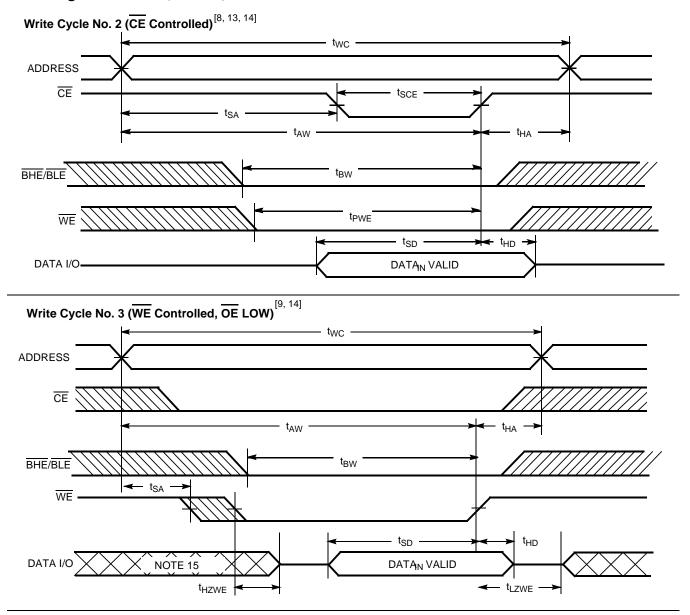
6. 7.

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_{L} = 5$ pF as in part (b) of AC_Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} . <u>Dev</u>ice is continuously selected. OE, CE = V_{IL}. WE is HIGH for read cycle. 8.


9.

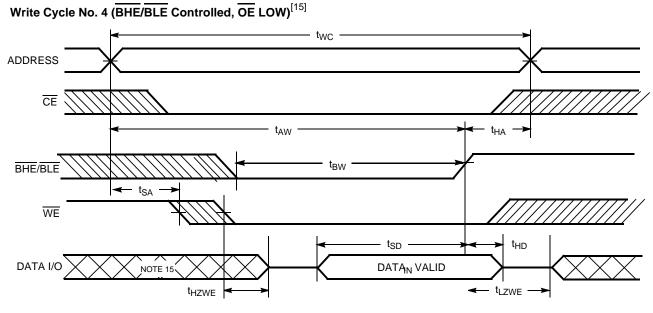

10. 11.

Switching Waveforms (continued)

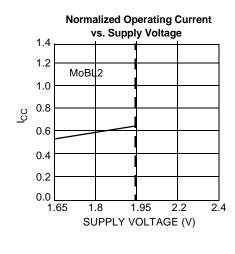


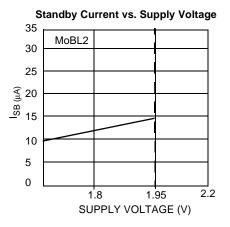
Notes:

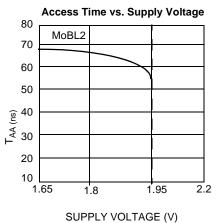
Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)




Switching Waveforms (continued)

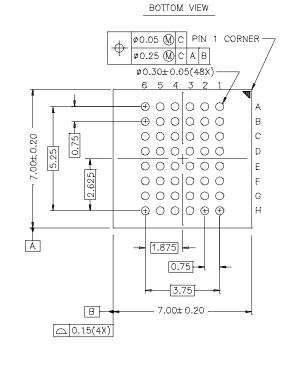


Typical DC and AC Characteristics

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62137BV18LL-70BAI	BA48A	48-Ball Fine Pitch BGA	Industrial

Package Diagrams

48-Ball (7.00 mm x 7.00 mm x 1.2 mm) FBGA BA48A

PIN 1 CORNER (LASER MARK) 123₁456 6 A В С 7,00±0,20 D Е F G Ĥ A B 7.00±0.20 // 0.25 C 0,21±0.05 - 0.95 SEATING PLANE

TOP VIEW

51-85096-*D

Document #: 38-05293 Rev. **

C

Page 10 of 11

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

U

0.10

J

1.20 MAX.

Document Title: CY62137VB MoBL2™ 128K x 16 Static RAM Document Number: 38-05239					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	114803	04/11/02	DSG	Change from Spec number: 38-01051 to 38-05293	