

M38510-001 (5401)

Microcircuits, Digital, TTL, NAND Gates, Monolithic Silicon

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

INCH-POUND MIL-M-38510/1F <u>16 March 2005</u> SUPERSEDING MIL-M-38510/1E 1 June 1982

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, TTL, NAND GATES, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 <u>Scope</u>. This specification covers the detail requirements for monolithic silicon, TTL, positive NAND logic gating microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

- 1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
- 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	Single, 8-input positive NAND gate
02	Dual, 4-input positive NAND gate
03	Triple, 3-input positive NAND gate
04	Quadruple, 2-input positive NAND gate
05	Hex, 1-input inverter gate
06	Triple, 3-input positive NAND gate (open collector output)
07	Quadruple, 2-input positive NAND gate (open collector output)
08	Hex, 1-input inverter gate (open collector output)
09	Same as device type 07, except different pin connections

1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.

1.2.3 <u>Case outlines.</u> The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
А	GDFP5-F14 or CDFP6-F14	14	Flat
В	GDFP4-F14	14	Flat
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to <u>bipolar@dla.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>http://assist.daps.dla.mil</u>.

1.3 Absolute maximum ratings.

Supply voltage range	
Input voltage range	
Storage temperature range	
Maximum power dissipation per gate (P _D) <u>1</u> /	40 mW
Lead temperature (soldering, 10 seconds)	300°C
Thermal resistance, junction to case (θ_{JC})	(See MIL-STD-1835)
Junction temperature (T _J) <u>2</u> /	175°C

1.4 Recommended operating conditions.

Supply voltage	+4.5 V minimum to +5.5 V maximum
Minimum high level input voltage	
Maximum low level input voltage (VIL)	
Normalized fanout (each output) 3/	
Case operating temperature range	55° to +125°C

 $\overline{\underline{1}/}$ Must withstand the added P_{D} due to short-circuit test (e.g., I_{OS}). $\underline{2}/$ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

<u>3</u>/ Device will fanout in both high and low levels to the specified number of inputs of the same device type as that being tested.

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>http://assist.daps.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Terminal connections and logic diagrams.</u> The terminal connections and logic diagrams shall be as specified on figure 1.

3.3.2 <u>Truth tables and logic equations</u>. The truth tables and logic equations shall be as specified on figure 2.

3.3.3 <u>Schematic circuits.</u> The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

Test	Symbol	Conditions	Device	Lin	nits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$	types	Min	Max	
High level output	V _{OH}	$V_{CC} = 4.5 \text{ V}, \ V_{IN} = 0.8 \text{ V},$	01, 02,	2.4		V
voltage		I _{OH} = -400 μA <u>1</u> /	03, 04,			
			05			
Low level output	V _{OL}	V_{CC} = 4.5 V, I_{OL} = 16 mA,	All		0.4	V
voltage		V _{IN} = 2.0 V for all inputs of gate under				
		test <u>1</u> /				
Input clamp voltage	Vic	V _{CC} = 4.5 V, I _{IN} = -12 mA	All		-1.5	V
		T _C = 25°C				
Maximum collector	I _{CEX}	$V_{CC} = 4.5 \text{ V}, V_{IN} = 0.8 \text{ V},$	06, 07		250	μA
cut-off current		V _{OH} = 5.5 V	08, 09			
High level input	I _{IH1}	$V_{CC} = 5.5 V, V_{IN} = 2.4 V $ 2/	All		40	μA
current		_				
High level input	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$ <u>2</u> /	All		100	μA
current						
Low level input	IIL	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V} $ <u>1</u> /	All	-0.7	-1.6	mA
current					_	
Short circuit output	I _{OS}	$V_{\rm CC} = 5.5 \ V \ \underline{2} / \underline{3} /$	01, 02,	-20	-55	mA
current			03, 04,			
			05			
High level supply	Іссн	$V_{CC} = 5.5 V, V_{IN} = 0 V $ 2/	All		1.65	mA
current per gate			/			
Low level supply	I _{CCL}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm IN} = 5.5 \text{ V}$ 1/	All		5.0	mA
current per gate	1002					
Propagation delay time,	t _{PHL}	C _L = 50 pF,	01, 02,	3	24	ns
high-to-low level	-FIL	$R_{\rm L} = 390\Omega$	03, 04,	Ū		
			05			
			06, 07,	3	29	ns
			08, 09	Ū	20	
Propagation delay time,	t _{PLH}	C _L = 50 pF,	01, 02,	3	27	ns
low-to-high level		$R_{L} = 390\Omega$	01, 02, 03, 04,	5	21	
			03, 04,			
				0	25	
			06, 07,	3	35	ns
			08, 09			

TABLE I.	Electrical performance characteristics.	

<u>1</u>/ All unspecified inputs at 5.5 volts.
 <u>2</u>/ All unspecified inputs grounded.
 <u>3</u>/ Not more than one output should be shorted at a time.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

MIL-PRF-38535	Subgroups (see table III)		
test requirements	Class S devices	Class B devices	
Interim electrical parameters	1	1	
Final electrical test parameters	1*, 2, 3, 9 10, 11	1*, 2, 3, 9	
Group A test requirements	1, 2, 3, 9, 10, 11	1, 2, 3, 9	
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 9, 10, 11	N/A	
Group C end-point electrical parameters	1, 2, 3, 9, 10, 11	1, 2, 3	
Additional electrical parameters for group C periodic inspections	N/A	10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3	

TABLE II.	Electrical test r	equirements.
		equilentento.

*PDA applies to subgroup 1.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 1 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535, Appendix B.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-3853<u>5</u> and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, 6, 7, and 8 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified and as follows:

4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

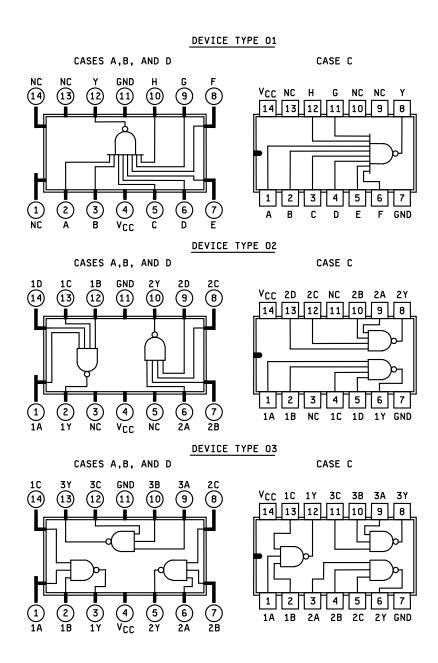
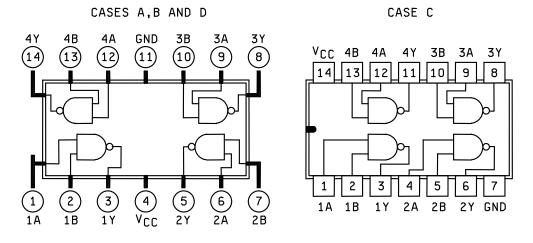
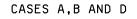
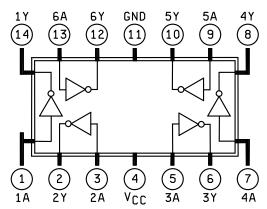




FIGURE 1. Terminal connections and logic diagrams.



DEVICE TYPES 05 AND 08

CASE C

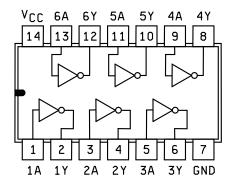


FIGURE 1. Terminal connections and logic diagrams - Continued.

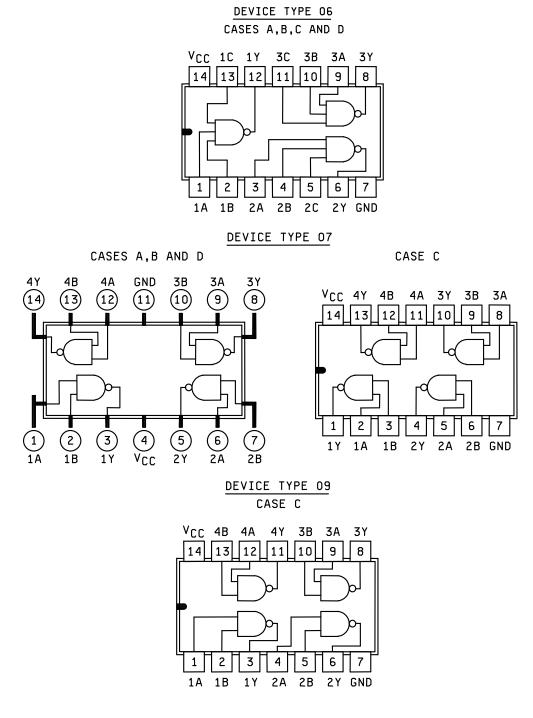


FIGURE 1. Terminal connections and logic diagrams - Continued.

	Device type 01							
				Truth	i table			
Input Output						Output		
Α	В	С	C D E F G H Y					Y
Н	H H H H H H H L						L	
All other combinations of H and L at the inputs give H output.								
			attile	inputs	giverit	ներու.		

Positive logic Y = $\overline{ABCDEFGH}$

Device types 03 and 06				
	Т	ruth ta	ble	
	Input		Output	
A	В	С	Y	
L	L	L	Н	
H	L	L	Н	
L	Н	L	Н	
H	Н	L	Н	
L	L	Н	Н	
H	L	Н	Н	
L	Н	Н	Н	
Н	Н	Н	L	

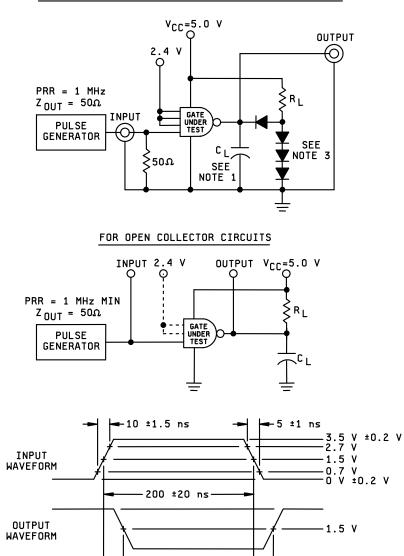
Positive logic Y = ABC

Device types 04, 07, and 09

Truth table each gate				
Input		Output		
A	В	Y		
L	L	Н		
H	L	Н		
L	Н	Н		
H	Н	Ĺ		

Positive logic Y = AB

Device	types	05	and	80	


Device type	5 05 anu 06
Truth table	e each gate
Input	Input
A	Y
L	Н
Н	L

Positive logic Y = A

		Device	type 02	
		Truth	table	
	Inp	out		Output
A	В	С	D	Y
L	L	L	L	Н
Н	L	L	L	Н
L	Н	L	L	Н
Н	Н	L	L	Н
L	L	Н	L	Н
Н	L	Н	L	Н
L	Н	Н	L	Н
Н	Н	Н	L	Н
L	L	L	Н	Н
Н	L	L	Н	Н
L	Н	L	Н	Н
Н	Н	L	Н	Н
L	L	Н	Н	Н
Н	L	Н	Н	Н
L	Н	Н	Н	Н
Н	Н	Н	Н	L

Positive logic $Y = \overline{ABCD}$

FIGURE 2. <u>Truth tables and logic equations</u>.

TEST CIRCUITS EXCEPT FOR OPEN COLLECTOR CIRCUITS

NOTES:

1. C_L = 50 pF minimum, including scope probe, wiring and stray capacitance, without package in test fixture.

tPLH

.t_{PHL}

- 2. Voltage measurements are to be made with respect to network ground terminal.
- 3. All diode are 1N3064 or equivalent.
- 4. R_L = 390 ohm ±5%.

FIGURE 3. Test circuit and switching waveforms.

	Unit		>	> =	=	=			-	mA	Αų.		:	:	-		μA			:	-		Am.		=			-	۳A	μ	>::	=	=		-			ns	su	2	2
	Limits	Max	0.4							-55	4 •		=				100			-			-1.6		-	-		-	5.0 1 65	0.1		-	-		÷			20	25	27	11
	Ľ	Min		2.4	-	-		-	-	-20													-0.7	-	-			-										3	ი ო	n «	>
	Measured	terminal	≻	> >	· >-	≻:	~ >	- >	- >-	≻	< □	n (ш	LL I	σı	A	ш (ט ב ב	ш	L	υI	. •	n c	ם כ	ш	ц	די	V _{cc}	°C V	¢ ш (ם כ	ш	ш (Σ			A to Y	A to Y A to Y	- 0 V	- 3 C
14	10	NC																																							
13	6	NC																																							
12 12	8	≻	16mA	4mA					F	GND																												OUT	- UIT	5=	
10 10 11	7	GND	GND	GND GND		-				GND	GND =		-				GND			-			GND -			-			GND	en o			-		-			GND	- UNU	=	_
, IUW ⊵ 10	12	т	2.0 V	5.5 <	:	-			0.8 V	GND	GND =		=			- 4 /	GND			-		55.	5.5 V		-	-		0.4 V	5.5 V	GND					-12 mA			2.4 V	- 24V	- + -	-
0.2 ≥ I	11	υ	2.0 V	5.5 V "		-		08.0	5.5 V	GND	GND =		-		-	2:4 < GND	GND				-	5.5 V GND	5.5 V			-		5.5 V	5.5 V	GIND				-12 m∆				2.4 V		- + <	-
	9	ш	2.0 V	5.5 V	-		- × × 0	2.0	, = ; =	GND	GND =				2.4 V	GND B	GND			-	5.5 V	GND GND	5.5 V		-	-	0.4 <	> =	5.5 V	GIND				-12 mA				2.4 V	- 24 V	- + <	•
	5	ш	2.0 V	5.5 V	-	=	0.8 V 7 7 V	> =	-	GND	GND =		-	2.4 V	GND		GND			5.5 V	GND		5.5 V		-	0.4 V	5.5 V "	-	5.5 V	GND			-12 mA					2.4 V		- - -	-
	4	0	2.0 V	5.5 V	-	0.8 V	5.5 <		-	GND	GND =		2.4 V	GND			GND		с	GND	-		5.5 V		0.4 V	5.5 V		-	5.5 V	GIND		-12 mA				e omitted.	e omitted.	2.4 V	24V	- + -	-
5 IL	e	-		5.5 V "		5.5 V				GND	GND =	14 1	GND				GND	= L		=			5.5 V		5.5 V			-	5.5 V	פואה	¢					V _{IC} tests ar	/ _{IC} tests are	2.4 V		= +	-
4	14	-	4.5 V		:			-			5.5 <		=				5.5 V				-		5.5 V		:	-		-	5.5 V	+		:	-			1, except Tc = 125°C and V _{IC} tests are omitted	except Tc = -55°C and V _{IC} tests are omitted	5.0 V	- 201	+	-
3	2			5.5 V	5 <	-		=			GND	> 4 CINC	2 =	-	-		+	5.5 V			-		5.5 V		> >	-		-	5.5 V E	+	-12 mA					cept Tc = 1	cept Tc = -	.4 V		+	-
2	-	A		0.8 \							2.4 <							GND =		-			0.4 V			-		-	5.5 V 5	_	-12 III A					group 1, ex	٦,	N	= <u>z</u>		-
1	13	NC	2	0 10							~ ~						2							۵ 					20							s as for sub	s as for sub				
Cases A, B, D	Case C		+	0 0) 4	ъ С	9	- 00	00	10	÷.	<u>л с</u>	2 4	15	16	17	19	20		23	24	25 26	27	87 00	30	31	32	34	35 26	20	38	40	41	42	2 4 4	Same tests, terminal conditions and limits as for subgroup	Same tests, terminal conditions and limits as for subgroup	45	46 47	4/	-
MIL-STD-C	883	method	3007	3006						3011	3010	-					3010						3009						3005 2005	cnnc						terminal cc	terminal cc	3003	(Fig. 3) 3003		
M	Symbol		VoL	V _{OH}						los	1 _{H1}						I _{H2}						3							CCH	2					ame tests,	ame tests,	Т	t _{PLH}		
	Subgroup		-	Tc = 25°C													1						1							1						2 S		6	Tc = 25°C 10	Tr - 125°C	

TABLE III. Group A inspection for device type 01.

		ts Unit		0.4	> =	=	=		=		-55 mA "	40 HA			=	=		=	100 µA		=			-	-1.6 mA	=	-	= :		=	10 mA	3.3 mA	-1.5 	=		=	•••	:	T	_		25 ns " "	24 ns =	27 ns "	
		Limits	Min		2.4	-	-		-	=	-20														-0.7			-		=										с.) =	m =	ຕ =	m =	:
		Measured	terminal	7,7	2 \$	≿≿	7	24	24	24	7 √	4	<u>n</u> ć	5 €	29 C	2B	2C	2D	4 ¢	<u></u> 0		2A	9 C	202	1 4 i	9 C	<u>5</u>	2A	2B	202	Vcc	V _{CC}	4 ₽ 81	īΰ	2	2A 2B	328	20		1A to 1Y	2A to 2Y	1A to 1Y 2A to 2Y	1A to 1Y 2A to 2Y	1A to 1Y	ZA 10 Z 1
	14	5	1D	2.0 V 5.5 V	5.5 V "	-	0.8 V	5.5 <	=	=	GND	" GND		741	ond v	=	-	-	GND GND	Ŧ	5.5 V	GND "			5.5 V	-	0.4 V	5.5 V		=	5.5 V	GND			-12 mA					2.4 V	i	2.4 V	2.4 V	2.4 V	
	13	4	1C	2.0 V 5.5 V	5.5 V "	0.8 V	5.5 V		=	=	GND	- GND		> 4.2 UNC	<u>-</u>	=	-		GND =	5.5 V	GND				5.5 V 	04 \	5.5 V	-		=	5.5 V	GND		-12 mA						2.4 V	i	2.4 V	2.4 V	2.4 V	
onen)	12	2	1B	2.0 V 5.5 V	5.5 V	0.8 V 5.5 V	-		-	-	GND	GND	2 4 V	פֿאַך פ	-	=		-	GND	OND	=			-	5.5 V	0.4 V V Z Z	, ; =			=	5.5 V	GND	-12 mA							2.4 V	i	2.4 V	2.4 V	2.4 V	
< 0 8 V or open)	11	7	GND	GND -	GND "		-		-	=	GND	GND "		-	-	-	-	-	GND =	-	=			-	GND	-	-	-		=	GND	GND	GND "	=				-		GND		GND -	GND -	GND	
	10	8	2Υ	16 mA				4 mA		-	GND																														OUT	OUT	ULT OLT	- <u>+</u> (20
$\frac{\text{device ty}}{3h > 2.0}$	6	13	2D	5.5 V 2.0 V	5.5 V "					0.8 V	GND	GND			-	-	-	2.4 V	GND GND	-	-			5.5 V	5.5 V	-	-			0.4 V	5.5 V	GND						-12 mA			2.4 V	2.4 V	24V	, , , ,	Z:4 V
Terminal conditions (nins not designated may be high 201/ low	8	12	2C	5.5 V 2.0 V	5.5 V "				0 8 V	5.5 V	GND	GND =			-	-	2.4 V	GND	GND =		-			o c.c	5.5 V	-		-		5.5 V	5.5 V	GND					-12 mA				2.4 V	2.4 V	4		Z.4 V
A inspection	7	10	2B	5.5 V 2.0 V	5.5 V "	-	-	= 0	0.0 2.0 <		GND	GND =				2.4 V	GND	-	GND =		=	= [2.5	eve eve	5.5 V			-	0.4 <	> ? = ?	5.5 V	GND				-12 mA					2.4 V	2.4 V	24V	, , , , , , , , , , , , , , , , , , ,	Z.4 V
. <u>Group</u>	9	6	2A	5.5 V 2.0 V	5.5 V		-	0.8 <	> c. c	=	GND	GND =			2.4 V	GND			GND GND		-	5.5 <	enn enn		5.5 V		-	0.4 <	5.5 <	=	5.5 V	GND				Am 21-			are omitted		N	Z	z z	: :	Z
ABLE III As (pins r	2 2	1	NC														-																						°C and V _{1C} tests are omitted ℃ and V. atests are omitted						
T condition	4	14	V _{cc}	4.5 V	4.5 V "				=	=	5.5 V "	5.5 V "		-	-	-	-		5.5 <	-	=				5.5 V		-			=	5.5 V	5.5 V	4.5 V "	=					= 125°C an	5.0 V	, 	5.0 V	5.0 V	5.0 V	
Terminal	3	e	NC																																				except Ic	, except 1 v					
F-	2	9	1Y	16 mA	4 mA						GND																												subgroup 1			OUT	OUT	OUT	
	Ł	-	1A	2.0 V 5.5 V	0.8 <	> c.c			=	=	GND	2.4 V	enu enu		-	-	-		5.5 <		-				0.4 V	ې.ت ۲	-			-	5.5 V	GND	-12 mA						imits as tor		:	z	z	z	t _{PLH} (FIG. 3) 54 [
	MIL-STD- Cases A, B, D	Case C	Test no.	- 0	<i>с</i> , ч	4 v	9	۲ o	ი თე	10	11	13	4 4	0 ¥	17	18	19	20	21	53 5	24	25	97	28	29	30 31 0	32	33	34	36	37	38	39 40	41	42	44	45	46	Same tests, terminal conditions and limits as for subgroup 1, except Tc = 125°C and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subbruin 1, except Tc = -55°C and V, - tests are omitted.	zame rests, reminial contanton's and minits as not subgroup 1, except 15 = -30 tout 3003 47 1 N 0UT 50	48	49 50	51	53	04
	MIL-STD-	883	method	3007	3006						3011	3010							3010						3009						3005	3005							s, terminal c	3003	(Fig. 3)	3003 (Fia. 3)	3003 (Fig. 3)	3003	(FIG. 30) -
		Symbol		VoL	V _{OH}						los	IH4							I _{H2}						_=							I _{CCH}	 					-	Same tests	t _{bul}	tPHL	t _{PLH} tei H	te te	t _{PLH}	loi u
		Subgroup		1 Tc = 25°C																																			CN 67		5°C		10 Tr = 125∘C	>	_

TABLE III. Group A inspection for device type 02.

Γ		it											A		∡						_		⊲															∢	. ⊲							1	T
-		Unit		>•••	>					-		-	Am MA	_	۳'n	-	-	-	-	-		-	Αų		-	•	•	-		2	<u> </u>	-	-				-	-	MA				-			_	
		Limits	Max	0. 4. : :									-22	=	40	:	•	•	•	•	•	-	100	-	-	:	•	•		- -	<u>-</u> =	•	•	-			•	4.95	15	-1.5			•	• •			
			Min		2.4	•	• •		:	:	•	-	-20	-																۲ C	- -	•	•		• •	•	:										
		Measured	terminal	2√ √	- }+	7;	7	72	72	341	37	ЗҮ	7 ×	37	1A 1B	<u>i</u> 6	2A	2B	2C	3A	3B	зС	1A	₽Ç	20	2B	2C	ЗA	3B	30	ξŰ	5	2A	2B	2C	A5 D	a Ce	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Vcr Vcr	1A 1B	: 2 :	2A 2B	20 S	3A	an S		
	14	13	1C	2.0 V 5.5 V	5.5 V	= (2.0	ۍ د.c ۳		-	-	=	GND		GND	2 4 V	GND	F	•	•	=	:	GND :			=	:	÷		551	> ? ?	0.4 V	5.5 V				-	GND	5.5 V		-12 mA						
•	13	8	3Ү	16 m∆						- 4 mA	-	-		GND																																	
pen)	12	11	3C	5.5 V 2 V	5.5 V					-	-	0.8 V		GND	GND "	-		-	-		-	2.4 V	GND -	-	-			-	= .	0.0 <	> ;= ;;	-					0.4 V	GND	5.5 V						-12 mA		
≤ 0.8 V or open)	11	7	GND	GND	GND					-	-	-	GND -		GND "			-			-	-	GND -	-	-			-			-	-					-	GND	GND	GND =							
, low ≤ 0	10	10	3B	5.5 V 2.0 V	5.5 V				:	-	0.8 V	5.5 V		GND	GND "	-		-			2.4 V	GND	GND -	-	:	:		-	5.5 <	GNU 5 FL	> =	-					0.4 V 5.5 V	GND	5.5 V						-12 mA		
≥ 2.0 V	P	6	3A	5.5 V 	5.5 V					081	5.5 V	=		GND	GND "			-	-	2.4 V	GND	-	GND					5.5 V	GND "	5 5 1	> =	-			= -	2.4 C	>	GND	5.5 V					-12 mA			
ditions (pins not designated may be high ≥ 2.0 V, low	Ω	5	2C	5.5 V 2.0 V 5.5 V	5.5 V				Λ a 0	25.5	. =	=		2	GND "			-	2.4 V	GND		-	GND "	-			5.5 V	GND		551	> =	-		-	0.4 <	5.5 <		GND	5.5 V				-12 mA				
ited may	-	4		5.5 V 2.0 V 5.5 V					2.0	>				2	GND "	-		2.4 V	UND	-	-	-	GND :	-		5.5 V	GND	-		5 1	> =	-		0.4 V				GND				-12 mA					
designa	و	3		5.5 < 2.0 < 7.5 <	╀			0.8 <		=		-			GND -	-	.4 V					_	GND -										0.4 V					GND	5 \			-12 mA				omitted	
pins not	-			16 mA 2	2			4 mA 0														_			ۍ 						ר 		0 	2					0.02			÷				c tests are	C (coros co c
ditions (4			>								>		>								>															>	• >	>						5°C and V.	
Terminal con	4	÷	V _{CC}		A 4.5				-	-	-	_	2.5	-	5.5	-	-	-	-	-	-	-	5.5	-	-	-	-	-			-	-	-					5.5	2.5	4.5 V "			-			$T_{C} = 12$	
Term	ñ	12	1Y	16 mA	4 mA		-						GND																																_	n 1 exce	
•	2	2	1B	2.0 V 5.5 V	5.5 V	0.8 \	5.5 <		:	:	•	-	GND		GND	CND 1	=	•	-	•	•	-	GND	2.0	-	•	•	•		55.1	> 7 > 7	5.5 V	•	-	• •	•		GND	5.5 V	-12mA	į					r subarou	55.6200
	-	÷	1A	2.0 V 5.5 V	0.8 V	5.5 V			-	-		-	GND		2.4 V GND	5		-		-	÷	-	5.5 V	enu e		-	-	-		140	2.5. 2.5. 2.5.	=	-	-			-	GND	5.5 V	-12 mA						limits as for	
1	MIL-SID-Cases A, B, D	Case C	Test no.	t 0 c	94	ى ى	1 0	< °	00	۳ 10	55	12	13	15	16	- 81	19	20	21	22	23	24	25 25	07	28	29	30	31	32	33	35	36	37	38	39	40	4 - 4	43	44	45 46	47	48	50	51	52 53	Same tests terminal conditions and limits as for subtroum 1, excent Tc = 125°C and V, o tests are omitted	
		883	method	3007	3006								3011		3010								3010							3000	enne							3005	3005				_			terminal c	
		Symbol		VoL	V _{OH}	;							los		I _{IH1}								IH2							_	2							FC2	5	V _{IC}						Same tests	100 100 100 100 100 100 100 100 100 100
		Subgroup		1 Tc = 25°C	•																																		•								1 0

						Terminal	TABLE	TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high \ge 2.0 V, low \le 0.8 V or open)	up A insp not desig	ection fc nated m	or device av be hic	type 03 th $\ge 2.0^{1}$	- Continu /, low ≤ (ied. D.8 V or c	ipen)						
		MIL-STD-	MIL-STD-Cases A, B, D	-	2	°.	4	Ω.	9	7		6	10	11	12	13	14				
Subgroup Symbol	Symbol	883	Case C	-	2	12	14	9	e	4	5	6	10	7	11	8	13	Measured	Limits	ts	Unit
		method	Test no.	1A	18	1Y	V _{cc}	2Y	2A	2B	2C	3A	38	GND	зС	3Υ	10	terminal	Min	Мах	
6	tpHL	3003	54	Z	2.4 V	OUT	5.0 V							GND			2.4 V	1A to 1Y	ю	20	ns
Tc = 25°C		(Fig. 3)	55				-	OUT	Z	2.4 V	2.4 V							2A to 2Y		-	
			56									Z	2.4 V		2.4 V	OUT		3A to 3Y	-	•	
	t _{PLH}	3003	57	z	2.4 V	OUT	5.0 V							GND			2.4 V	1A to 1Y	e	25	ns
		(Fig. 3)	58					OUT	Z	2.4 V	2.4 V							2A to 2Y		-	
) ,	59									Z	2.4 V		2.4 V	OUT		3A to 3Y			
10	tPHL	3003	60	Z	2.4 V	OUT	5.0 V							GND			2.4 V	1A to 1Y	ю	24	ns
Tc = 125°C		(Fig. 3)	61				-	OUT	z	2.4 V	2.4 V							2A to 2Y			
			62				:					Z	2.4 V		2.4 V	OUT		3A to 3Y			-
	tPLH	3003	63	Z	2.4 V	DUT	5.0 V							GND			2.4 V	1A to 1Y	e	27	ns
		(Fig. 3)	64					OUT	Z	2.4 V	2.4 V							2A to 2Y			
			65									Z	2.4 V		2.4 V	OUT		3A to 3Y	-	-	
11	Same tes	sts, termina	Same tests, terminal conditions and limits as for subgroup 10, except Tc =	limits as fo	r subgroup	10, except ⁻	Fc = -55°C.														

		Unit		>:		=	>:				=			<u></u>		v ::	<u>{</u> =	-						۲ų.	-	:				шA					-		шA	mA	>				-			
		s	Max	0.4		-							55	<u></u> } =		40	₽ =	-	-	-	=		100	100	-	-	-			-1.6	-					-	6.6	20	-1.5				-			
		Limits	Min				2.4				-		UC	07=																-0.7				-												
		Measured	terminal	7 ₹	37	47	5 ¢	- 2	27	37	3Y	4	47	-7	3	41	<u> </u>	2A	2B	ЗA	3B	44 4	1	₹ ₽	29 29	2B	3A	3B	4A 4B	1A	0	ZA B	2B 2 A	с ee	4A	4B	V _{cc}	V _{cc}	1A	8	2A	2B 3A	3B	44	0	
	14	11	4Υ			16 mA						4 mA				GND																														
	13	13	4B	5.5 V "	-	2.0 V	5.5 <		-	=	=	= 0	0.8 V			GND) 5	-	=	-	-		× 1.4	GND -	-	-	=		55V	5.5 V	-		-		-	0.4 V	GND	5.5 V						4 - C 7	MII 71-	
pen)	12	12	4A	5.5 <	-	2.0 V	5.5 <		-	=	=	0.8 <	V C.C		(5	-	-		-	2.4 <		GND =	-	-	-	= 1	2 9 9 UND	5.5 V	-		-		0.4 V	5.5 V	GND	5.5 V						-12 mA		
0.8 V or open)	11	7	GND	GND =			GND -				-			-		UND	5 =				-			GND =						GND	-						GND	GND	GND				-			
, low ≤ 0	10	10	3B	5.5 V	2.0 V	5.5 V	5.5 V			-	0.8 V	5.5 V			GND	UND	<u>}</u> =	-			2.4 V	GND GND		GND =				5.5 <	GND =	5.5 V	-			0.4 V	5.5 V	-	GND	5.5 V					-12 mA			
1≥ 2.0 V	6	6	3A	5.5 V	2.0 V	5.5 V	5.5 <		-	0.8 V	5.5 V		:		GND	CND) 	-	-	2.4 V	GND			GND =	-	-	5.5 V	GND GND		5.5 V	-		~ ~ ~ ~	5.5 V	. =	-	GND	5.5 V				-12 mA				
ons (pins not designated may be high ≥ 2.0 V, low	8	8	3Ү		16 mA					4 mA	-				GND																															
ated ma	7	5	2B	5.5 V 2 0 V	5.5 V		5.5 <		0.8 V	5.5 V			:	GND		CIND) 		2.4 V	GND	-			GND =		5.5 V	GND			5.5 V	-		0.4 <	>	-	-	GND	5.5 V				-12 mA				
t design	9	4		5.5 V 2 0 V	-	_	5.5 V "	0.8 V	_		-			GND		CIND) =	2.4 V	GND		-			enu enu	5.5 V	GND	-			5.5 V	-	0.4 V	>	-	-	-	GND	5.5 V			-12 mA	<u> </u>				e omittea. e omitted.
(pins nc	5	9		16 mA				- 4 mA		_				GND																															_	/ _{IC} tests an
Terminal conditions (pins not designated may be high ≥ 2.0 V, low \leq	4	14	V _{cc}	4.5 <		-	4.5 V "		-	-	-					5 5 \/	> 		-		-			5.5 <	-	-	-			5.5 V					-	-	5.5 V	5.5 V	4.5 V				-		0000	125°C and V 55°C and V
rminal co	3		1Y	16 mA		_	4 mA																																				_		H	<pre>(cept lc = . (cept Tc = .</pre>
Те		2	1B	2.0 \		_	5.5 \			-	-						2.4 V	OND			-			GND 5 5 V	DND					5.5 V	.4 <	.5 <				-	GND	6.5 V		-12mA					-	ogroup 1, e. ogroup 1, e.
	1	1		2.0 <		_	0.8 <		-	-	-					+	GND						+							0.4 V					-		GND		-12 mA							s as for sur s as for sul
	V, B, D	C C				_					_								_				+				_																			ns and limit
	MIL-STD-Cases A, B, D		d Test no.	- 0	ເ ຕ		w س	- 0		- O	1	÷;			15			10	20	21	5,	5 6			21	26	56	2 2		33	3	ž č	5 G	38	36				43	4		44	46	49	й -	Same tests, terminal conditions and limits as for subgroup 1, except Tc = 125°C and V _{1C} tests are omitted. Same tests, terminal conditions and limits as for subgroup 1, except Tc = -55°C and V _{1C} tests are omitted.
			method	3007			3006						3011			3010	200						0000	3010						3009							3005	3005							-	ests, termir sts, termin
		5 Symbol		<pre></pre>			V _{OH}						-	so			H						-	H2						_=							1 _{och}	5	< <							Same te Same te
		Subgroup		1 Tr = 25°C															-																	_									c	т

						Tarmin	Table III. Group A inspection for device type 04 - Continued.	EIII. <u>Gro</u>	up A inst not desir	TABLE III. <u>Group A inspection for device type 04</u> - Continued.	or device	type 04	- Continu	ed.	(ueu						
		MIL-STD	MIL-STD-Cases A, B, D	-	5	3		2	9	7	8	9 6	10	11 0	12	13	14				
Subgroup Symbol	Symbol	883	Case C	-	2	12	14	9	ю	4	5	ი	10	7	11	ω	13	Measured	Limits	s	Unit
		method	Test no.	1A	1 B	7	V _{CC}	2Y	2A	2B	3Υ	3A	38	GND	4A	4B	4Υ	terminal	Min	Max	
6	tPHL	3003	51	Z	2.4 V	OUT	5.0 V							GND				1A to 1Y	3	20	su
Tc = 25°C		(Fig. 3)	52			-	•	OUT	Z	2.4 V								2A to 2Y	=	-	
			53				•				OUT	Z	2.4 V					3A to 3Y	-		
			54				•								Z	2.4 V	OUT	4A to 4Y	-	-	
-	tPLH	3003	55	z	2.4 V	OUT	5.0 V							GND				1A to 1Y	m	25	ns
		(Fig. 3)	56				•	OUT	Z	2.4 V								2A to 2Y		-	
)	57				•				OUT	Z	2.4 V					3A to 3Y	-	-	
			58				•								z	2.4 V	OUT	4A to 4Y	-		
10	tPHL	3003	59	Z	2.4 V	OUT	5.0 V							GND				1A to 1Y	3	24	su
Tc = 125°C		(Fig. 3)	60				•	OUT	Z	2.4 V								2A to 2Y	=	-	
			61				•				OUT	Z	2.4 V					3A to 3Y	-		
			62				•								Z	2.4 V	OUT	4A to 4Y	=	-	
	tPLH	3003	63	z	2.4 V	OUT	5.0 V							GND				1A to 1Y	m	27	ns
		(Fig. 3)	64				-	OUT	Z	2.4 V								2A to 2Y		-	
			65				•				OUT	Z	2.4 V					3A to 3Y	-	-	
-			66			-	•								Z	2.4 V	OUT	4A to 4Y	=	-	
11	Same te:	sts, termina	Same tests, terminal conditions and limits as for subgroup 10, except Tc = -55° C.	limits as fo	or subgroup	10, except	t Tc = -55°C.														

		Unit		>:				>:	-			Am.		-		Ч			:		۲ŋ				a mA		-		MA	MA	>:					Π
		s	Max	0.4	-							-55 -		-		40			=		100	-	=		-1.6		=		30	9.6	-1.5		-		-	
		Limits	Min					2.4	-			-20													-0.7										-	
		Measured	terminal	7	37	<u></u> 45	۶ و۲	5 ₹	34	4Υ	5۲ 67	5 ₹	34	4	57 67	1A	2A	46	29 29	64	1A 4	A A S	44 4	5A 6A	14	2A 3A	44	5A	ν. Cr		14	A A G	44 4	5A 64	5	
	14	2	6A	16mA				4mA				GND																								
	13	13	6Υ	5.5 V	-		2.0 V	5.5 V -	-	-					GND	GND			-	2.4 V	GND =		-	5.5 V	5.5 V		-		5.5 V	GND				-12 m∆	- Lin 41-	
pen)	12	12	6Ү				16mA				4 mA				GND																				-	
≤ 0.8 V or open)	11	7	GND	GND				GND -				GND =				GND			:		GND =				GND		-		GND	GND	GND		-		-	
e <u>uo</u> . . Iow ⊳ 0	10	10	5Y				lemA				4 mA				GND														T							
Terminal conditions (pins not designated may be high ≥ 2.0 V. low	6	11	5A	5.5 V	-	= 0	2.0 V 5.5 V	5.5 V "	-		0.8 V 5.5 V				GND	GND		=	2.4 V	GND	GND =		-	5.5 V GND	5.5 V		-	0.4 V	5.5 V	GND				-12 mA	-	
v be hial	8	8	4Υ			16mA				4 mA				GND																					-	
<u>a inspect</u>	7	6	4A	5.5 V		2.0 <	> c.c	5.5 V		0.8 V	5.5 <			GND		GND		24	GND	-	GND -		5.5 V	GND GND	5.5 V		0.4 V	5.5 V "	5.5 V	GND			-12 mA		-	
ot design	9	9	3Ү		16mA				4 mA				GND	5					_																re omitted.	e omitted.
I ABLE III. ons (pins no	5	5	3A	5.5 V	2.0 V	5.5 <		5.5 V "	0.8 V	5.5 V			GND	5		GND	= ~ ~ ~	2 UND	2 =		GND =	5.5 V	GND		5.5 V	0.4 V	5.5 V		5.5 V	GND		-12 mA	-		V _{IC} tests a	-55°C and V _{IC} tests are omitted.
ondition	4	14	V _{CC}	4.5 V				4.5 V "	=			5.5 V		=		5.5 V		-	:	-	5.5 V		=		5.5 V		=		5.5 V	5.5 V	4.5 V		-		125°C and	-55°C and
erminal c	3	3	2A	5.5 V 2.0 V	5.5 V			5.5 V	5.5 V	-			פואה			GND	2.4 V		=	-	GND	0.0 V GND	=		5.5 V	0.4 V 5 5 V	=		5.5 V	GND		-12 mA			except Tc =	except Tc =
Ţ	2	4	2Ү	16 mA					4II +				פואה																						haroup 1, €	bgroup 1, ∈
	.	11	1A	2.0 V 5.5 V	. =			0.8 V 5 5 V				GND				2.4 V	GND =	-	-	-	5.5 V	- IN -	-		0.4 V	ې.ت ۳ د	-		5.5 V	GND	-12 mA				ו its as for su	its as for su
	: A, B, D	Case C	Test no.			4 1	۰ ۵		00	10	12	13	1 L	16	17	19	20		23					29 30			34	35				40	42	43	Same tests, terminal conditions and limits as for subgroup 1, except Tc =	Same tests, terminal conditions and limits as for subgroup 1, except Tc =
	MIL-STD-Cases A, B, D		_	2																													-		inal conditi	iinal conditi
	MIL-S		method	^{۱۲} 3007				н 3006				s 3011				1 3010					2 3010				3009				3005		-				tests, term	tests, term
		up Symbol		2°C AOL)			V _{OH}				los				-H					IH2				-				2		VIC				Same	Same
		Subgroup		1 Tc = 25°C																															2	3

TABLE III. Group A inspection for device type 05.

			Unit		su	-	•	-	•	-	us	•	-	-	•	-	su	-	-	-	•	-	su	•	•	•	•	-	
			Limits	Max	20	•	•	•	•	•	25	:	•	•	•	•	24	-	-	•	-		27	-	•	•	-	=	
			Ľ	Min	3	-	•	-	-	=	m	-	•	•	-	•	с	-	-	-	-	•	e	-	-	•	-	=	
			Measured	terminal	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	5A to 5Y	6A to 6Y	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	5A to 5Y	6A to 6Y	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	5A to 5Y	6A to 6Y	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	5A to 5Y	6A to 6Y	
		14	13	4Υ	OUT						OUT						OUT						OUT						
		13	8	4B						Z						Z						Z						Z	
	open)	12	11	4A						OUT						OUT						OUT						OUT	
led.	Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V or open)	11	7	GND	GND	=					GND						GND						GND					=	
TABLE III. Group A inspection for device type 05 - Continued.	/, low ≤ (10	10	æ					OUT	-					OUT						OUT						OUT		
type 05 -	h ≥ 2.0 \	6	6	ЗA					Z						Z	-					Z						Z		
r device	iy be hig	8	£	ЗҮ				OUT						OUT						OUT						OUT			
ection for	iated ma	7	4	2B				z						z						z						Z			
o A insp∈	ot desigr	9	3	2A			OUT						OUT						OUT						OUT				
II. Grou	s (pins n	5	9	2Y			Z						Z						z						Z				
TABLE	condition	4	14	V _{CC}	5.0 V	-					5.0 V	:	:		:		5.0 V						5.0 V					=	= -55°C.
	erminal c	3	12	1		Z						Z						Z						Z					, except Tc
	Ţ	2	2	1B		OUT						OUT						OUT						OUT					ubgroup 10
		Ļ	-	1A	N						z						Z						Z						hits as for si
		MIL-STD-Cases A, B, D	Case C	Test no.	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	Same tests, terminal conditions and limits as for subgroup 10, except Tc = -55°C.
		VIL-STD-C	883	method	3003	(Fig. 3)					3003	(Fig. 3)) ,		-	-	3003	(Fig. 3)					3003	(Fig. 3)					, terminal co
		V	Symbol		tPHL						t _{PLH}						t _{PHL}						tPLH						Same tests
			Subgroup Symbol		6	Tc = 25°C											10	Tc = 125°C											11

TABLE III. Group A inspection for device type 05 - Continued.

	Π	Unit		>: :																	A		-							<u></u>		_					<								A	mA	Π	
		-	×		+	Ч ^н	-	-	-	-	-		2	-	-						Ψ'n	-	-	-	-						-	-				-	8 m M					-	-	-				
		imits	_	0.4	= i	250	-	-	-	-	-		-1.5	-	-	-					40	-	-	-	-				100	5 =	-	-	-		-	-	-1.6		-			-	-	-	15	4.95		
			MIN																																		-0.7					-	-	•				
		Measured	terminal	74	3	2 ≻	:≿	2	24	27	3Ү	34	4 4	18	5	2A	2B		A5	E C	1A	18	5	2A	2B	5 C	3A	н В С	200	⊆ ∉	5	2A	2B	S S	A S S	9 Q	1A	9	<u>5</u>	2A	2B 2B) < /	τ e	e B D D D D	Vcc	Vcc		
		13	10	2.0 V 5.5 V	= 1	5.5 <	0.8 V	5.5 V	:	•					-12 mA						GND	•	2.4 V	GND		• •		•	UND	-	5.5 V	GND			-	-	5.5 V	= .	0.4 <	5.5 <			:	-	5.5 V	GND		
		8	٨£		16 mA						5.5 V																																					
open)		11	30	5.5 V	2.0 V	5.5 <		-	-	-	-	- 80	A 0.0							-12 mA	GND	-	=	-	-				2 H V	-	-	=	-			5.5 V	5.5 V						-	0.4 V	5.5 V	GND		
<u>,e type vu</u> . 2.0 V, low ≤ 0.8 V or open)		7	GND	GND	=	GND =			-		-		GND		-	-					GND	-		-	-				UND	-	-	-	-				GND					-			GND	GND		
<u>e vo</u> . , low ⊳ 0		10	99	5.5 <	2.0 \	5.5 <			-	-	-	0.8 <	> > >							-12 mA	GND		-		-					<u> </u>	-	-	-		5 5 1	GND	5.5 V						~~~~	5.5 <	5.5 V	GND		
<u>ו ≥</u> 2.0 V		6	3A	5.5 <	2.0 V	5.5 <		-	-		0.8 V	5.5 <							-12 mA		GND		-	-	-	= ;	2.4 V	END END	UND	=			-		20.0	2=	5.5 V					~~~~	> 1.0 > 1.0	> ? = ?	5.5 V	GND		
Terminal conditions (pins not designated may be high ≥ 2.0 V, low		5	20	5.5 V 2.0 V	5.5 V	2.5 V				0.8 V	5.5 V							-12 mA			GND	-	-	-	-	2.4 <	GND		+	=		-	-	5.5 V	- -		5.5 V					> 4.0	> =			GND		
ted may	-	4		5.5 < 2.0 <	+				-8 V	5 V							-12 mA	`•			DND	-	-	-					+	=				eno			5.5 V				0.4 V				5.5 V			
designa		e 5	_	5.5 V 2.0 V 2	+			8 V		<u>،</u>						-12 mA	÷				-								-								5.5 V 5			0.4 <					5.5 V 5			mitted
ins not		_	_		2.5				20							-12					ō			, i	Ū				2	5	_	5.	Ū				5.			o i	 				5.	G	tests are o	C and Vic tests are omitted.
tions (p		9 20		16 mA				5.5	:	-																																					C and V _{IC}	and Vici
al condi		14	Vcc	4.5 V "	= 1	4.5 <	-	-	•	-	•		4.5 V	•	-	-		•			5.5 V	•	-		-			•	551	> ? = ?		•	-		-	•	5.5 V				•	:	:	-	5.5 V	5.5 V	c = 125°C	$C = -55^{\circ}C$
Termina		12	۲۲	16 mA	l	5.5 <	-																																								1, except T	1. except T
		2	1B	2.0 V 5.5 V	=	5.5 V 0.8 V	5.5 V) =	-	-	-			-12 mA							GND	2.4 V	GND	-	-				GND	255	GND	-	-			-	5.5 V	0.4 <	5.5 V			-	-	-	5.5 V	GND	subgroup	subaroup .
		- ;	1A	2.0 V 5.5 V	=	0.8 <	,) =	-	-	-	-		-12 mA								2.4 V	GND		-	-				551	CIND CIND	=	-	-				0.4 V	5.5 <						-	5.5 V	GND	mits as for	mits as for
	Cases A, B,	C, and D	l est no.	- 0	с, .	4 v.	9 0	2	8	6	10	5 5	13	14	15	16	17	8 0	19	20	22	23	24	20	26	27	28	50	31	- 66	33	34	35	36	3/ 38	8 8	40	41	42	43	44	6 0 4 0 4 0	40	48	49	50	Same tests, terminal conditions and limits as for subgroup 1, except Tc = 125°C and V _{1C} tests are omitted	Same tests terminal conditions and limits as for subgroup 1, except $Tc = -55^{\circ}$
	ے ا		Ð	3007					-												3010								3010								3009								3005	3005	erminal con	erminal con
		Symbol		Nor	-	CEX							2	<u>)</u>							-H								+	, 																	ame tests, t	ame tests te
		Subgroup		1 Tc = 25°C									<u> </u>																1								<u> </u>								<u> </u>	1	2 28 28	

TABLE III. <u>Group A inspection for device type 06</u>. ditio

		red Limits Unit	al Min Max	1Y 3 23 ns	:	37	1Y 3 28 ns	-	37 " " " "	1Y 3 29 ns	-	37	1Y 3 35 ns	:	37	
		Measured	terminal		2A to 2Y	3A to 3Y		2A to 2Y	3A to		2A to 2Y	3A to 3Y		2A to 2Y	3A to	
		13	1 5	2.4 V	-		2.4 V			2.4 V			2.4 V			
		80	3Υ			OUT			OUT			OUT			OUT	
open)		5	g			2.4 V			2.4 V			2.4 V			2.4 V	
0.8 V or		7	GND	GND		-	GND			GND	-		GND			
V, low ≤		10	3B			2.4 V			2.4 V			2.4 V			2.4 V	
h ≥ 2.0 '		6	ЗA			Z			N			Z			Z	
ay be hig		5	2C		2.4 V			2.4 V			2.4 V			2.4 V		
nated m		4	2B		2.4 V			2.4 V			2.4 V			2.4 V		
iot desig		ю	2A		Z			Z			z			Z		
ıs (pins r		9	2۲		OUT			OUT			OUT			OUT		
Terminal conditions (pins not designated may be high \ge 2.0 V, low \le 0.8 V or open)		14	V _{CC}	5.0 V			5.0 V			5.0 V			5.0 V			c = -55°C.
erminal		12	1	OUT			OUT			OUT			OUT			0, except Ti
F		7	18	2.4 V			2.4 V			2.4 V			2.4 V			subgroup 1
		-	1A	z			z			Z			z			mits as for
	MIL-STD- Cases A, B,	C, and D	Test no.	51	52	53	54	55	56	57	58	59	60	61	62	Same tests, terminal conditions and limits as for subgroup 10, except Tc = -55°C.
	MIL-STD-	883	method	3003	(Fig. 3)		3003	(Fig. 3)		3003	(Fig. 3)		3003	(Fig. 3)		ts, terminal
		Symbol		tPHL			tPLH			tPHL			tPLH			Same test
		Subgroup Symbol		6	Tc = 25°C					10	Tc = 125°C					11

TABLE III. <u>Group A inspection for device type 06</u> - Continued.

	5				c				7	•		-							_
E	-	Cases A, B, U		N (η,	4	n •	0 1	- 0	φ	ה מ	<u> </u>	= ►	2	<u>5</u>	<u>4</u>		1.100	1
	method	Test no	1A 1A	о Ц	- 2	+ \	+ ≿	24	, R	34	34	2 HE	- UND	44	4B	4	terminal	Min	Max
	3007	- c	2.0 V	2.0 \	16 mA	4.5 V		5.5 V	5.5 V	;	5.5 V	5.5 V	GND -	5.5 V	5.5 V	:	7		0.4
		n w 4	> 0 = = 0	> ;; = = ;				5.5 <	5.5 V	16 mA	2.0 V 5.5 V	2.0 V 5.5 V		- 0 0	- 0 2	16 mA	37 -		
		» دی -	0.8 V	4.5 V	5.5 V "	4.5 V "		5.5 V	5.5 V "		5.5 V	5.5 V	GND -	5.5 V	5.5 V	0	;	2	250 μA
		4 ہ	4.5 V	0.8 V 5.5 V	:		5.5 V	0.8 V	4.5 V								24		
		8	-	-		-	-	4.5 V	0.8 V		-	-		-	-		27	-	-
		o ,						5.5 <	5.5 V	5.5 <	0.8 <	4.5 <					37		
		01									4.5 V	0.8 <				2 2 7	37		
		- 5	-	-		-		-	-		> =	> 0.=	-	0.0 V 4.5 V	0.8 V	> = 0.0	4 4		
-	3010	13	2.4 V	GND		5.5 V		GND	GND		GND	GND	GND	GND	GND		1A	7	Ч ¹ 01
		4 r	GND GND	2.4 <				= 7									1B 1		
		10		enu GND				2.4 V									A D		
		0 1	=						2 UN C		741	=	=	-	=		202		
		- 6	-						-		ND T	24V	-	-	-		C EC		
		61	=	:		-		-	-		5 =	GND	=	2.4 V	=		44 4 A C		
		20	-	-		-		-	-		-) -	-	GND	2.4 V		4B		
<u> </u>	3010	21	5.5 V	GND		5.5 V		GND	GND		GND	GND	GND	GND	GND		1A	-	
		52	GND :	5.5 <				= 1									85		
		23		GND GND				5.5 <									2A		
		47 ЛС		:				enc enc			551						20		
		26	-					-	=			55V	-				e e e		
		27	-			-		-	-) =	GND	-	5.5 V	-		44 4 A C		
		28	-	-		-		-			-	=	-	GND	5.5 V		4B		
	3009	29	0.4 V 5 5 V	5.5 V		5.5 V "		5.5 V	5.5 V "		5.5 V "	5.5 V "	GND -	5.5 V "	5.5 V "		4 d	-0.7	
		3. 10	> 	5.5 <		=		0.4 V	-		=	=	=		=		2A 2A	:	-
		32	-	:		:		5.5 V	0.4 V		:	:	:	-	:		2B	-	
		33	-			-		-	5.5 V		0.4 V		-		-		ЗA		
		34									5.5 <	0.4 <		= ;			38		
		36		-								> °.°	-	0.4 2.7 2	04 \		44 44		
	3005	37	5.5 V	5.5 V		5.5 V		5.5 V	5.5 V		5.5 V	5.5 V	GND	5.5 V	5.5 V		< CC		50 mA
I _{CCH}	3005	38	GND	GND		5.5 V		GND	GND		GND	GND	GND	GND	GND		V _{cc}	9	
Vic		39	-12mA	4 C F		4.5 V "							GND =				₹ţ	`ı	-1.5
		04 6		Amzi-				1.0~~									9 < - c		
		42				-			-12mA								5 B 2		
		43				-		-			-12mA		-				ЗА		
		44				-						-12mA	-				3B		
		45												-12mA	1.0~~ 1		44 1		
	the second second				H	00101		1 - 14					1		VII71-		ţ		

d	
4	-
0	- 2
>	-
 Group A inspection for device type 	$r = \frac{1}{2} r = $
4	
Ψ	C
0	
١.	
~	1.
Ð	2
$\overline{0}$	7
-	
_	
0	_
÷	
_	
_	2
0	
:	1 2
5	
2	5
Φ	2
0	_
ŝ	
ž	0
1	1 ÷
	Ċ
~	
0	
1	1.12
2	1 2
0	
<u> </u>	7
(D	
\sim	- 7
TABLE III.	_ 2
_	
_	- 9
111	_ 2
щ	
m	1
4	
<	
_	_ 2
-	

						Termina	l conditio	ns (pins I	not desid	conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V	av be hic	h ≥ 2.0 ¹	V. low ≤ (Terminal conditions (pins not designated may be high ≥ 2.0 V. low ≤ 0.8 V or open)	pen)						
		MIL-STD.	MIL-STD-Cases A, B, D	-	2	e	4	2	9	7	, ∞	6	10	11	12	13	14				
Subgroup Symbol	Symbol	883	Case C	2	en	-	14	4	5	9	10	œ	6	7	11	12	13	Measured	Limits	S	Unit
		method	Test no.	1A	18	1	Vcc	2	2A	2B	ЗҮ	ЗА	3B	GND	4A	4B	4Υ	terminal	Min	Мах	-
6	tPHL	3003	47	Z	2.4 V	DUT	5.0 V							GND				1A to 1Y	3	23	su
Tc = 25°C		(Fig. 3)	48				•	OUT	Z	2.4 V								2A to 2Y	-	-	
			49				•				OUT	Z	2.4 V					3A to 3Y		=	
			50												z	2.4 V	OUT	4A to 4Y			
-	t _{PLH}	3003	51	z	2.4 V	OUT	5.0 V							GND				1A to 1Y	e	28	ns
		(Fig. 3)	52				•	OUT	Z	2.4 V				-				2A to 2Y		-	
			53				-				OUT	Z	2.4 V	-				3A to 3Y		-	
			54											-	Z	2.4 V	OUT	4A to 4Y			
10	tPHL	3003	55	Z	2.4 V	DUT	5.0 V							GND				1A to 1Y	3	29	su
Tc = 125°C		(Fig. 3)					-	OUT	Z	2.4 V				-				2A to 2Y		-	
							-				OUT	Z	2.4 V	-				3A to 3Y		-	
			58												Z	2.4 V	OUT	4A to 4Y			
	t _{PLH}	3003	59	z	2.4 V	OUT	5.0 V							GND				1A to 1Y	e	35	ns
		(Fig. 3)	60					OUT	Z	2.4 V				-				2A to 2Y			-
			61				-				OUT	Z	2.4 V	-				3A to 3Y		-	
-			62											-	Z	2.4 V	OUT	4A to 4Y			
11	Same tes	sts, termina	Same tests, terminal conditions and limits as for subgroup 10, except Tc =	imits as fo	or subgroup	10, except	Tc = -55°C.														

			4 4	רי רי	t	, L	>	- 0	0	0	2	-	4	2	+			
3007 3007		14 5.5 V		-	14	-	9	_ თ		11	10	7	1 1	13		Measured	Limits	ţ
		2.0 V 5.5 V	2Y	2A	V _{CC}	ЗA	3Ү	4A		5A	57	GND	6Υ	6A	1	terminal	Min	Max
		5.5 <		5.5 V	4.5 V	5.5 V		5.5 V		5.5 V		GND		5.5 V	16 mA	1		0.4
			16 mA	2.0 <		=										2		
				5.5 <		2:0<	16 mA									37		
						5.5 V			16 mA	= 0						4		
								5.5 <		2.0 <	16 mA		16 m A			5 2		
						:				> 0.0		1		> 0.2		10		0
		0.8 <		5.5 <	4.5 V	5.5 <		5.5 V "		5.5 V		GND B		5.5 V	5.5 V	7		250
		> 0.0	2.0 V	2.0												72		
				> :0		> 2										10		
						>		> 2	> 0.0			-				+ ≻)		
								> c.c		2.8	V C.C		:	: 0		λG		
	,	-		-	-	-		-		5.5 V		-	5.5 V	0.8 V		6Ү		-
	15 16 16	-12mA			4.5 V							GND .				1A 1		-1.5
	15 16			-12mA												ZA		
	16					-12mA										3A		
								-12mA				-				4A		-
+	17									-12mA				- C -		5A		
	18				:							:		-12mA		6A		:
1 _{IH1} 3010	19	2.4 <		GND	5.5 <	GND B		GND =		GND B		GND GND		GND GND		1A		40
	24	-		> 1.7		~~~										10		
	- 00			-		> 17								-				
	77							> 1								t 4		-
	52				-	=		-		> UN 7 10				2 4 V		46		-
luo 3010	25	55V		GND	55V	GND	+	GND		UND		GND		UND UND		14		100
	26	UND UND		55 <	, ; ;) =) =) ; ;) ;))		24		2 =
	27) } =		GND	-	5.5 V					-			-		3A		
	28			-		GND		5.5 V								44		
	29					-		GND		5.5 V						5A		-
	30	-			=	-		-		GND		-		5.5 V		6A		-
ا _ا ر 3009		0.4 V		5.5 V	5.5 V	5.5 V		5.5 V		5.5 V		=		5.5 V		1A	-0.7	-1.6
		5.5 V		0.4 <		=										2A		
	33			5.5 V		0.4 V										3A		
	34					5.5 V		0.4 <								4A		-
	35							5.5 V		0.4 V						5A		
	36	-		_	_	-		-		5.5 V		-		0.4 V		6A	-	-
I _{CCL} 3005	37	5.5 V			5.5 V	5.5 V		5.5 V		5.5 V		GND		5.5 V		V _{cc}		30
I _{CCH} 3005	38	GND		GND	5.5 V	GND		GND		GND		GND		GND		Vcc		9.9
Same tests terminal conditions and limits as for subgroup 1, except $Tc = 1$	ditions and lin	nits as for s	subaroup 1.	except Tc =	125°C and	25°C and Vic tests are omitted	-											

TABLE III. Group A inspection for device type 08.

Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V or open)	7 8 9 10 11 12 13 14 1	9 8 11 10 7 12 13 2 Measured Limits Unit	4A 4Y 5A 5Y GND 6Y 6A 1Y terminal Min Max	I GND I OUT I A to 1Y 3 23 ns 1	2A to 2Y " "	=			 I GND I OUT I A to 1Y 3 28 ns	2A to 2Y " "	=	IN OUT	IN OUT " 54to 57 " " "	OUT IN	GND GND OUT 1A to 1Y 3 29 ns	=	=	=		GND GND GND 14to 1Y 3 35 ns	•	=	=	IN OUT " 5405Y " " "	OUT IN 64106Y " " "	
I ABLE III. Group A inspection for device type $08 - C$ ontinued. conditions (pins not designated may be high $\ge 2.0 \text{ V}$, low $\le 0.8^{\circ}$	4 5 6	14 5 6	V _{cc} 3A 3Y	5.0 V		" IN OUT			5.0 V		" IN OUT	=			5.0 V		" IN OUT			 5.0 V		" IN OUT		=		-55°C.
17 Terminal cor	2 3	4 3	2Y 2A V	2:	OUT IN				2:							OUT IN					OUT IN					Same tests, terminal conditions and limits as for subgroup 10, except Tc = -
	1	+	1A 2	N	0				Z	0					NI	0 				≥	0					l limits as for sub
	MIL-STD-Cases A, B, D	Case C	Test no.				42	43				48	49		51		53	54	55				60	61	62	al conditions and
		ymbol 883	method	t _{PHL} 3003	(Fig. 3)				t _{PLH} 3003						t _{PHL} 3003	(Fig. 3)				t _{PLH} 3003						ame tests, termin
		Subgroup Symbol		6	Tc = 25°C										10	Tc = 125°C										11 Sa

TABLE III. Group A inspection for device type 08 - Continued.

25

		Unit		>:		A	- 		-		=		>	-					-	Υ'n		-	:	-		-	٩ŋ	=	÷			-	шA			-	-		-	шA	mA		
		Limits	Max	0.4		250	=		:	-	-		-1.5	=				-	-	40 :		-	-	-			100	=	-	-		=	-1.6				:	-	-	20	6.6		
		ŗ	Min																														-0.7			-	-	•	-				
		Measured	terminal	17	34	; ≻	: >	27	2Y	зү	3Ү	4 7 2	1A	18	2A	2B 3A	e ee	44 4	4B	4 ₹	18	A 2 A 2	38	38	44 1	4B	4 4	2A	2B	3A	3B 4 A	44 48 48	1A	8;	ZA 2D	2 P 0	A BE	4 4 4	4B	Vcc	Vcc		
	14		V _{CC}	4.5 V		4.5 V	=	•	=	:	=		4.5 V	-			:	-	-	5.5 <		-	:	-			5.5 <		-	-		-	5.5 V				:	-	-	5.5 V	5.5 V		
	13		4B	5.5 V		5.5 V			-	-	-	4.5 V	× 0.0						-12mA	GND :		-	-	-	= .	2.4 V	GND GND	=				5.5 V	5.5 V			-			0.4 V	5.5 V	GND		
open)	12		4A	5.5 V "		5.5 V	=	•	•	-	=	0.8 V 7 5 V	> >					-12mA		GND		-	=	-	2.4 V	GND	GND GND	-	•	-		OND	5.5 V					0.4 V	5.5 V	5.5 V	GND		
0.8 V or open)	11		4Υ		16 m A							5.5 V																															
. 🗸	10		3B	5.5 V	2.0 V 7. 7. V	5.5 V		-		4.5 V	0.8 V	5.5 <					-12mA			GND -				2.4 V	GND		GND GND	=	-	=	5.5 <	- 10 -	5.5 V				04 V	5.5 V	-	5.5 V	GND		
of designated may be high ≥ 2.0 V, low	6		3A	5.5 V	2.0 \ 5 5 \	5.5 V) =		-	0.8 V	4.5 V	5.5 V				-12m A				GND -		-	2.4 V	GND			GND GND	=	-	5.5 V	GND B	-	5.5 V			1110	2. 1. 2. 1. 2. 2.	0 =	-	5.5 V	GND		
ay be hig	8		3Υ		16 mA					5.5 V	=																																
inated m	7		GND	GND		GND	=		-		=		GND	=				-	=	GND -		-		-			GND GND	=	-			-	GND					-	-	GND			
not desig	9		2Υ	16 mA				5.5 V																																		are omitted	are omitted
השבוב וווי. ons (pins no	5		2B	5.5 V 2.0 V	5.5 V	5.5 V		4.5 V	0.8 V	5.5 V	-					-12mA				GND -		24 V	GND	-			GND GND		5.5 V	GND		-	5.5 V			0.4 V	> =	-	-	5.5 V	GND	nd V _{IC} tests	d V _{IC} tests
Terminal conditions (pins not designated may be high ≥	4		2A	5.5 V 2.0 V	5.5 V	5.5 V		0.8 V	4.5 V	5.5 V	-				-12mA					GND -		2.4 V) =	-			GND =	5.5 V	GND	-		-	5.5 V	= .	0.4	> °.0 -	-	-	-	5.5 V	GND	:= 125°C ar	:= -55°C an
Terminal	с		1	16 mA		5.5 V																																				, except Tc	, except Tc
·	2		1B	2.0 V 5.5 V		4.5 V	0.8 \	5.5 V	=	-	=			-12mA						GND	2.4 <	enc enc	:	=		:	GND 6 ND	GND	-			=	5.5 V	0.4 <	5.5 V	=	-	-	-	5.5 V	GND	subgroup 1	subgroup 1
	-		1A	2.0 V 5.5 V		0.8 V	4 5 V	5.5 V	-	-	=		-12mA							2.4 V	enn e	-		-			5.5 V	<u>}</u> =	-			-	0.4 V	5.5 <		=	-	-	-	5.5 V	GND	imits as for	imits as for
	Case C		Test no.	1 2	σ ₹	ۍ t) (C	2	80	6	10	÷÷	13	14	15	16	- 6	19	20	21	22	23	25	26	27	28	29	9. E	32	33	34 24	90 90	37	38	39	044	4 4 -	43	44	45	46	Same tests, terminal conditions and limits as for subgroup 1, except Tc = 125° C and V _{1C} tests are omitted	onditions and
	MIL-STD-	883	method	3007																3010							3010						3009							3005	3005	s, terminal c	s, terminal c
		Symbol		NoL		20	<u>S</u>						< K	2						H1							H2						1							CCL	ССН	Same test	Same test
		Subgroup		1 Tc = 25°C																																						2	3

26

TABLE III. <u>Group A inspection for device type 09</u>.

	Unit		ns				ns				su				su	-			
		Max	23	-			28				29	-			35	-			
	Limits	Min	e	-			 ლ				с С	-			 ლ	-			
	Ired		1Y	27	3Ү	47	1	2۲	3Ү	47	1Y	27	3Ү	47	1	2Y	3Ү	47	
	Measured	terminal	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	1A to 1Y	2A to 2Y	3A to 3Y	4A to 4Y	
14		V _{CC}	5.0 V	-	-	-	5.0 V	-	•	•	5.0 V		-	-	5.0 V	•	-		
13		4B				2.4 V				2.4 V				2.4 V				2.4 V	
12		4A				Z				Z				Z				Z	
7		47				OUT				OUT				OUT				OUT	
10	2	3B			2.4 V				2.4 V				2.4 V				2.4 V		
ი		3A			Z				Z				Z				Z		
8		3Ү			OUT				OUT				OUT				OUT		
-		GND	GND	-	-	-	GND	-	-	-	GND	-	-	-	GND		-		
0		2Y (OUT				OUT)	OUT				OUT			
5					-									-					
		2B		2.4 V				2.4 V				2.4 V				2.4 V			
4		2A		Z				Z				Z				Z		-	
ო		≯	OUT				OUT				OUT				OUT				
7		1 8	2.4 V				2.4 V				2.4 V				2.4 V				
-		1A	Z				z				N				z				
Case C		Test no.	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	
MIL-STD-	883	method	3003	(Fig. 3)			3003	(Fig. 3)			3003	(Fig. 3)			3003	(Fig. 3)			
	Symbol		t _{PHL}				tPLH				tPHL				tPLH				
	Subgroup Symbol		ი	Tc = 25°C			•				10	Tc = 125°C			•				

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - J. Packaging requirements (see 5.1).

6.3 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, P.O. Box 3990, Columbus, Ohio 43218-3990.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
V _{IN}	Voltage level at an input terminal
V _{IC}	Input clamp voltage
l _{in}	Current flowing into an input terminal

6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.3). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	5430
02	5420
03	5410
04	5400
05	5404
06	5412
07	5401
08	5405
09	5403

6.8 <u>Changes from previous issue.</u> Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-2072)

Review activities: Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.