Dual DCL with Integrated Level Setters

Abstract

General Description The MAX19000 is a fully integrated, dual-channel, highperformance pin-electronics driver/comparator/load (DCL) with built-in level setters, and is ideal for memory and SOC ATE systems. Each MAX19000 channel includes a three-level pin driver, a window comparator, dynamic clamps, an active load, programmable cableloss compensation, and built-in programmable level setters. The driver features a wide -2 V to +6 V operating range and a data rate of 1200 Mbps at +2 V operation. The driver includes high impedance, active termination (3rd-level drive), and is highly linear even at low-voltage swings. The window comparators provide extremely low timing variation with changes in slew rate, common mode, pulse width, and overdrive. The active load has an extended IOH and IOL current range, providing up to 20 mA . The dynamic clamps provide damping of high-speed DUT waveforms when the DCL is in high-impedance receive mode. A serial interface configures the device, easing PCB signal routing. The MAX19000 is available in a 64-pin TQFP package with an exposed pad.

Applications

Memory Testers
SOC Testers

- High Speed: 1200Mbps at +2V Operation
- Fast Rise/Fall Times: 400ps Maximum at +2V (20\% to 80\%)
- Extremely Low Power Dissipation: 1.3W/Channel
- Wide, High-Speed Voltage Range: -2V to +6V
- Low-Leakage Mode: 10nA Maximum
- Integrated Termination On the Fly (3rd-Level Drive)
- Programmable Cable-Loss Compensation (Drive and Receive)
- 20mA Active Load
- Digital Slew-Rate Control
- Integrated Voltage Clamps
- Integrated Level Setters
- Adjustable Output Resistance
- Adjustable Comparator Hysteresis
- Very Low Timing Dispersion
- Serial-Control Interface
- Minimal External Component Count

Features
Ordering Information/Selector Guide

PART	TEMP RANGE	COMPARATOR OUTPUT $(\mathbf{m A})$	DATA_/NDATA_RCV_/NRCV__ DIFFERENTIAL TERMINATION (Ω)	PIN-PACKAGE
MAX19000BECB +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	12	100	64 TQFP-EP* $^{\circ}$
MAX19000BECB +T	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	12	100	64 TQFP-EP* 4

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.

Dual DCL with Integrated Level Setters

```
ABSOLUTE MAXIMUM RATINGS
```



```
VDD to DGND .............................................................................. to to +5V
DGND to GND ...................................................................3V
GNDDAC_ to GND ..................................................... }\pm0.3\textrm{V
DGND to GNDDAC_..................................................... }0.3\textrm{O
DGS to GND ....................................................................... }1\textrm{N
CTV_ to GND ....................................................-0.3V to +5V
DATA}A,NDATA_ to GND..............(VEE-0.3V) to (VCC + 0.3V
RCV_,NRCV_ to GND ................... (VEE - 0.3V) to (VCC + 0.3V)
CH_, NCH_, \overline{CL},NCL
to GND.
(VCTV_ - 1.1V) to (VCTV_ + 0.3V)
Current into CH_,NCH_, CL_, NCL_.......................... }\pm10\textrm{mA
DATA_ to NDATA_, RCV_ to NRCV_............................ }\pm10\textrm{mA
DUT_ to GND.............................(VEE - 0.3V) to (VCC + 0.3V)
SCLK, DIN, \overline{CS}, LOAD to DGND .............-0.3V to (VDD + 0.3V)
RST, LLEAKP_ to DGND ........................-0.3V to (VDD + 0.3V)
```

OVALARM, TALARM to DGND..................-0.3V to (VDD + 0.3V)
TEMP to GND (VEE - 0.3V) to (VCC + 0.3V)
REF to GND-0.3V to the lower of (VGNDDAC_+ 2.6V) and $\left(\mathrm{VCC}^{-}+0.3 \mathrm{~V}\right)$
REF Current... $\pm 75 \mathrm{~mA}$
All Digital Inputs ... $\pm 30 \mathrm{~mA}$
DUT_ Short-Circuit DurationContinuous
Continuous Power Dissipation
64-Pin TQFP (derate $125 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 10 W
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)................................. $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)....................................... $+260^{\circ} \mathrm{C}$
ESD, Human Body Model:
All Pins Excluding Pins Below ..2.000V
ESD, Human Body Model: DATA_, NDATA_........................1.500V
ESD, Human Body Model: RCV_, NRCV_.........................1.500V
Humidity .. 10% to 90%

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

64 TQFP-EP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)

Junction-to-Case Thermal Resistance ($\theta \mathrm{J} \mathrm{C}$).
$40^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{VGND}=$ VGNDDAC $=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
DRIVER DC CHARACTERISTICS ($\mathrm{RL} \geq 10 \mathrm{M} \Omega$, unless otherwise noted; includes level-setter error)						
Output-Voltage Range	VDHV_	$\mathrm{V}_{\text {LLV }}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}{ }^{\text {c }}=+1.5 \mathrm{~V}$	-1.8		+6	V
	VDLV_	$\mathrm{V}_{\text {DHV }}=+6 \mathrm{~V}, \mathrm{~V}_{\text {DTV_ }}=+1.5 \mathrm{~V}$	-2		+5.8	
	VDTV_	$\mathrm{V}_{\text {DHV }}=+6 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=-2 \mathrm{~V}$	-2		+6	
Output Offset Voltage (Note 2)	VDHVOS	$\begin{aligned} & V_{D H V_{-}}=+0.125 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=-2 \mathrm{~V}, \\ & \text { VDTV_ }=+1.5 \mathrm{~V} \end{aligned}$			± 2	mV
	VDLVos	$\begin{aligned} & V_{\text {DLV }}^{-}= \\ & V_{\text {DTV_ }}=+1.125 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+6 \mathrm{~V}, \end{aligned}$			± 2	
	VDLVos	$\begin{aligned} & \mathrm{V}_{\text {DTV }}^{-}= \\ & \mathrm{V}_{\text {DLV }}^{-}=-2 \mathrm{~V} \end{aligned}$			± 2	
Output-Voltage Temperature Coefficient (Notes 3, 4)	VDHV_			± 75	± 500	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	VDLV_			± 75	± 500	
	VDTV_			± 75	± 500	

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{VLDHV}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}^{-}=0 \overline{\mathrm{~V}}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=00 \overline{\mathrm{D}} \mathrm{b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{VGND}=$ VGNDDAC $=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain (Note 2)	ADHV_	$\begin{aligned} & \mathrm{V}_{\text {DLV }}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DHV }}=+0.125 \mathrm{~V} \text { and }+3.875 \mathrm{~V} \end{aligned}$	0.998	1	1.002	V/V
	ADLV_	$\begin{aligned} & \mathrm{VDHV}_{-}=+6 \mathrm{~V}, \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \\ & \mathrm{VDLV}_{-}=+0.125 \mathrm{~V} \text { and }+3.875 \mathrm{~V} \end{aligned}$	0.998	1	1.002	
	ADTV_	$\begin{aligned} & \mathrm{V}_{\text {DHV }}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=-2 \mathrm{~V}, \\ & \mathrm{VDT}_{-}=+0.125 \mathrm{~V} \text { and }+3.875 \mathrm{~V} \end{aligned}$	0.998	1	1.002	
Linearity Error, -0.5 V to +4.5 V (Note 2)		$\begin{aligned} & \mathrm{V}_{\text {DLV }}^{-}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \\ & \hline \end{aligned}$		± 1	± 6	mV
		$\begin{aligned} & \mathrm{V}_{\text {DHV }}=+6 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DLV }}^{-}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \end{aligned}$		± 1	± 6	
		$\begin{aligned} & V_{D L V_{-}}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \end{aligned}$		± 1	± 6	
Linearity Error, -1.75 V to +5.125 V (Note 2)		$\begin{aligned} & \hline \mathrm{V}_{\text {DLV }}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DTV }_{-}}=+1.5 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=-1.75 \mathrm{~V} \text { and }+5.125 \mathrm{~V} \\ & \hline \end{aligned}$			± 12	mV
		$\begin{aligned} & \begin{array}{l} V_{D H V}=+6 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V} \\ \mathrm{~V}_{\text {DLV_ }}=-1.75 \mathrm{~V} \text { and }+5.125 \mathrm{~V} \end{array} \end{aligned}$			± 12	
		$\begin{array}{\|l} \hline \mathrm{V}_{\text {DLV }}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+6 \mathrm{~V}, \\ \mathrm{~V}_{\text {DTV_ }}=-1.75 \mathrm{~V} \text { and }+5.125 \mathrm{~V} \\ \hline \end{array}$			± 12	
Linearity Error, Full Range (Note 2)		$\begin{aligned} & \begin{array}{l} {\mathrm{V} L V_{-}}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}^{-}=1.5 \mathrm{~V}, \\ \mathrm{~V}_{\text {DHV }}=-1.8 \mathrm{~V} \text { and }+6 \mathrm{~V} \end{array} \end{aligned}$		± 5	± 14	mV
		$\begin{aligned} & \mathrm{V}_{D H V_{-}}=+6 \mathrm{~V}, \mathrm{~V}_{D T V_{-}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DV_ }}=-2 \mathrm{~V} \text { and }+5.8 \mathrm{~V} \end{aligned}$		± 5	± 14	
		$\begin{aligned} & V_{D L V_{-}}=-2 \mathrm{~V}, V_{D H V_{-}}=6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=-2 \mathrm{~V} \text { and }+6 \mathrm{~V} \end{aligned}$		± 5	± 14	
DHV_-to-DLV_ Crosstalk		$\begin{aligned} & V_{D L V_{-}}=-0.5 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DHV }}=-0.3 \text { and }+6 \mathrm{~V} \end{aligned}$			± 3	mV
DLV_-to-DHV_ Crosstalk		$\begin{aligned} & \mathrm{VDHV}_{-}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}^{-}= \\ & \mathrm{V} L \mathrm{D}_{-}=-2.5 \mathrm{~V}, \\ & \text { and }+4.3 \mathrm{~V} \end{aligned}$			± 3	mV
DTV_-to-DLV_ and DHV_ Crosstalk		$\begin{aligned} & \mathrm{V}_{D H V_{-}}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV_ }}=-2 \mathrm{~V} \text { and }+6 \mathrm{~V} \end{aligned}$			± 2	mV
DHV_-to-DTV_ Crosstalk		$\begin{aligned} & \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{\operatorname{DL}}^{-}=0 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=1.6 \mathrm{~V} \text { and }+3 \mathrm{~V} \end{aligned}$			± 3	mV
DLV_-to-DTV_ Crosstalk		$\begin{aligned} & \mathrm{V}_{\text {DTV }}^{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DLV }}^{-}=0 \mathrm{~V} \text { and }+1.4 \mathrm{~V} \end{aligned}$			± 3	mV
Term Voltage Dependence on DATA_		$\begin{aligned} & \mathrm{V}_{\mathrm{DTV}_{-}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DLV }_{-}}=0 \mathrm{~V}, \mathrm{DATA}_{-}=0 \text { and } 1 \end{aligned}$			± 2	mV

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPHV}}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=$ VGND $=$ VGNDDAC $=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC Power-Supply Rejection	PSRRDHV	$V_{D H V}=+3 V, V_{C C}$ and $V_{E E}$ independently varied full range		39			dB
	PSRRDLV	VDLV_ = OV, VCC and VEE independently varied full range		39			
	PSRRDTV	$V_{D T V}=+1.5 \mathrm{~V}, \mathrm{~V}_{C C}$ and V_{EE} independently varied full range		39			
DC Drive Current Limit		RL= 0, when DATA VDUT_ = -2V; when VDLV_ $=-2 \mathrm{~V}$ and V	$\begin{aligned} & =\mathrm{H}, \mathrm{~V}_{\mathrm{DHV}}=+6 \mathrm{~V} \text { and } \\ & \text { ATA- }=\mathrm{L} \text {, } \\ & \mathrm{T}_{-}=+6 \mathrm{~V} \end{aligned}$	± 65		± 110	mA
DC Output Resistance		(Note 5)		46	48	50	Ω
DC Output Resistance Variation (Note 6)		$\begin{aligned} & \text { DATA_ }=H, V_{D H V}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV_ }}=+1 \mathrm{~V}, \mathrm{IDUT}_{-}=1 \mathrm{~mA} \text { to } 40 \mathrm{~mA} \end{aligned}$			1	2	Ω
		$\begin{aligned} & \hline \text { DATA }_{-}=\mathrm{L}, \text { VDHV }_{-}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \text { VDTV }_{-}=+1 \mathrm{~V}, \text { IDUT }_{-}=-1 \mathrm{~mA} \text { to }-40 \mathrm{~mA} \end{aligned}$			1	2	
Adjustable Output Resistance Range	$\Delta \mathrm{Ro}$	Ro $=$ Fh vs. $\mathrm{Ro}=8 \mathrm{~h}$ and $\mathrm{RO}=0 \mathrm{~h}$ vs. Ro $=8$ h, resolution of 0.36Ω conditions (Note 5)			± 2.5		Ω
DRIVER AC CHARACTERISTICS (RL=50 ${ }^{\text {a }}$ to GND) (Note 7)							
Dynamic Drive Current		(Note 8)			± 100		mA
Drive Mode Overshoot		Cable-droop compensation off, CDRP_ = 000b	$\begin{aligned} & V_{D L V_{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DHV}}^{-}=+0.1 \mathrm{~V} \\ & \hline \end{aligned}$		40		\%
			$\begin{aligned} & V_{D L V_{-}}=0 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=+1 \mathrm{~V} \end{aligned}$		8		
			$\begin{aligned} & \mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DV}}=+3 \mathrm{~V} \end{aligned}$		3		
			$\begin{aligned} & \mathrm{V}_{\text {DLV }}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DV}}=+5 \mathrm{~V} \end{aligned}$		2		
Drive Mode Undershoot		Cable-droop compensation off, CDRP_ = 000b	$\begin{aligned} & \mathrm{V}_{\mathrm{DLV}}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DHV}}=+0.1 \mathrm{~V} \end{aligned}$		20		\%
			$\begin{aligned} & \mathrm{V}_{\mathrm{DLV}}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DH}}=+1 \mathrm{~V} \end{aligned}$		5		
			$\begin{aligned} & V_{D L V}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DLV}}^{-}=+3 \mathrm{~V} \end{aligned}$		2		
			$\begin{aligned} & \mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=+5 \mathrm{~V} \end{aligned}$		2		
Cable-Droop Compensation Range, Fast Time Constant		VDLV_ $=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRP}$-S $=000$			0		\%
		VDLV_ $=0 \mathrm{~V}, \mathrm{VDHV}_{-}=+1 \mathrm{~V}, \mathrm{CDRP}$-S $=111$			20		

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} \mathrm{~V}_{-}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}$ GND $=\mathrm{V}_{\text {GNDDAC }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Cable-Droop Compensation Range, Slow Time Constant		$V_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRP}$ _L $=000$		0		\%
		$V_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRP}$ _L $=111$		20		
Driver Cable-Droop Compensation, Short Time Constant				80		ps
Driver Cable-Droop Compensation, Long Time Constant				1.3		ns
Termination Mode Overshoot		Cable-droop compensation off (Notes 4, 9)		0	50	mV
Settling Time (Note 4)		To within 100 mV , VDHV_ $=+5 \mathrm{~V}$, VDLV_ = OV (Note 10)		0.25	1	ns
		To within 50 mV , VDHV_ $=+3 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}$ (Note 10)		0.25	1	
		To within $25 \mathrm{mV}, \mathrm{V}_{\mathrm{DHV}}=+0.5 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}$ (Note 10)		0.25	1	
TIMING CHARACTERISTICS (Notes 7, 11)						
Propagation Delay, Data to Output		VDHV_ = +3V, $\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}$ (Note 12)	0.6	1.0	1.4	ns
Propagation Delay Match, tLH vs. thL		(Note 4)		± 40	± 80	ps
Propagation Delay Match, Drivers Within Package		Same edge		40		ps
Propagation Delay Temperature Coefficient		(Note 4)		1	5	ps/ ${ }^{\circ} \mathrm{C}$
Propagation Delay Change vs. Pulse Width		$V_{D H V_{-}}=+1 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, 0.85 \mathrm{~ns}$ to 24.150ns pulse width (Note 4)		± 25	± 50	ps
		$V_{D H V_{-}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V_{-}}=0 \mathrm{~V}$, 1 ns to 24 ns pulse width (Note 4)		± 35	± 60	
		$V_{D H V}=+5 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, 1.5 \mathrm{~ns}$ to 23.5 ns pulse width		± 100		
Propagation Delay Change vs. Common Mode (Note 4)		$\begin{aligned} & \text { VDHV_- }_{\text {VDLV_ }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V} \text { to }+4 \mathrm{~V} \\ & \text { (using a DC block) } \end{aligned}$		50	60	ps
		$V_{D H V}-V_{D L V}=+1 \mathrm{~V}, \mathrm{~V}_{\text {DH }}=-1 \mathrm{~V}$ to +6 V (using a DC block)		50	120	

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{C T V}=+1.2 \mathrm{~V}, C D R P_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S_{-}=00 \mathrm{~b}, \mathrm{VDGS}=\mathrm{VGND}=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay, Drive to High Impedance, High Impedance to Drive		$\mathrm{V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {dLV }}=-1 \mathrm{~V}($ Notes 4, 13)	1.5	2.1	2.8	ns
Delay Match, Drive to High Impedance vs. High Impedance to Drive		$\mathrm{V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=-1 \mathrm{~V}($ Note 14)		± 0.5		ns
Delay Match, High Impedance vs. Data				± 1.3		ns
Propagation Delay, Drive to Term, Term to Drive		(Notes 4, 15)	1.7	2.5	3.4	ns
Delay Match, Drive to Term vs, Term to Drive		$\begin{aligned} & \mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV_ }}=+1.5 \mathrm{~V}(\text { Note 16 }) \end{aligned}$		± 0.5		ns
Delay Match, Term vs. Data				± 1.5		ns
Rise and Fall Time		$+0.2 \mathrm{VP}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+0.2 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 20 \%$ to 80% (Note 17)		140		ps
		+0.2 V P-P programmed, $\mathrm{VDHV}_{-}=+0.2 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 20 \%$ to 80% (Note 18)		150		
		+1 VP -p programmed, $\mathrm{VDHV}_{-}=+1 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 10 \%$ to 90% (Notes 4, 17)	200	270	400	
		+1 VP-P programmed, VDHV_ = +1V, VDLV_ = OV, 10\% to 90% (Note 18)		350		
		+1 VP -p programmed, $\mathrm{VDHV}_{-}=+1 \mathrm{~V}$, VDLV_ = 0V, 20\% to 80\% (Notes 4, 17)	140	190	275	
		$+2 V_{P-P}$ programmed, $\mathrm{V}_{\text {DHV }}=+2 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 20 \%$ to 80% (Notes 4, 17)	230	280	400	
		+2 Vp-p programmed, $\mathrm{V}_{\text {DHV }}=+2 \mathrm{~V}$, VDLV_ = 0V, 20\% to 80\% (Note 18)		280		
		+3 VP-p programmed, $\mathrm{V}_{\mathrm{DHV}}=+3 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 10 \%$ to 90% trim condition (Note 17)	450	550	800	
		$+3 \mathrm{VP}-\mathrm{P}$ programmed, $\mathrm{VDHV}_{-}=+3 \mathrm{~V}$, VDLV_ = OV, 10\% to 90\% (Note 18)		600		
		$+5 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+5 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 10 \%$ to 90% (Notes 4, 17)	650	850	1050	
		+5 V P-p programmed, $\mathrm{V}_{\text {DHV }}=+5 \mathrm{~V}$, VDLV_ = 0V, 10\% to 90\% (Note 18)		910		

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} V_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDHV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S_{-}=00 \mathrm{~b}, \mathrm{VDGS}=\mathrm{VGND}=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $T J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Rise and Fall Time Matching (Note 17)		$+0.2 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\text {DHV }}=+0.2 \mathrm{~V}$, $V_{D L V}=0 \mathrm{~V}, 20 \%$ to 80%		± 20		ps
		$+1 V_{P-P}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+1 \mathrm{~V}$, $V_{D L V}=0 V, 10 \%$ to 90%		± 30	± 55	
		$+2 \mathrm{VP}-\mathrm{P}$ programmed, $\mathrm{VDHV}_{-}=+2 \mathrm{~V}$, $V_{D L V}=0 V, 20 \%$ to 80%		± 25	± 50	
		$+3 V_{P-P}$ programmed, $\mathrm{V}_{\mathrm{DHV}}^{-}=3 \mathrm{~V}$, $V_{D L V}=0 V, 10 \%$ to 90%		± 40	± 100	
		+5 V P-P programmed, $\mathrm{V}_{\text {DHV }}=+5 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 10 \%$ to 90%		± 30		
Slew Rate, Relative to SC1 = SC0 $=0$		$\begin{aligned} & \text { SC1 }=0, S C 0=1, V_{D H V}=+3 V \\ & V_{D L V}=0 V, 20 \% \text { to } 80 \% \end{aligned}$		75		\%
		$\begin{aligned} & \text { SC1 }=1, S C 0=0, V_{D H V}=+3 V \\ & V_{D L V}=0 V, 20 \% \text { to } 80 \% \end{aligned}$		50		
		$\begin{aligned} & \mathrm{SC1}=1, \mathrm{SC0}=1, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DLV_ }}=0 \mathrm{~V}, 20 \% \text { to } 80 \% \end{aligned}$		25		
Minimum Pulse Width (Positive or Negative)		$+0.2 \mathrm{VP-P}$ programmed, $\mathrm{VDHV}_{-}=+0.2 \mathrm{~V}$, VDLV_ = OV (Note 19)		400		ps
		$+1 V_{P-P}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1 \mathrm{~V}$, VDLV_ = OV (Notes 4, 19)		475	610	
		+1 VP-P programmed, VDHV_ = +1V, VDLV_ $=0 \mathrm{~V}$; output reaches at least 90% of its nominal DC output level (Note 4)		390	525	
		+2 VP-p programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+2 \mathrm{~V}$, VDLV_ = OV (Notes 4, 19)		665	833	
		$+3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+3 \mathrm{~V}$, VDLV_ = OV (Notes 4, 19)		800	1000	
		$+5 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\text {DHV }}=+5 \mathrm{~V}$, VDLV_ = OV (Note 19)		1300		

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{C T V}=+1.2 \mathrm{~V}, C D R P_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=$ VGND $=$ VGNDDAC $=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Rate		$+0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ programmed, $\mathrm{V}_{\text {DHV }}=+0.2 \mathrm{~V}$, VDLV_ = OV (Note 20)		2500		Mbps
		$+1 \mathrm{VP}-\mathrm{P}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1 \mathrm{~V}$, VDLV_ = OV (Notes 4, 20)	1650	2100		
		$+1 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\text {DHV }}=+1 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}$; output reaches at least 90% of its nominal DC output level (Note 4)	1750	2570		
		+2 V P-P programmed, $\mathrm{V}_{\mathrm{DHV}}=+2 \mathrm{~V}$, VDLV_ = OV (Notes 4, 20)	1200			
		+3 VP-P programmed, VDHV_ $=+3 \mathrm{~V}$, VDLV_ = OV (Notes 4, 20)	1000			
		$\begin{aligned} & +5 \mathrm{VP}_{\mathrm{P}} \mathrm{P} \text { programmed, } \mathrm{VDHV}_{\mathrm{D}}=+5 \mathrm{~V} \text {, } \\ & \text { VDLV_ }=0 \mathrm{~V} \text { (Note 20) } \end{aligned}$		900		
Rise and Fall Time, Drive to Term		$V_{D H V}=+3 \mathrm{~V}, V_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}$; measured 10% to 90% of waveform (Note 21)	250	700	1300	ps
Rise and Fall Time, Term to Drive		$\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}$; measured 10% to 90% of waveform (Note 21)	400	550	800	ps
COMPARATOR						
COMPARATOR DC CHARACTERISTICS (Note 22)						
Input-Voltage Range			-2.2		± 6.2	V
Differential Input Voltage		VDUT_ - VCH_, VDUT_ - VCL_			± 8.4	V
Input Offset Voltage		V DUT_ = +2V (Note 23)		± 1	± 5	mV
Input-Voltage Temperature Coefficient		(Notes 23, 24)		± 50		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common-Mode Rejection	CMRR	VDUT_ $=-2 \mathrm{~V},+6 \mathrm{~V}$ (Notes 23, 25)	45	50		dB
Linearity Error		$\begin{aligned} & -0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V}, \mathrm{~V}_{\text {DUT }}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \\ & \text { (Notes } 23,26 \text {) } \end{aligned}$		± 1	± 5	mV
		$\begin{aligned} & -1.75 \mathrm{~V} \text { to }+5.125 \mathrm{~V} \text {, VDUT_ - } 1.75 \mathrm{~V} \text { to } 5.125 \mathrm{~V} \\ & (\text { Notes } 23,26) \end{aligned}$			± 8	
		$\begin{array}{\|l} -2 \mathrm{~V} \text { to }+6 \mathrm{~V} \text {, } \mathrm{V}_{\text {DUT_ }}=-2 \mathrm{~V},+6 \mathrm{~V} \\ (\text { Notes } 23,26) \end{array}$		± 2	± 10	
		Full range, $\mathrm{V}_{\text {DUT }}=-2.2 \mathrm{~V},+6.2 \mathrm{~V}$ (Notes 23, 26)		± 2		
Power-Supply Rejection	PSRR	VDUT_ = -2V and +6V (Notes 23, 27)	45	50		dB

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DH}} \mathrm{V}_{-}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LDHV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}^{-}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{VG} \mathrm{V} D=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $T J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Hysteresis		HYST2 $=0$, HYST1 $=0$, HYST0 $=0$			0		mV
		HYST2 $=0$, HYST1 $=0$, HYSTO $=1$			2		
		HYST2 $=0$, HYST1 $=1$, HYSTO $=0$			4		
		HYST2 $=0$, HYST1 $=1$, HYST0 $=1$			6		
		HYST2 $=1$, HYST1 $=0$, HYSTO $=0$			8		
		HYST2 $=1$, HYST1 $=0$, HYSTO $=1$			10		
		HYST2 $=1$, HYST1 $=1$, HYSTO $=0$			12		
		HYST2 $=1$, HYST1 $=1$, HYSTO $=1$			15		
COMPARATOR AC CHARACTERISTICS (Notes 22, 28, 29, 30)							
Effective Comparator Bandwidth, Term Mode		(Notes 4, 31)		1.85	3.2		GHz
		(Note 32)			2.3		
Effective Comparator Bandwidth, High-Impedance Mode		(Note 31)			620		MHz
		(Note 33)			620		
Minimum Pulse Width		(Notes 4, 34)			0.5	0.65	ns
Propagation Delay				0.5	0.9	1.5	ns
Propagation Delay Temperature Coefficient					2.1		ps/ ${ }^{\circ} \mathrm{C}$
Propagation Delay Match, High/Low vs. Low/High		Absolute value of delta for each comparator (Note 4)			± 10	± 60	ps
PROPAGATION DELAY DISPERSIONS							
Propagation Delay Dispersion vs. Common-Mode Input		V CM $=-1.9 \mathrm{~V}$ to $+5.9 \mathrm{~V}($ Notes 4, 35)			± 40	± 55	ps
Propagation Delay Dispersion vs. Overdrive		$\begin{aligned} & \text { VOD }=50 \mathrm{mV} \text { to } \\ & +0.5 \mathrm{~V}, \mathrm{~V}_{\text {DUT_ }}=0 \text { to } \\ & 1 \mathrm{~V}, 2 \mathrm{~ns} / \mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CX}}=+0.5 \mathrm{~V} \text { to } \\ & +0.95 \mathrm{~V} \end{aligned}$		± 40		ps
			$\begin{aligned} & \mathrm{V}_{\mathrm{CX}}=+0.5 \mathrm{~V} \text { to } \\ & +0.05 \mathrm{~V} \end{aligned}$		± 40		
Propagation Delay Dispersion vs. Duty Cycle (Note 4)		0.6 ns to 24.4 ns pulse width, relative to 12.5ns pulse width (Note 36)			± 25	± 40	ps
Propagation Delay Dispersion vs. Slew Rate (Note 4)		$1 \mathrm{~V} / \mathrm{ns}$ to $6 \mathrm{~V} / \mathrm{ns}$, relative to $3.5 \mathrm{~V} / \mathrm{ns}$			± 30	± 40	ps
Waveform Tracking (Note 4)		Driver in term mode, peak-to-peak within 100 mV < $\mathrm{VcX}<900 \mathrm{mV}$ window (Note 37)			50	80	ps
		Driver in term mode, peak-to-peak within 50 mV < VCX < 950mV window (Note 37)			80	130	
High-Impedance Waveform Tracking (Note 4)		Driver in high-Z, peak-to-peak within 100 mV $<\mathrm{V}_{\mathrm{CX}}<900 \mathrm{mV}$ window (Note 37)			150	200	ps

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CP}} \mathrm{CH} \mathrm{V}_{-}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV_ }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{G} \mathrm{CD}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{T} J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Cable-Droop Compensation Range, Fast Time Constant		+1 V swing, rise/fall time $=300 \mathrm{ps}$, CDRP_S = 000		0		\%
		+1 V swing, rise/fall time $=300 \mathrm{ps}$, CDRP_S = 111		20		
Cable-Droop Compensation Range, Slow Time Constant		+1 V swing, rise/fall time $=300 \mathrm{ps}$, CDRP_L = 000		0		\%
		+1 V swing, rise/fall time $=300 \mathrm{ps}$, CDRP_L = 111		20		
Comparator Cable-Droop Compensation, Short Time Constant				80		ps
Comparator Cable-Droop Compensation, Long Time Constant				1.3		ns
Input Slew Rate with Cable Compensation Enabled		VDUT_ = 0 to 1V (Note 32)		6.0		V/ns
LOGIC OUTPUTS CH_, NCH_, CL_, NCL_ (Note 38)						
Termination Voltage CTV_		External termination voltage (Note 39)	0	1.2	3.5	V
CTV_ Current		Without external 50Ω resistors		48	56	mA
Output High Voltage		With external 50Ω resistors	$\begin{gathered} \text { VCTV }_{-} \\ -0.1 \end{gathered}$	$\begin{aligned} & \mathrm{VCTV}_{2} \\ & -0.02 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {CTV }}^{-} \\ & +0.05 \end{aligned}$	V
Output Low Voltage		With external 50Ω resistors	$\begin{aligned} & \text { VCTV }_{-} \\ & -0.45 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\text {CTV }} \\ -0.3 \end{gathered}$	$\begin{aligned} & \mathrm{VCTV}_{-} \\ & -0.25 \end{aligned}$	V
Output-Voltage Swing		With external 50Ω resistors	250	300	350	mV
Output Termination Resistor		CTVO to CHO, NCHO, CLO, NCLO; CTV1 to CH1, NCH1, CL1, NCL1	47		53	Ω
Differential Rise Time		10\% to 90\% (Note 4)		210	400	ps
Differential Fall Time		10\% to 90\% (Note 4)		210	400	ps
DYNAMIC CLAMPS (always and only enabled in driver high-impedance mode)						
Functional Clamp Range, VCPHV_		$\begin{aligned} & \mathrm{I} \text { DUT_ }=-1 \mathrm{~mA}, \mathrm{~V}_{\text {CPHV }}=-0.9 \mathrm{~V} \text { and }+6.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV }}^{-}=-2 \mathrm{~V} \end{aligned}$	-0.8		6.2	V
Functional Clamp Range, VCPLV_		$\begin{aligned} & \mathrm{l}_{\mathrm{IDUT}}^{-}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CPLV }}=-2.3 \mathrm{~V} \text { and }+4.9 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPHV_ }}=+6 \mathrm{~V} \end{aligned}$	-2.2		4.8	V

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{C P L V}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{VLDHV}_{-}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{VCTV}_{-}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{VGND}=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{T}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $T J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Maximum Programmable VCPHV_		IDUT_ = OmA (Note 40)		6.7	7.0		V
Minimum Programmable VCPLV_		IDUT_ = OmA (Note 40)			-3.0	-2.7	V
Offset Voltage		$\begin{aligned} & \text { IDUT_ }_{-}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CPH}}=+2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CPLV}}^{-}= \\ & \end{aligned}$				± 10	
		$\begin{aligned} & \mathrm{IDUT}_{-}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CPLV}}^{-} \\ & \mathrm{V}_{\text {CPHV}}^{-}=+2 \mathrm{~V}, \\ & \end{aligned}$				± 10	
Power-Supply Rejection		$V_{C C}$ and $V_{E E}$ independently varied over their full range	$\begin{aligned} & \mathrm{ICLAMP}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CPHV}}=+2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {CPLV_ }}=-2 \mathrm{~V} \end{aligned}$	40			dB
			$\begin{aligned} & \mathrm{ICLAMP}^{2}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {CPLV }}=+2 \mathrm{~V}, \\ & \mathrm{VCPHV}_{-}=+6 \mathrm{~V} \end{aligned}$	40			
High Clamp Voltage Gain		$\mathrm{V}_{\text {CPHV_ }}=-0.5 \mathrm{~V},+5.75 \mathrm{~V}$, IDUT_ $=-1 \mathrm{~mA}$		0.998		1.002	V/V
Low Clamp Voltage Gain		$\mathrm{V}_{\text {CPLV }}=-1.75 \mathrm{~V},+4.5 \mathrm{~V}$, IDUT_ $=-1 \mathrm{~mA}$		0.998		1.002	V/V
Output Temperature Coefficient VCPHV_, VCPLV_		(Notes 4, 41)			± 75	± 750	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Linearity, Relative to End Points		IDUT_ $=-1 \mathrm{~mA}, \mathrm{~V}_{\text {CPHV_ }}=-0.8 \mathrm{~V}$ to +6V				± 30	
		IDUT_ $=1 \mathrm{~mA}, \mathrm{~V}_{\text {CPLV_ }}=-2 \mathrm{~V}$ to +4.8 V				± 30	
Static Output Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CPH}} \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}^{-}=-2 \mathrm{~V}, \\ & \mathrm{RL}=0 \Omega \text { to }+6 \mathrm{~V} \end{aligned}$		-120		-60	mA
		$\begin{aligned} & \mathrm{V}_{C P L V}=+5 \mathrm{~V}, \mathrm{~V}_{\text {CPHV }}=+6 \mathrm{~V}, \\ & \mathrm{RL}=0 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$		60		120	
DC Impedance, High Clamp		$\begin{aligned} & \text { IDUT_ }=-5 \mathrm{~mA} \text { and }-15 \mathrm{~mA}, \\ & \mathrm{VCPHV}_{-}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}^{-}=0 \mathrm{~V} \end{aligned}$		48		56	Ω
DC Impedance, Low Clamp		IDUT_ = 5 mA and 15 mA , $\mathrm{V}_{\mathrm{CPHV}}^{-}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPLV}}^{-}=0 \mathrm{~V}$		48		56	Ω
DC Impedance Variation, High Clamp		$\begin{aligned} & \text { IDUT_ = }-20 \mathrm{~mA} \text { and }-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {CPH }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2 \mathrm{~V}(\text { Note 42 }) \end{aligned}$			± 5		Ω
DC Impedance Variation, Low Clamp		IDUT_ $=20 \mathrm{~mA}$ and 30 mA , $\mathrm{V}_{\text {CPLV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {CPHV }}=+6 \mathrm{~V}($ Note 42 $)$			± 5		Ω
Ripple		(Note 43)			50		mV
ACTIVE LOAD							
DC ELECTRICAL CHARACTERISTICS (VCOMV $=+2 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}^{-}$= $\mathrm{VLDLV}_{-}=+5.5 \mathrm{~V}$, unless otherwise noted)							
COMV_ Voltage Range	Vcomv_			-2		+6	V

Dual DCL with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} \mathrm{~V}_{-}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV_ }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{G}} \mathrm{VD}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
COMV_ Offset Voltage	Vcomvos	IDUT_ = OA, $\mathrm{V}_{\text {COMV }}=+2 \mathrm{~V}$			± 5	mV
Differential Voltage Range		VDUT_ - VCOMV_			± 8	V
COMV_ Temperature Coefficient		(Notes 4, 41)		± 100	± 750	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
COMV_ Voltage Gain	Av	$\mathrm{VCOMV}_{-}=+0.125 \mathrm{~V}$ and +3.875 V	0.998		1.002	V/V
COMV_ Linearity Error		V COMV $=-2 \mathrm{~V}$ to +6 V , relative to end points		± 3	± 15	mV
COMV_ Output-Voltage PowerSupply Rejection RatiO	PSRRCOM	$V_{C C}$ and $V_{E E}$ independently varied over full range	40			dB
Output Resistance, Sink or Source	Ro	$\begin{aligned} & \text { ISRC }=\text { ISNK }=20 \mathrm{~mA}, \text { VDUT }_{-}=+2.5 \mathrm{~V},+6 \mathrm{~V} \\ & \text { with } \mathrm{VCOMV}_{-}=-2 \mathrm{~V} \text { or VDUT_ }=-2 \mathrm{~V},+1.5 \mathrm{~V} \\ & \text { with } \mathrm{VCOMV}_{-}=+6 \mathrm{~V} \end{aligned}$	30			$\mathrm{k} \Omega$
		```ISRC = ISNK = 1mA, VDUT_ = +2.5V,+6V with VCOMV = -2V or VDUT_ = -2V, +1.5V with VCOMV = +6V```	500			
Output Resistance, Linear Region	Ro	$\begin{aligned} & \text { IDUT_ = } \pm 14.25 \mathrm{~mA}, \text { ISRC }=\text { ISNK }=15 \mathrm{~mA}, \\ & \text { VCOMV }_{-}=+1.5 \mathrm{~V}(\text { Note } 44) \end{aligned}$		22	27	$\Omega$
Dead Band		ISRC $=$ ISNK $=15 \mathrm{~mA}, 80 \%$ commutation		450		mV
		ISRC $=$ ISNK $=15 \mathrm{~mA}, 95 \%$ ISRC to $95 \%$ ISNK		625	700	
SOURCE CURRENT (VDUT_ $=-1.5 \mathrm{~V}$, $\mathrm{VCOMV}_{-}=+5.5 \mathrm{~V}$, VLDLV_ $=-0.5 \mathrm{~V}$, $\mathrm{VLDHV}_{-}=+5.5 \mathrm{~V}$, unless otherwise noted)						
Source Current Output Range	ISRC	VLDHV_ $=0$ to +6V	0		20	mA
Source Current Offset		ISRC $=1 \mathrm{~mA}$	-20		+20	$\mu \mathrm{A}$
Source Current Programming Gain		ISRC $=1 \mathrm{~mA}, 18 \mathrm{~mA}$	3.326	3.333	3.34	mA/V
Source Current Temperature Coefficient		$\mathrm{ISRC}=10 \mathrm{~mA}$		-10		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Source Current Power-Supply Rejection		$V_{C C}$ and $V_{E E}$ independently varied over full range			$\pm 90$	$\mu \mathrm{A} / \mathrm{V}$
Source Current Linearity		ISRC $=0.33 \mathrm{~mA}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 18 \mathrm{~mA}$, and 20 mA relative to 2 -point calibration at 1 mA and 18 mA			$\pm 60$	$\mu \mathrm{A}$
SINK CURRENT (VDUT_ $=+5.5 \mathrm{~V}, \mathrm{VCOMV}_{-}=-1.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=-0.5 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}^{-}=+5.5 \mathrm{~V}$, unless otherwise noted)						
Sink Current Output Range	ISNK	VLDLV_ $=0$ to +6 V	0		20	mA
Sink Current Offset		ISNK $=1 \mathrm{~mA}$	-20		+20	$\mu \mathrm{A}$

## Dual DCL with Integrated Level Setters

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V} \mathrm{V}_{-}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $T J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Sink Current Programming Gain		ISNK $=1 \mathrm{~mA}, 18 \mathrm{~mA}$	3.326	3.333	3.34	mA/V
Sink Current Temperature Coefficient		$\mathrm{ISNK}=10 \mathrm{~mA}$		10		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Sink Current Power-Supply Rejection Ratio		$V_{C C}$ and $V_{E E}$ independently varied over full range			$\pm 60$	$\mu \mathrm{A} / \mathrm{N}$
Sink Linearity		ISNK $=0.33 \mathrm{~mA}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 18 \mathrm{~mA}$, and 20 mA relative to 2 -point calibration at 1 mA and 18 mA			$\pm 60$	$\mu \mathrm{A}$
AC ELECTRICAL CHARACTERISTICS ( $\mathrm{Z}_{\mathrm{L}}=50 \Omega$ to GND, $\mathrm{V}_{\text {LDHV }}=\mathrm{V}_{\text {LDLV }}=+6 \mathrm{~V}, \mathrm{TMSEL}=$ LDDIS $=$ LDCAL $=0$ )						
Transition Time to/from Inhibit through RCV_ Input (from Load to Drive)		Measured from $50 \%$ crossing of RCV_ to $10 \%$ level of output waveform;   $V_{C O M V}=-1.5 \mathrm{~V}$ and +1.5 V		2.5		ns
Transition Time to/from Inhibit through RCV_ Input (from Drive to Load)		Measured from $50 \%$ crossing of RCV_ to $10 \%$ level of output waveform;   $V_{C O M V}=-1.5 \mathrm{~V}$ and +1.5 V		4.5		ns
Spike During Enable/Disable Time (Note 4)		$50 \Omega$ load to ground, $\operatorname{ISRC}=\mathrm{ISNK}=20 \mathrm{~mA}$, VCOMV_ $=0 \mathrm{~V}$		200	300	mV
TEMPERATURE MONITOR (TSMUXO = 1)						
Nominal Voltage		$\mathrm{TJ}=+70^{\circ} \mathrm{C}, \mathrm{RL} \geq 10 \mathrm{M} \Omega$		3.43		V
Nominal Voltage Variation		$\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}, R \mathrm{~L} \geq 10 \mathrm{M} \Omega,$ one standard deviation		$\pm 50$		mV
Temperature Coefficient				10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Resistance				22		$\mathrm{k} \Omega$
TEMPERATURE COMPARATOR/ALARM						
Comparator Hysteresis				0		${ }^{\circ} \mathrm{C}$
Alarm Threshold				125		${ }^{\circ} \mathrm{C}$
TEMP Leakage Current, Disabled		TSMUXO $=0$, tested at $\mathrm{V}_{\text {FORCE }}=4 \mathrm{~V}$			1	$\mu \mathrm{A}$
Temperature Alarm Accuracy				$\pm 5$		${ }^{\circ} \mathrm{C}$
DIGITAL I/O						
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_)						
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	Functional test	+0.2		3.5	V
Input Low Voltage	VIL	Functional test	-0.2		3.1	V
Differential Input Voltage		Functional test	$\pm 0.15$		$\pm 1.0$	V

## Dual DCL with Integrated Level Setters

## ELECTRICAL CHARACTERISTICS（continued）

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$ ， $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{V}_{\mathrm{G} N D}=\mathrm{VGNDDAC}^{\prime}=0 \mathrm{~V}$ ，specifications apply after calibration，level－setter errors included．The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$ ；specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data，unless otherwise noted．Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Differential Termination Resistance		Differential termination between DATA」 NDATA＿and RCV＿／NRCV＿； tested at $\pm 4 \mathrm{~mA}$	96	104	$\Omega$
SINGLE－ENDED INPUTS（ $\overline{\mathbf{C S}}, \mathbf{S C L K}$ ，DIN，$\overline{\mathrm{RST}}, \overline{\text { LOAD }}, \overline{\text { LLEAKP＿）}}$					
Input High			$\begin{gathered} 2 / 3 \\ (\mathrm{VDD}) \end{gathered}$	VDD	V
Input Low			－0．1	$\begin{gathered} 1 / 3 \\ \left(V_{D D}\right) \end{gathered}$	V
Input Bias Current				$\pm 25$	$\mu \mathrm{A}$
SINGLE－ENDED OUTPUT（DOUT）					
High Output	VOH	$\mathrm{IOH}=25 \mu \mathrm{~A}$	$\begin{gathered} \text { VDD } \\ -0.15 \end{gathered}$	$\begin{aligned} & \text { VDD } \\ & +0.1 \end{aligned}$	V
Low Output	VoL	$\mathrm{IOL}=-25 \mu \mathrm{~A}$	$\begin{gathered} \text { VDGND } \\ -0.01 \end{gathered}$	$\begin{aligned} & \text { VDGND } \end{aligned}$	V
SINGLE－ENDED OPEN－COLLECTOR OUTPUTS（OVALARM，TALARM）（with external 1k $\mathbf{1}$ to $\mathrm{V}_{\mathrm{DD}}$ ）					
Vvoc Voltage Range			$\begin{gathered} \mathrm{VDD} \\ -0.3 \end{gathered}$	$\begin{gathered} V_{D D} \\ +0.3 \end{gathered}$	V
Low Output	VoL		VDGND	Vvoc $-1$	V
SERIAL－PORT TIMING					
SCLK Frequency				50	MHz
SCLK Pulse－Width High	tch		10		ns
SCLK Pulse－Width Low	tCL		10		ns
$\overline{\mathrm{CS}}$ Low to SCLK High Setup	tcsso		4.25		ns
SCLK High to $\overline{\mathrm{CS}}$ Low Hold	tCSHO		4.25		ns
$\overline{\overline{C S}}$ High to SCLK High Setup	tCSS1		4.25		ns
SCLK High to $\overline{\mathrm{CS}}$ High Hold	tCSH1		4.25		ns
DIN to SCLK High Setup	tDS		4.25		ns
DIN to SCLK High Hold	tDH		4.25		ns
$\overline{\overline{C S}}$ High Pulse Width	tcswh		40		ns
LOAD Low Pulse Width	tLDW		20		ns
$\overline{\mathrm{RST}}$ Low Pulse Width	tRST		20		ns
$\overline{\mathrm{CS}}$ High to $\overline{\text { LOAD Low Hold }}$	tCSHLD		50		ns
SCLK to DOUT Delay	tDO			62.4	ns
COMMON FUNCTIONS（ $\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$ ，unless otherwise noted）					
Operating Voltage Range			－2．2	＋6．2	V

## Dual DCL with Integrated Level Setters

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DH}} \mathrm{V}_{-}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H V}=\right.$
 $S C_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}$ GNDDAC $=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
High-Impedance Leakage	IDUT_	VDUT_ $=0 \mathrm{~V},+1.5 \mathrm{~V},+3 \mathrm{~V}$			$\pm 2$	$\mu \mathrm{A}$	
		$\mathrm{V}_{C L}=\mathrm{V}_{\text {CH_ }}=+6 \mathrm{~V}$, $\mathrm{V}_{\text {DUT }}=-2 \mathrm{~V}$			$\pm 3$		
		$\mathrm{V}_{C L}=\mathrm{V}_{\text {CH_ }}=-2 \mathrm{~V}$, V $\mathrm{V}_{\text {DUT }}=+6 \mathrm{~V}$			$\pm 3$		
Low-Leakage Mode	IDUT_	VDUT_ $=0 \mathrm{~V},+1.5 \mathrm{~V},+3 \mathrm{~V}, \mathrm{TJ}<+90^{\circ} \mathrm{C}$			$\pm 10$	nA	
		$\begin{aligned} & \mathrm{V}_{C L}=\mathrm{V}_{C H}=6 \mathrm{~V}, \text { VDUT }_{-}=-2 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}<+90^{\circ} \mathrm{C} \end{aligned}$			$\pm 10$		
		$\begin{aligned} & \mathrm{VCL}_{-}=\mathrm{V}_{C H}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DUT }}=+6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}<+90^{\circ} \mathrm{C} \end{aligned}$			$\pm 10$		
Combined Capacitance		Driver in terminate mode (Note 4)		2.5	3	pF	
		Driver in high-Z		5			
Low-Leakage Enable Time		LLEAKP_low to IDUT_ specification		20		$\mu \mathrm{s}$	
Low-Leakage Disable Time		LLEAKP_ high to normal operation		20		$\mu \mathrm{s}$	
Low-Leakage Spike, VDLV_/Leakage		VDLV_ $=0 V, Z L=10 M \Omega \\| 8 p F$ to GND (Note 4)	-200		+600	mV	
Low-Leakage Spike, VDHV_/Leakage		VDHV_ = +2V, ZL = 10M $\Omega \\| 8 p F$ to GND (Note 4)	-200		+350	mV	
Low-Leakage Spike, High Impedance/Leakage		$R \mathrm{~L}=50 \Omega$ to GND (Note 4)	-125		+350	mV	
DUT_OVERVOLTAGE ALARM							
Maximum Programmable $\mathrm{V}_{\mathrm{CPH}}$			6.7	7		V	
Minimum Programmable VCPL_				-3	-2.7	V	
Voltage Accuracy		$\mathrm{V}_{\text {CPH }} \mathrm{V}_{-}=6.7 \mathrm{~V}$ and $\mathrm{VCPLV}_{-}=-2.7 \mathrm{~V}$			150	mV	
Will-Operate Current				$\pm 6$		mA	
Comparator Delay		With 50mV overdrive on DUT_ signal		390		ns	
Comparator Hysteresis				10		mV	
POWER SUPPLIES							
Positive Supply	Vcc		9	9.25	10	V	
Negative Supply	VEE		-5.35	-5.25	-4.75	V	
Logic Supply	VDD		2.3	3.3	3.6	V	
Positive Supply	ICC	(Note 45)		145	160	mA	
Negative Supply	IEE	(Note 45)		235	260	mA	
Logic Supply	IDD	(Note 45)		8	10	mA	
Power Dissipation		$V_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}$,   $V_{D D}=+3.3 \mathrm{~V}$, load disabled		1.33	1.47	W/Ch	

## Dual DCL with Integrated Level Setters

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L} \mathrm{~V}_{-}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} \mathrm{~V}_{-}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV_ }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{G}} \mathrm{VD}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power Dissipation, Load Enabled		$\begin{aligned} & \mathrm{VCC}=+9.25 \mathrm{~V}, \mathrm{VEE}=-5.25 \mathrm{~V}, \mathrm{VDD}=+3.3 \mathrm{~V} \text {; } \\ & \text { load enabled; ISRC }=\mathrm{I} \text { SNK }=20 \mathrm{~mA} ; \mathrm{VCOMV}_{-} \\ & =+1.5 \mathrm{~V} \text {; VDUT_ held at } 0 \mathrm{~V} \text { by short to GND } \\ & \hline \end{aligned}$		1.52	1.7	W/Ch
ANALOG INPUTS (DUT_ GROUND SENSE)						
Input Range	VDGS	Relative to GNDDAC_, under the full DAC range (Note 46)	-250		+250	mV
		Relative to GNDDAC_, under the limited DAC range of -1.5 V to +5.5 V (Note 46)	-750		+750	mV
Input Bias Current		VDGS = OV	-10		+10	$\mu \mathrm{A}$
Gain		Levels output	0.98	1	1.02	V/V
2.5V REFERENCE						
Nominal Voltage	VREF			2.5		V
Input Bias Current			-10		10	$\mu \mathrm{A}$
LEVEL DACS						
Settling Time		Full scale transition to within 5mV		1		$\mu \mathrm{s}$
Differential Nonlinearity (Tested at Major Carries)		All levels not shown below; $1 \mathrm{LSB}=610 \mu \mathrm{~V}$			$\pm 1$	mV
		VLDHV_, VLDLV_			$\pm 5$	$\mu \mathrm{A}$

Note 2: $V_{D H V}$, $V_{D L V}$, and $V_{\text {DTV_ }}$ levels are calibrated for gain at +0.125 V and +3.875 V and are calibrated for offset at +0.125 V ; relative to straight line between +0.125 V and +3.875 V .
Note 3: Change in level over operating range. Includes both gain and offset temperature effects. Simulated over entire operating range. Verified at worst-case points, which are at the endpoints VDHV_ - VDLV_ $\geq 200 \mathrm{mV}$
Note 4: Guaranteed by design and characterization.
Note 5: DATA $_{-}=H, V_{D H V}=+3 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}$, IOUT $= \pm 30 \mathrm{~mA}$. Nominal target value is $48 \Omega$.
Note 6: Resistance measurements are made using $\pm 2.5 \mathrm{~mA}$ current changes in the loading instrument about the noted value. Absolute value of the difference in measured resistance over the specified range is tested separately for each current polarity. Test conditions are at IDUT_ $= \pm 1 \mathrm{~mA}, \pm 12 \mathrm{~mA}$, and $\pm 40 \mathrm{~mA}$, respectively.
Note 7: Rise time of the differential inputs DĀTA_ and RCV_ is $150 \mathrm{ps}(10 \%$ to $90 \%$ ). SC1 $=$ SCO $=0,40 \mathrm{MHz}$, unless otherwise noted.
Note 8: Current supplied for a minimum of 10 ns . Verified to be greater than or equal to the DC drive current by design and characterization.
Note 9: $V_{D T V_{-}}=+1 \mathrm{~V}, \mathrm{R}_{S}=50 \Omega$. External signal driven into T-line to produce a 0 to +2 V edge at the comparator input with a 250 ps rise time ( $10 \%$ to $90 \%$ ). Measurement point is at comparator input.
Note 10: Measured from the $90 \%$ point of the driver output (relative to its final value) to the waveform settling to within the specified limit.
Note 11: Propagation delays are measured from the crossing point of the differential input signals to the $50 \%$ point of expected output swing.
Note 12: Average of the two measurements for propagation delay, data to output (tLH and tHL).
Note 13: Average of the four measurements in propagation delay, drive to high-Z, and high-Z to drive (tLZ, thz, tZL, tZH). Measured from crossing point of RCV_/NRCV_ to $50 \%$ point of the output waveform.
Note 14: Four measurements are made: $V_{D H V}$ to high-Z, VDLV_ to high-Z, high-Z to $V_{D H V_{-}}$, and high-Z to $V_{D L V}$ (tLZ, thZ, tZL, tzH). The worst-case difference is reported.
Note 15: Average of the four measurements in propagation delay, drive to term, and term to drive (tLT, thT, tTL, tTH). Measured from crossing point of RCV_/NRCV_ to $50 \%$ point of the output waveform.

# Dual DCL with Integrated Level Setters 

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CP}} \mathrm{CH} \mathrm{V}_{-}=\right.$ $+6.7 \mathrm{~V}, \mathrm{~V}_{\text {CPLV }}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{VLDHV}_{-}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{~V}_{C T V}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}$, $S C_{-}=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{VGND}=\mathrm{VGNDDAC}^{\prime}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{T} J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)
Note 16: Four measurements are made: VDHV_ to VDTV_, VDLV_ to VDTV_, VDTV_ to VDHV_, and VDTV_ to VDLV_ (tLT, tht, tTL, tth). The worst-case difference is reported.
Note 17: Cable-droop compensation disabled. Measured as close to DUT_ as possible using a high-bandwidth cable.
Note 18: Cable-droop compensation enabled. Measured at the end of a 2m RG174 cable.
Note 19: At this pulse width, the output reaches at least $95 \%$ of its nominal (DC) amplitude. The pulse width is measured at the DATA_ (input) pins.
Note 20: Maximum data rate in transitions/second. A waveform that reaches at least $95 \%$ of its programmed amplitude can be generated at one-half of this frequency.
Note 21: This specification is indicative of switching speed from VDHV_ or VDLV_ to VDTV_ and VDTV_ to VDHV_ or VDLV_ when VDLV_< VDTV_< VDHV_. If VDTV_< VDLV_ or VDTV_> VDHV_, the switching speed is degraded by roughly a factor of 3.
Note 22: Both high and low comparators are tested for all tests.
Note 23: Measured by using a servo to locate comparator thresholds.
Note 24: Change in offset at any voltage over operating range. Includes both gain (CMRR) and offset temperature effects. Simulated over entire operating range. Verified at worst-case points, which are at the endpoints.
Note 25: Change in offset voltage over input range.
Note 26: $\mathrm{V}_{\mathrm{CHV}}$ and $\mathrm{V}_{\text {CLV }}$ levels are calibrated for gain at +0.125 V and +3.875 V and are calibrated for offset at +2 V . Relative to straight line between +0.125 V and +3.875 V .
Note 27: Change in offset voltage with power supplies independently varied over their full range. Both high and low comparators are tested.
Note 28: All propagation delays are measured from the VDUT_ crossing to the differential output crossing.
Note 29: Characterization is done with $50 \Omega$ to ground at the end of a transmission line with a round-trip delay greater than 4 ns .
Note 30: $40 \mathrm{MHz}, 0$ to +1 V input to comparator, $\mathrm{V}_{C X}$ reference $=+0.5 \mathrm{~V}, 50 \%$ duty cycle, 250 ps rise/fall time, $\mathrm{ZS}=50 \Omega$, Driver in term mode with VDTV_ $=+0.5 \mathrm{~V}$, unless otherwise noted. Hysteresis is disabled.
Note 31: Input rise/fall time $=150$ ps. Cable-droop compensation disabled.
Note 32: Input rise/fall time = 150ps. Cable-droop compensation enabled. Signal applied at beginning of 2 m RG174 cable with compensation tuned for the cable.
Note 33: Input rise/fall time = 150ps. Cable-droop compensation enabled. Signal applied at beginning of 2 m RG174 cable with compensation tuned for the cable. Tested with both +1 V and +5 V input swings.
Note 34: At this pulse width, the output reaches at least $90 \%$ of its nominal peak-to-peak swing. The pulse width is measured at the crossing points of the differential outputs. 250ps rise/fall time.
Note 35: VDUT_ $=200 \mathrm{mV}$ P-P, rise/fall time $=150 \mathrm{ps}$, overdrive $=100 \mathrm{mV}$, VDTV_ $=\mathrm{V}_{\mathrm{CM}}$.
Note 36: Input rise/fall time = 250ps. Cable-droop compensation disabled.
Note 37: Input to comparator is 40 MHz at 0 to $+1 \mathrm{~V}, 50 \%$ duty cycle, 1 ns rise/fall time.
Note 38: Unless otherwise noted, comparator outputs are terminated with $50 \Omega$ to +1.2 V and $\mathrm{CTV}_{-}=+1.2 \mathrm{~V}$.
Note 39: The min/max value of CTV_ specifications are guaranteed by simulation.
Note 40: This specification is implicitly tested by meeting the high-impedance leakage specification IDUT_ (VCLV $=\mathrm{V}_{\mathrm{CHV}}^{-}=+6 \mathrm{~V}$, VDUT_ $=+2 \mathrm{~V}$ ), and IDUT_ ( $\mathrm{V}_{C L V}=\mathrm{V}_{C H} \mathrm{~V}_{-}=-2 \mathrm{~V}$, $\mathrm{V}_{\text {DUT_ }}=+6 \mathrm{~V}$ ).
Note 41: Change in level over operating range. Includes both gain and offset temperature effects. Simulated over entire operating range. Verified at worst-case points.
Note 42: Resistance measurements are made using $\pm 2.5 \mathrm{~mA}$ current changes in the loading instrument about the noted value Absolute value of the difference in measured resistance over the specified range, tested separately for each current polarity.
Note 43: Ripple in the DUT_ signal after one round-trip delay. Stimulus is 0 to $+3 \mathrm{~V},+2.5 \mathrm{~V} / \mathrm{ns}$ square wave from far end of 3 ns transmission line with $R S=25 \Omega$, clamps set to 0 and $+3 V$.
Note 44: Verified by dead-band test.
Note 45: Typical values are at $\mathrm{V} C \mathrm{C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}$. Production tests are performed with worst-case supply conditions for each specification. Supply conditions are either min $V_{C C}$ and $\max V_{E E}$, or max $V_{C C}$ and min $V_{E E}$. Some tests may require both conditions.
Note 46: Increasing DGS beyond OV requires a proportional increase in the minimum supply levels. Specified ranges for all levels except VLDHV_, VLDLV_ are defined with respect to DGS.

## Dual DCL with Integrated Level Setters

## Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}}-=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+6.7 \mathrm{~V}\right.$, $V_{C P L V}=-2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMV }}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}} \mathrm{VV}_{-}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}, \mathrm{SC}_{-}$ $=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{V}$ GND $=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.)


## Dual DCL with Integrated Level Setters

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} \mathrm{~V}_{-}=+6.7 \mathrm{~V}\right.$, $\mathrm{VCPLV}_{-}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{VLDHV}_{-}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{~V}_{C T V}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}, \mathrm{SC}_{-}$ $=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{VGND}=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.)



DRIVER GAIN ERROR
vs. TEMPERATURE


CROSSTALK TO DUT
FROM DHV_ WITH DUT $=$ - DLV


CROSSTALK TO DUT
FROM DLV_ WITH DUT_ = DTV_


DRIVER OFFSET
vs. TEMPERATURE


CROSSTALK TO DUT
FROM DTV_ WITH DUT_= ${ }^{-}$


CROSSTALK TO DUT FROM DHV_ WITH DUT_= DTV


COMPARATOR OFFSET vs. COMMON-MODE VOLTAGE


## Dual DCL with Integrated Level Setters

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CLV}}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} \mathrm{~V}_{-}=+6.7 \mathrm{~V}\right.$, $\mathrm{V}_{\text {CPLV }}^{-}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{~V}_{C T V}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}, \mathrm{SC}_{-}$ $=00 \mathrm{~b}, \mathrm{~V}_{\text {DGS }}=\mathrm{V}_{\text {GND }}=\overline{\mathrm{V}}_{\text {GNDDAC }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{T}_{\mathrm{J}}=+70^{\circ} \mathrm{C}^{\circ}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.)



COMPARATOR DIFFERENTIAL OUTPUT REPONSE

$t=1 n s / d i v$
vs. INPUT SLEW RATE


COMPARATOR RESPONSE TO HIGH SLEW-RATE OVERDRIVE


CLAMP RESPONSE AT COMPARATOR INPUT

$t=10 \mathrm{~ns} / \mathrm{div}$


COMPARATOR OFFSET
vs. TEMPERATURE

active load current vs. voltage

$\qquad$

## Dual DCL with Integrated Level Setters

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H} \mathrm{~V}_{-}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} \mathrm{~V}_{-}=+6.7 \mathrm{~V}\right.$, $V_{C P L V}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{VLDHV}_{-}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{VCTV}_{-}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}, \mathrm{SC}_{-}$ $=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{T}_{\mathrm{J}}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.)


## Dual DCL with Integrated Level Setters

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{C L V}=+1 \mathrm{~V}, \mathrm{~V}_{C P H} V_{-}=+6.7 \mathrm{~V}\right.$, $\mathrm{V}_{C P L V}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{~V}_{2} D H V_{-}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{VCTV}_{-}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}, \mathrm{SC}_{-}$ $=00 \mathrm{~b}, \mathrm{~V}$ DGS $=\mathrm{VGND}=\mathrm{VGNDDAC}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.)


A: $V_{\text {DUT_ }}=V_{\text {DTV_ }}=+1.5 \mathrm{~V}$, CHV__ $^{=}=$CLV_ $_{-}=0$, ISRC $=I_{S N K}=0, R_{L}=100 \mathrm{k} \Omega, C_{L}=0.5 \mathrm{pF}$
B: SAME AS A EXCEPT DRIVER DISABLED HIGH-Z AND LOAD ENABLED.
C: SAME AS B EXCEPT ISRC = ISNK = 20mA.
D: SAME AS C EXCEPT LOW-LEAKAGE MODE ASSERTED


A: $V_{\text {DUT_ }}=V_{\text {DTV_ }}=+1.5 \mathrm{~V}$, CHV $_{-}=$CLV_ $_{-}=0$,
$I_{S R C}=I_{S N K}=0, R_{L}=10 \mathrm{k} \Omega, C_{L}=0.5 \mathrm{pF}$.
B: SAME AS A EXCEPT DRIVER DISABLED HIGH-Z AND LOAD ENABLED.
C: SAME AS B EXCEPT ISRC = ISNK = 20 mA .
D: SAME AS C EXCEPT LOW-LEAKAGE MODE ASSERTED.

SUPPLY CURRENT Icc vs. TEMPERATURE

$V_{\text {DUT_ }}=V_{\text {DTV }}=+1.5 \mathrm{~V}$, CHV $_{-}=C L V V_{-}=0$,
DRIVĒR TERM MODE, NO LOAD.

SUPPLY CURRENT IEe vs. TEMPERATURE


VDUT_= VDTV_ $=+1.5 \mathrm{~V}, \mathrm{CHV}_{-}=$CLV_ $^{=}=0$,
DRIVER TERM MODE, NO LOAD.

## Dual DCL with Integrated Level Setters

## Typical Operating Characteristics (continued)

$\left(\mathrm{VCC}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{VDD}=+3.3 \mathrm{~V}, \mathrm{VDHV}_{-}=+3 \mathrm{~V}, \mathrm{VDLV}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{C H V}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CLV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CPH}} \mathrm{V}_{-}=+6.7 \mathrm{~V}\right.$, $V_{C P L V}=-2.7 \mathrm{~V}, \mathrm{VCOMV}_{-}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {LDHV }}=0 \mathrm{~V}, \mathrm{VLDLV}_{-}=0 \mathrm{~V}, \mathrm{VCTV}_{-}=+1.2 \mathrm{~V}, \mathrm{CDRP}_{-}=000 \mathrm{~b}, \mathrm{RO}_{-}=1100 \mathrm{~b}, \mathrm{HYST}_{-}=000 \mathrm{~b}, \mathrm{SC}_{-}$ $=00 \mathrm{~b}, \mathrm{~V}_{\text {DGS }}=\mathrm{V}_{\mathrm{GND}}=\overline{V_{G N D D A C}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{T}_{\mathrm{J}}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise noted.)


## Dual DCL with Integrated Level Setters



Pin Description

PIN	NAME	
$1,16,34,37$   44,47	VCC	FUNCTION
$2,15,26,33$,   $40,41,48,55$	GND	Analog Ground
3	GNDDAC0	Channel 0 DAC Ground Input
4	REF	DAC 2.5V Reference Input. Set REF with respect to GNDDAC_-
5	DGS	DUT Ground Sense Input
6	$\overline{\text { RST }}$	Active-Low Serial-Port Reset Input
7	$\overline{\text { LOAD }}$	Active-Low Serial-Port Load Input
8	$\overline{\mathrm{CS}}$	Active-Low Serial-Port Chip-Select Input
9	SCLK	Serial-Port Clock Input
10	DIN	Serial-Port Data Input
11	DOUT	Serial-Port Data Output

## Dual DCL with Integrated Level Setters

Pin Description (continued)

PIN	NAME	FUNCTION
12	DGND	Digital Ground
13	VDD	Logic Power Supply
14	GNDDAC1	Channel 1 DAC Ground Input
$\begin{gathered} 17,32,36, \\ 38,43,45, \\ 49,64 \end{gathered}$	VEE	Negative Power Supply
18	OVALARM	Overvoltage Alarm Output
19	LLEAKP1	Active-Low Channel 1 Low-Leak Control Input
20	NDATA1	Channel 1 Data Input Complement
21	DATA1	Channel 1 Data Input
$\begin{gathered} 22,25,56 \\ 59 \end{gathered}$	GND	Connect to Ground
23	NRCV1	Channel 1 Receive Input Complement
24	RCV1	Channel 1 Receive Input
27	NCL1	Channel 1 Low Comparator Output Complement
28	CL1	Channel 1 Low Comparator Output
29	CTV1	Channel 1 Comparator Termination Voltage Input
30	NCH1	Channel 1 High Comparator Output Complement
31	CH1	Channel 1 High Comparator Output
35	DUT1	Channel 1 Input/Output
39	N.C.	No Connection. Not Internally Connected. Leave unconnected or connect to GND.
42	TEMP	Temperature Sensor Output
46	DUTO	Channel 0 Input/Output
50	CHO	Channel 0 High Comparator Output
51	NCHO	Channel 0 High Comparator Output Complement
52	CTVO	Channel 0 Comparator Termination
53	CLO	Channel 0 Low Comparator Output
54	NCLO	Channel 0 Low Comparator Output Complement
57	RCVO	Channel 0 Receive Input
58	NRCVO	Channel 0 Receive Input Complement
60	DATAO	Channel 0 Data Input
61	NDATA0	Channel 0 Data Input Complement
62	LLEAKPO	Active-Low Channel 0 Low-Leak Control Input
63	TALARM	Temperature Alarm Output
-	EP	Exposed Pad. EP is internally connected to VEE. Connect externally to VEE or leave unconnected. Do not use EP as a primary connection to $V_{E E}$.

## Dual DCL with Integrated Level Setters



Figure 1. Simplified Block Diagram (only one of two channels is shown; the single serial interface controls both channels)

# Dual DCL with Integrated Level Setters 

## Detailed Description

The MAX19000 dual-channel, pin-electronics DCL integrates multiple pin-electronics functions into a single IC. Each channel includes a three-level pin driver, a window comparator, dynamic clamps, an active load, and 10 independent 14-bit level-setting DACs. Additionally, each channel of the MAX19000 features programmable cable-droop compensation for the driver output and for the comparator input, adjustable driver output resistance, and driver slew-rate adjustment.
The MAX19000 driver features a wide -2 V to +6 V highspeed operating range, high-impedance and activetermination (3rd-level drive) modes, and is highly linear even at low voltage swings. The driver provides highspeed differential control inputs compatible with most high-speed logic families. The window comparators provide extremely low timing variation over changes in slew rate, pulse width, or overdrive voltage, and provide $50 \Omega$ source outputs internally terminated to an applied voltage at CTV_. When high-impedance mode is selected, the programmable dynamic clamps provide damping of high-speed DUT_ waveforms. The 20mA active load facilitates fast contact testing when used in conjunction with the comparators, and functions as a pullup for opendrain/collector DUT_ outputs. Placing the MAX19000 DUT_ output into a very low-leakage state disables the DCL functions. This feature is convenient for making IDDQ measurements without the need for an output disconnect relay. Low-leakage control is independent for each channel. An SPI ${ }^{\text {TM }}$-compatible serial interface and external inputs configure the MAX19000.

## Integrated PE Mode Selection

The MAX19000 features two modes of operation, active and low leakage. The MAX19000 enters low-leakage mode when either LLEAKP_ is driven low or the LLEAKS bit is set to 1 . Driving $\overline{\text { LLEAKP_}_{-}}$to 0 immediately forces the DCL to low leakage.
The serial bit LLEAKS = 1 can be used to force the DCL to low-leakage mode independent of other DCL control bits. Driving LLEAKS to 0 is necessary to allow any other mode of the DCL (Table 1).

## Driver

The driver uses a high-speed multiplexer to select one of three DAC voltages (VDHV_, VDLV_, or VDTV_) or to select high-impedance mode. Multiplexer switching is controlled by high-speed differential inputs DATA_/ NDATA and RCV_/NRCV_ and mode-control bit TMSEL (see Table 2). The multiplexer output is buffered to drive DUT_. A programmable slew-rate circuit controls the
slew rate of the buffer output.
In high-impedance mode, the clamps and comparators remain connected to DUT_, the DUT_ bias current is less than $\pm 2 \mu \mathrm{~A}$, and the node continues to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than $\pm 10 \mathrm{nA}$, and signal tracking slows.
The nominal driver output resistance is $50 \Omega$ and features an adjustment range of $\pm 2.5 \Omega$ through the serial interface in $360 \mathrm{~m} \Omega$ increments.

Driver Slew-Rate Control
A slew-rate circuit controls the slew rate of the buffer output. Select one of four possible slew rates according to Table 3. The speed of the internal multiplexer sets the 100\% driver slew rate (see the "Driver Large-Signal Response" graph in the Typical Operating Characteristics section). SC1 and SC0 are set to 0 at power-up or when $\overline{\mathrm{RST}}$ is forced low.

Driver Cable-Droop Compensation
The driver incorporates programmable active cabledroop compensation. At high frequencies, transmission-
Table 1. DCL Mode Control

LLEAKP_	LLEAKS	DRIVER	COMP	LOAD
0	0	Low   leakage	Low   leakage	Low   leakage
0	1	Low   leakage	Low   leakage	Low   leakage
1	0	Active	Active	Active
1	1	Low   leakage	Low   leakage	Low   leakage

Table 2. Driver Functional Overview

TMSEL	RCV $_{-}$	DATA $_{-}$	DRIVER OUTPUT
$X$	0	0	Drive to VDLV__
$X$	0	1	Drive to VDHV_
0	1	$X$	High-Z receive
1	1	$X$	Drive to VDTV_

$X=$ Don't care.
Table 3. Driver Slew-Rate Control

SC1	SC0	DRIVER SLEW RATE (\%)
0	0	100
0	1	75
1	0	50
1	1	25

## Dual DCL with Integrated Level Setters

line effects from the tester signal delivery path (PCB trace, connectors, and cabling between the MAX19000 DUT_ output and the device under test itself) can degrade the output waveform fidelity at the DUT_, resulting in a highly degraded or unusable signal. The compensation circuit reduces this degradation by adding a double time-constant decaying waveform to the nominal output waveform (preemphasis). Figure 2 depicts a comparison between a typical driver and the MAX19000, and shows how droop compensation counters signal degradation. There are long-time-constant control bits and short-timeconstant control bits in the DCL calibration registers to set the amount of compensation. Control bits CDRP_[2:0] vary the amplitude of the compensation signal. Table 4 shows the percent compensation as a function of control bit settings. The default power-on reset (POR) value is 000 for zero compensation.

Adjustable Driver Output Impedance ( $\Delta$ Ro)
The MAX19000 driver output impedance is adjustable to $\pm 2.5 \Omega$ with a $360 \mathrm{~m} \Omega$ resolution. The RO bits in the DCL calibration register set the impedance value. Table 5 presents the output resistance control logic. The output resistance is set to $\mathrm{Ro}+0.0 \Omega$ (0b1000) at power-up.

## Driver Voltage Clamps

The voltage clamps (high and low) limit the voltage at DUT_ and suppress reflections when the channel is configured as a high-impedance receiver. The clamps behave as diodes connected to the outputs of highcurrent buffers (Figure 1). Internal circuitry compensates for the diode drop at 1mA clamp current. Set the clamp voltages using the level-setting DACs (CPHV_ and CPLV_). The driver clamps are enabled only when the driver is in the high-impedance mode. For transient suppression, set the clamp voltages to approximately the minimum and maximum expected DUT_ voltage range. The optimal clamp voltages are application-specific and must be empirically determined. Set the clamp voltages at a minimum of +0.7 V outside the expected DUT_ voltage range when not using the clamps. Overvoltage protection then remains active without loading DUT_.

High-Speed Comparators The MAX19000 provides two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV _ or $\mathrm{CLV}_{-}$(Figure 3). Cabledroop compensation is present on both channels. The comparators act as a high-speed window comparator. DAC voltages CHV_ and CLV_ control the comparator thresholds. Table 6 shows the truth table for the comparators. Figure 3 shows the comparator block diagram.

This configuration switches a 12 mA current source between the two outputs, and each output provides an internal termination resistor connected to CTV_. These resistors are typically $50 \Omega$. Use alternate configurations to terminate different path impedance provided that the absolute maximum ratings are not exceeded. Note that the resistor value also sets the voltage swing. The output provides a nominal 300 mV P-p swing with a $100 \Omega$ differential load termination and a $50 \Omega$ source termination. See the Logic Outputs $\mathrm{CH}_{-}, \mathrm{NCH}_{-}, \mathrm{CL}_{-}$, NCL_ parameters in the Electrical Characteristics table for definition of the VOH voltage.

Table 4. Driver and Comparator CableDroop Compensation Control Logic

CDRP_2	CDRP_1	CDRP_0	DROOP   COMPENSATION (\%)
0	0	0	0
0	0	1	3
0	1	0	6
0	1	1	9
1	0	0	11
1	0	1	14
1	1	0	17
1	1	1	20

Table 5. Driver Delta Ro Control

RO3	RO2	RO1	RO0	DRIVER OUTPUT RESISTANCE $(\Omega)$
0	0	0	0	Ro-2.88
0	0	0	1	Ro-2.52
0	0	1	0	Ro-2.16
0	0	1	1	Ro-1.80
0	1	0	0	Ro-1.44
0	1	0	1	Ro-1.08
0	1	1	0	Ro-0.72
0	1	1	1	Ro-0.36
1	0	0	0	Ro + 0.0
1	0	0	1	Ro + 0.36
1	0	1	0	Ro + 0.72
1	0	1	1	$\mathrm{Ro}+1.08$
1	1	0	0	Ro + 1.44
1	1	0	1	Ro + 1.80
1	1	1	0	Ro + 2.16
1	1	1	1	$\mathrm{Ro}+2.52$

## Dual DCL with Integrated Level Setters



NOTE: THE MAXIMUM AC SWING WHILE MAINTAINING LINEAR COMPENSATION OF DRIVER CABLE DROOP IS 4.4Vp-p.
THE MAXIMUM AC SWING WHILE MAINTAINING LINEAR COMPENSATION OF COMPARATOR CABLE DROOP IS $3 V p-p$.

Figure 2. Driver/Comparator Cable-Droop Compensation

Table 6. Comparator Truth Table

CONDITION		$\mathrm{CH}_{-}$	CL
VDUT_ < VCHV_	VDUT_ < VCLV_	0	0
VDUT_ < VCHV_	VDUT_ > VCLV_	0	1
VDUT_ > VCHV_	VDUT_- < VCLV_	1	0
VDUT_ > VCHV_	VDUT_- > VCLV_	1	1

Table 7. Comparator Hysteresis Control

HYST2	HYST1	HYST0	COMPARATOR   HYSTERESIS (mV)
0	0	0	0
0	0	1	2
0	1	0	4
0	1	1	6
1	0	0	8
1	0	1	10
1	1	0	12
1	1	1	15

## Dual DCL with Integrated Level Setters



Figure 3. High-Speed Comparators Block Diagram

## Comparator Hysteresis

The DCL register controls the high-speed comparator hysteresis. The HYST[2:0] bits of that register select one of eight values ( $0 \mathrm{mV}, 2 \mathrm{mV}, 4 \mathrm{mV}, 6 \mathrm{mV}, 8 \mathrm{mV}, 10 \mathrm{mV}$, 12 mV , or 15 mV ).
The HYST[2:0] bits are set to 0b000 at power-up or when RST is forced low. Table 7 shows the HYST[2:0] bit functions.

## Comparator Cable-Droop Compensation

Comparator cable-droop compensation works the same as driver cable-droop compensation. See the Driver Cable-Droop Compensation section for a description.

## Active Load

The active load is a linearly programmable current source and sink, a commutation buffer, and a diode bridge (Figure 4). Level-setting DACs LDHV_ and LDLV_ set the sink and source currents from OmA to 20mA. Level-setting DAC COMV_ sets the commutation buffer output voltage. The source and sink naming convention is referenced to the MAX19000, so current out of the MAX19000 constitutes source current and current into the MAX19000 constitutes sink current.
The programmed source current loads the device under test when VDUT_ < VCOMV_. The programmed sink current loads the device under test when VDUT_ > Vcomv_. The high-speed differential inputs (RCV_/N $\left.\bar{R} \overline{C V}_{-}\right)$and three bits of the control word (LDDIS, LDCAL, and TMSEL) control the load. LLEAKP_ and LLEAKS place the load into low-leakage mode. The low-leakage controls override other controls. Table 8 details load control logic.

## Dual DCL with Integrated Level Setters



Figure 4. Active Load Block Diagram (One Channel Shown)
Table 8. Active Load Control

RCV $_{-}$	TMSEL	LDDIS	LDCAL	LEAK* *	LOAD   STATE
$X$	$X$	$X$	$X$	1	Low   leakage
0	$X$	0	0	0	Off
$X$	$X$	1	$X$	0	Off
1	1	0	0	0	Off
1	0	0	0	0	On
$X$	$X$	0	1	0	On

$X=$ Don't care.
${ }^{*}$ LEAK $=$ LLEAKS $+(\overline{\text { LLEAKP_ }})$

## Dual DCL with Integrated Level Setters

## Load Calibration Enable (LDCAL)

LDCAL allows the load and driver to be simultaneously enabled for diagnostic purposes. LDDIS overrides LDCAL.

## Serial Interface

AnSPI-compatible serial interface controls the MAX19000. The serial interface, detailed in Figure 5, operates with clock speeds up to 50 MHz and includes the $\overline{\mathrm{CS}}$, SCLK, DIN, $\overline{R S T}, \overline{L O A D}$, and DOUT signals. Serial-interface timing is shown in Figure 8 and timing specifications are detailed in the Electrical Characteristics table.

## Loading Data Into the MAX19000

Load data into the 24-bit shift register from DIN on the rising edge of SCLK, while $\overline{\mathrm{CS}}$ is low (Figure 5). Enter the address and data bits in order from MSB to LSB. The MAX19000 is updated when the control and levelsetting data are latched into the control and level-setting registers. The control and level-setting registers are separated from the shift register by the input and channelselect registers. Two methods allow data to transfer from the shift register to the control and level-setting registers, depending on the state of external digital input LOAD.
Holding $\overline{\mathrm{LOAD}}$ high during the rising edge of $\overline{\mathrm{CS}}$ allows the shift register data to transfer only into the input and channelselect registers. Force LOAD low to transfer the data into the control and level-setting registers. Changes update on the falling edge of $\overline{\mathrm{LOAD}}$, which allows preloading of data and facilitates synchronizing updates across multiple devices.


Figure 5. Serial-Interface Block Diagram

Holding $\overline{\mathrm{LOAD}}$ low during the rising edge of $\overline{\mathrm{CS}}$ forces the input and channel-select registers to become transparent and all data transfers through these registers directly to the control and level-setting registers. Changes update on the rising edge of $\overline{\mathrm{CS}}$. Figures 6 and 7 show how $\overline{\mathrm{LOAD}}$ and $\overline{\mathrm{CS}}$ function, and also the data configuration of SCLK, DIN, and DOUT. The calibration registers change on the rising edge of $\overline{\mathrm{CS}}$, regardless of the state of $\overline{\mathrm{LOAD}}$.

## Serial-Port Timing

Timing and arrangement of the serial-port signals is shown in Figures 6, 7, and 8.

Serial-Interface DOUT
DOUT is a buffered version of the last bit in the serialinterface shift register. The complete contents of the shift register can be read at DOUT during the next write cycle. To shift data out without modifying any registers, perform a write with address bits $\mathrm{A} 4=\mathrm{A} 5=\mathrm{A} 6=1$. Use DOUT to daisy-chain multiple devices and/or to verify that data was properly shifted in during the previous write cycle.
Data is shifted in to the shift register on the rising edge of the SCLK, when $\overline{\mathrm{CS}}$ is low. The shift register is 24 bits long.

## Device Control

Control and level-setting registers are selected to receive data based on the channel and mode-select bits (A[7:0]). Tables 9 and 10 present the control register bits and functions. Level-setting DAC data and control register data are contained in the 16 data bits $\mathrm{D}[15: 0]$. Tables 9 , 10, and 11 detail the bit functions. Clock in bit A7 first and bit D0 last, as shown in Figure 8.
Bit A7 allows access to the DAC calibration registers. Use the calibration registers to adjust the gain and offset of each DAC. Set bit A7 to write to the calibration registers. See the Level-Setter DAC and Calibration Addresses section for more information.

Table 9. Serial-Interface Control Bits

DIN	FUNCTION
$A 7$	Calibration register write
$A 6^{*}$	Broadcast enable
$A[5: 4]$	Channel address
$A[3: 0]$	Register address
$D[15: 0]$	Register data

*Asserting the broadcast enable bit (A6) overrides the settings of bits $A[5: 4]$; all channels are written to when bit $A 6$ is set high.

## Dual DCL with Integrated Level Setters



Figure 6. Serial-Port Timing with Asynchronous Load


Figure 7. Serial-Port Timing with Synchronous Load ( $\overline{\text { LOAD }}$ Held Low)

## Dual DCL with Integrated Level Setters



Figure 8. Detailed Serial-Port Timing Diagram

Level-Setter DAC and Calibration Addresses
The MAX19000 contains a total of 20 DACs to generate the DC voltage levels for the various control and monitor circuits of the 2-channel MAX19000, a total of 10 levels per channel. All DAC levels are set by a 14-bit code value that varies between a hex value of $0 \times 0000$ and $0 \times 3 F F F$.

Table 12 identifies the serial-interface address of each DAC and the address of the associated calibration register. Registers can be addressed by individual channel or by utilizing a "broadcast address" that accesses both channels simultaneously. The level-setter output block diagram is shown in Figure 9.


Figure 9. Level-Setter Block Diagram

## Level-Setter Calibration Registers

(Gain and Offset Codes)
DAC calibration registers adjust the gain and offset of each DAC. Each DAC includes one calibration register. All DAC calibration registers are programmed with a 14bit code (Table 10). The codes are divided into two fields, one field each for gain (GCAL_) and offset (OCAL_). All DACs provide a 6-bit field for gain and an 8-bit field for offset.
Calibration registers are reset to default values only during a POR. Asserting the $\overline{\text { RST }}$ does not force the calibration registers to default values.

## Dual DCL with Integrated Level Setters

REGISTER NAME	ADDRESS（A［7：0］）			MSB							DATA（BIT）									RESET ORDER	
	$\begin{array}{\|c\|} \hline \text { CH0, } \\ \text { A6 }=0 \\ \hline \text { A5 }=0, \\ \text { A4 }=0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CH1, } \\ \text { A6 }=0 \\ \hline \text { A5 }=0, \\ \text { A4 }=1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { BOTH, } \\ \text { A6 }=1 \\ \hline \text { A5 }=0, \\ \text { A4 }=0 \\ \hline \end{array}$	D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00	RESET CODE	RESET SIGNAL （Note 1）
$\begin{aligned} & \text { DCL } \\ & (\text { Notes 2, 3) } \end{aligned}$	0x00	0x10	$0 \times 40$	1	I	1	｜	I	0 2 1 0 0 10 1 3 3	10 1 0 1 18 2 3 3	$\begin{aligned} & \text { I } \\ & \text { 人 } \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \substack{\text { 人 } \\ \hline} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \substack{c \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & \overleftarrow{\circ} \\ & \gtrless \\ & \gtrless \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \frac{0}{\infty} \end{aligned}$			$\stackrel{\infty}{\sim}$	๗	0x0004	ROR／ RST
DHV：   Driver High （Note 2）	0x01	$0 \times 11$	0x41	1	1	$\begin{aligned} & \hline \stackrel{0}{\zeta} \\ & \frac{1}{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{S} \\ & \stackrel{y}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\frac{\square}{\underset{6}{5}}$	$\frac{\square}{\underset{\infty}{\Sigma}}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\frac{\square}{\frac{\square}{k}}$	$\frac{\stackrel{\rightharpoonup}{K}}{\stackrel{1}{K}}$	$\frac{\square}{\stackrel{\square}{\Sigma}}$	$\frac{\square}{\stackrel{\rightharpoonup}{\Sigma}}$	$\frac{\square}{\Sigma}$		$\stackrel{\square}{\stackrel{0}{5}}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { ROR/ } \\ & \text { RST } \end{aligned}$
DLV：   Driver Low   （Note 2）	0x02	0x12	0x42	1	1	$\frac{\stackrel{\rightharpoonup}{K}}{\stackrel{\rightharpoonup}{\Sigma}}$	$\begin{aligned} & \frac{0}{\Sigma} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \square \\ & \stackrel{0}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{\square}{\frac{0}{5}}$	$\frac{\stackrel{0}{2}}{\stackrel{1}{\infty}}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & \frac{0}{\Sigma} \\ & \frac{1}{5} \end{aligned}$	$\frac{\square}{\underset{G}{K}}$	$\frac{\square}{\Sigma}$	$\frac{\square}{\frac{\square}{5}}$	$\begin{aligned} & \frac{\square}{\Sigma} \\ & \stackrel{N}{\Sigma} \end{aligned}$	$\stackrel{\square}{\Sigma}$	$\frac{\square}{\Sigma}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { ROR/ } \\ & \text { RST } \end{aligned}$
DTV：   Driver Term （Note 2）	0x03	$0 \times 13$	$0 \times 43$	1	1	$\begin{aligned} & \frac{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\underset{\stackrel{\rightharpoonup}{c}}{\stackrel{\rightharpoonup}{5}}$	$\begin{aligned} & \stackrel{\square}{5} \\ & \stackrel{\vdots}{\beth} \end{aligned}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{1}{5} \\ & \stackrel{1}{2} \end{aligned}$	$\frac{0}{2}$	$\frac{\stackrel{0}{2}}{\stackrel{y}{5}}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{x}}{\stackrel{1}{5}}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{5} \end{aligned}$	$\frac{\square}{\Gamma}$	$\frac{\square}{\Sigma}$	$\frac{\square}{\stackrel{\rightharpoonup}{x}}$	$\stackrel{\square}{\underset{\Sigma}{\Sigma}}$	$\begin{aligned} & \frac{\square}{5} \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { ROR/ } \\ \text { RST } \end{gathered}$
CHV：High Comparator （Note 2）	0x04	0x14	0x44	｜	1	$\frac{\stackrel{\rightharpoonup}{K}}{\stackrel{\rightharpoonup}{5}}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{1}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{5} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{6} \end{aligned}$	$\frac{\stackrel{0}{<}}{\stackrel{1}{5}}$	$\frac{\square}{\Sigma}$	$\frac{\stackrel{\rightharpoonup}{⿺}}{\stackrel{1}{5}}$	$\begin{aligned} & \stackrel{\square}{K} \\ & \underset{K}{S} \end{aligned}$	$\frac{\square}{\Sigma}$	$\frac{\square}{\Sigma}$	$\frac{\square}{\stackrel{\square}{L}}$	$\stackrel{\square}{\square}$	$\frac{\square}{\Sigma}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { ROR/ } \\ & \text { RST } \end{aligned}$
CLV：Low Comparator （Note 2）	0x05	0×15	0x45	1	1	$\begin{aligned} & \stackrel{\rightharpoonup}{\vdots} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \frac{0}{\vdots} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{1}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{\square}{\frac{0}{5}}$	$\frac{\square}{\underset{\infty}{<}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{i}{i} \end{aligned}$	$\frac{\square}{\frac{\square}{k}}$	$\frac{\square}{\underset{K}{K}}$	$\frac{\square}{\square}$	$\frac{\square}{\stackrel{\rightharpoonup}{\Sigma}}$	$\frac{\square}{\Sigma}$		$\frac{\square}{\Sigma}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { ROR/ } \\ \text { RST } \end{gathered}$
CPHV：High High－Z Clamp，High Overvoltage Detect （Note 2）	$0 \times 06$	$0 \times 16$	$0 \times 46$	1	1	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\bar{c}} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\grave{\Sigma}} \\ & \stackrel{1}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{6} \end{aligned}$	$\frac{\stackrel{0}{<}}{\stackrel{y}{5}}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\frac{\stackrel{0}{K}}{\stackrel{1}{5}}$	$\frac{\square}{\underset{G}{K}}$	$\frac{\square}{\Sigma}$	$\frac{\square}{\stackrel{\rightharpoonup}{\Sigma}}$	$\frac{\square}{\Sigma}$	$\stackrel{\square}{\underset{\Sigma}{\Sigma}}$	$\frac{\square}{5}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	ROR／ RST
CPLV：Low High－Z Clamp，Low Overvoltage Detect （Note 2）	0x07	$0 \times 17$	$0 \times 47$	1	1	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \frac{\rightharpoonup}{\vdots} \end{aligned}$	$\begin{aligned} & \frac{0}{x} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\square}{\stackrel{~}{\Sigma}} \\ & \stackrel{\rightharpoonup}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{\square}{\frac{0}{5}}$	$\frac{\stackrel{0}{2}}{\stackrel{8}{5}}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & \frac{0}{\Sigma} \\ & \frac{1}{5} \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{5} \end{aligned}$	$\frac{\square}{\Gamma}$	$\frac{\square}{\stackrel{\Gamma}{\Sigma}}$	$\frac{\square}{\Sigma}$		$\frac{\square}{\frac{\square}{5}}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	ROR／ RST

## Dual DCL with Integrated Level Setters

Table 10. Register Map (continued)																					
REGISTER NAME	ADDRESS (A[7:0])			MSB DATA (BIT) LSB																RESET ORDER	
	$\begin{array}{\|c\|} \hline \text { CHO, } \\ \text { A6 }=0 \\ \hline \text { A5 }=0, \\ \text { A4 }=0 \end{array}$	$\begin{array}{\|c\|} \hline \text { CH1, } \\ A 6=0 \\ \hline A 5=0, \\ A 4=1 \\ \hline \end{array}$	$\begin{aligned} & \text { BOTH, } \\ & \text { A6 }=1 \\ & \hline \text { A5 }=0, \\ & \text { A4 }=0 \end{aligned}$	D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00	$\begin{aligned} & \text { RESET } \\ & \text { CODE } \end{aligned}$	RESET SIGNAL   (Note 1)
COMV: Load Commutation Voltage (Note 2)	0x08	0×18	0x48	1	1	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \frac{\vec{\omega}}{\vdots} \end{aligned}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$		$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\frac{\square}{\underset{6}{5}}$	$\frac{\square}{\Sigma}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \frac{\square}{\Sigma} \\ & \frac{1}{5} \end{aligned}$	$\frac{\square}{\bar{K}}$	$\frac{\stackrel{\rightharpoonup}{\Sigma}}{\stackrel{\rightharpoonup}{5}}$	$\frac{\square}{\Sigma}$	$\frac{\square}{\bar{L}}$	$\stackrel{\square}{\Sigma}$	$\frac{\square}{\Sigma}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~V}) \end{gathered}$	ROR/RST
LDHV: Load   Source   Current   (Note 2)	0x09	0x19	0x49	1	I	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{0}{x} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\square}{\vdots} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Gamma} \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{\square}{\frac{\square}{5}}$	$\frac{\square}{\Sigma}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\frac{\square}{\frac{0}{5}}$	$\frac{\square}{\Sigma}$	$\begin{aligned} & \frac{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\frac{\square}{\frac{\square}{\Sigma}}$	$\frac{\square}{\bar{\Sigma}}$	$\stackrel{\square}{\stackrel{~}{\Sigma}}$	$\frac{\square}{\Sigma}$	$\begin{aligned} & 0 \times 1333 \\ & (0.0 \mathrm{~mA}) \end{aligned}$	ROR/ RST
LDLV: Load Sink Current (Note 2)	0x0A	0x1A	0x4A	1	1	$\begin{aligned} & \stackrel{\square}{\underset{S}{2}} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{S} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{S} \\ & \stackrel{y}{S} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{5} \\ & \stackrel{1}{0} \end{aligned}$	$\frac{\square}{\frac{0}{6}}$	$\frac{\square}{\underset{\infty}{\infty}}$	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\frac{\stackrel{0}{K}}{\frac{1}{5}}$	$\frac{\square}{\underset{\sigma}{K}}$	$\frac{\square}{\vdots}$	$\frac{\square}{\frac{\square}{\vdots}}$	$\frac{\square}{\Sigma}$	$\begin{aligned} & \frac{\square}{\Sigma} \\ & \vdots \end{aligned}$	$\frac{\square}{\vdots}$	$\begin{gathered} 0 \times 1333 \\ (0.0 \mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \text { ROR/ } \\ & \text { RST } \end{aligned}$
TS (Notes 2, 4)	0x0F	0x1F	0x4F	1	1	1	1	\|	\|	1	1	1		1	1	1	1	1	1	0x0000	ROR/ RST
DCL   Calibration   (Notes 2, 5, 6)	0x80	0x90	0xC0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 10 \\ & \frac{0}{3} \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & 0 \\ & 10 \\ & N \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 100 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 10 \\ & 00 \\ & 1 \\ & i \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ p \\ 0 \\ 1 \\ \square \\ 0 \\ 1 \\ \square \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 10 \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { N } \end{aligned}$	$\xrightarrow{0}$	$\begin{aligned} & \text { D } \\ & \hline 0 \end{aligned}$	0x0008	POR
DHVC:   Driver High Calibration (Notes 2, 5, 6)	0x81	0x91	0xC1	1	1	$\begin{aligned} & \Omega \\ & \stackrel{?}{\Omega} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & \cap \\ & \stackrel{\cap}{\Omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \cap \\ & \stackrel{\cap}{\gtrless} \\ & \stackrel{i}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\Omega} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\gtrless} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{B}{\sigma} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\perp} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\ominus}{\circ} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { § } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\text { O}}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	0x2080	POR
DLVC:   Driver Low Calibration (Notes 2, 5, 6)	0x82	0x92	0xC2	\|	1	$\begin{aligned} & \text { ? } \\ & \text { ? } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\cap} \\ & \stackrel{\perp}{\perp} \end{aligned}$	$\begin{aligned} & \stackrel{?}{\Omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{?}{8} \\ & \stackrel{B}{n} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \stackrel{\text { P}}{\square} \end{aligned}$	$\begin{aligned} & \Omega \\ & \stackrel{?}{\Omega} \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{8} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{B}{6} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{B}{\sigma} \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\ominus}{\Omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { § } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\text { P}}{\square} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{8} \\ & \stackrel{8}{\circ} \end{aligned}$	0x2080	POR
DTVC:   Driver Term Calibration (Notes 2, 5, 6)	0x83	0x93	0xC3	\|	1	$\begin{aligned} & \text { ? } \\ & \stackrel{?}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\Omega} \\ & \stackrel{\gtrless}{\perp} \end{aligned}$	$\begin{aligned} & \Omega \\ & \stackrel{?}{\Omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\Omega} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{O} \\ & \stackrel{B}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\Omega} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{\imath} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{B}{6} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{B}{\sigma} \end{aligned}$		$\begin{aligned} & \stackrel{\ominus}{8} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { § } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{8}{\circ} \end{aligned}$	0x2080	POR

$\qquad$

Dual DCL with Integrated Level Setters


## Dual DCL with Integrated Level Setters

MAX19000
Table 10. Register Map (continued)


[^0]
## Dual DCL with Integrated Level Setters

Table 11. Control and Calibration Register Bits

BITS	
CDRP_	Driver and comparator cable-droop compensation
GCAL_	DAC gain calibration
EN_TEMP_ALARM	Enable temperature alarm
EN_OV_ALARM	Enable overvoltage alarm
HYST_	High-speed comparator hysteresis select
LDCAL	Load calibration enable
LDDIS	Load disable
LLEAKS	DCL low-leakage enable
OCAL_	DAC offset calibration
RO_	Driver output-resistance select
SC_	Driver slew-rate control
TSMUX0	Temperature sensor voltage-output control (see Table 14)
TMSEL	Driver terminate select control

Table 12. DAC Addressing Table

LEVEL   NAME	LEVEL DESCRIPTION	DAC REGISTER				CALIBRATION REGISTER			
		ADDRESS			RESET VALUE (Note 1)	ADDRESS			RESET VALUE   (Note 2)
		CHO	CH1	BOTH		CHO	CH1	BOTH	
VDHV_	Driver high	0x01	$0 \times 11$	0x41	0x1333	$0 \times 81$	$0 \times 91$	0xC1	0x2080
VDLV_	Driver low	0x02	0x12	$0 \times 42$	0x1333	0x82	0x92	0xC2	0x2080
VDTV_	Driver term	$0 \times 03$	$0 \times 13$	0x43	$0 \times 1333$	$0 \times 83$	$0 \times 93$	0xC3	0x2080
VCHV_	High comparator	0x04	0x14	0x44	0x1333	0x84	0x94	0xC4	0x2080
VCLV_	Low comparator	0x05	0x15	0x45	0x1333	0x85	0x95	0xC5	0x2080
VCPHV_	High high-Z clamp, high overvoltage detect	0x06	0x16	0x46	0x1333	0x86	0x96	0xC6	0×2080
VCPLV_	Low high-Z clamp, Low overvoltage detect	0x07	0x17	0x47	0x1333	0x87	0x97	0xC7	0x2080
VCOMV_	Load commutation voltage	0x08	0x18	0x48	0x1333	0x88	0x98	0xC8	0x2080
VLDHV_	Load source current	0x09	0x19	0x49	0x1333	0x89	0x99	0xC9	0x2080
VLDLV	Load sink current	0x0A	0x1A	0x4A	0x1333	0x8A	0x9A	0xCA	0x2080

Note 1: These values are reset during a POR or with the assertion of the RST pin.
Note 2: These values are reset during a POR only; thus, the device can be reset to a known state without requiring the reprogramming of calibration registers.

# Dual DCL with Integrated Level Setters 

## Level Transfer Functions

Each of the MAX19000 analog DAC levels is set with a transfer function that includes the 14-bit DAC code setting, the gain code setting, and the offset code setting. The VDAC expression below presents the basic DAC transfer function. Each DAC provides a voltageoutput range of -3 V to +7 V (typ). All 20 of these DACs are identical and generate a voltage according to the following equation:
All DACs except VCOM_ DAC:
VDAC $=4 \times($ DAC_code/16,384) $\times$ VREF $\times(1-$ VG/VREF) $\times(0.98+0.02 \times$ gain code/32) $-3 V+(0.1 \times$ offset_ code/128-0.1) + VDGS $+1.2 \times V_{G}$
where $V_{G}=$ VGNDDAC_ $^{-}$VDGS .
VCOM_DAC:

$$
\begin{gathered}
\text { VDAC }=4 \times\left(\text { DAC_code/16,384) } \times \text { VREF } \times\left(1-V_{G} / V_{R E F}\right)\right. \\
\times(0.995+0.02 \times \text { gain code/32) }-3 V+(0.1 \times \text { offset_ } \\
\text { code/128-0.1) }+ \text { VDGS }+1.2 \times V G
\end{gathered}
$$

where $\mathrm{VG}=$ VGNDDAC_- VDGS.
For all DACs, the offset code is an integer value between 0 and 255, and the gain code is an integer value between 0 and 63. Offset and gain codes are based on the calibration register settings (Table 13).
The error of the +2.5 V external reference impacts the accuracy of the DAC levels; a $1 \%$ error in the +2.5 V reference translates to a $1 \%$ error in the DAC level gain. A precision voltage reference such as the MAX6225 is recommended. The +2.5 V external reference must be generated with respect to GNDDAC_. Care must be taken in making GND connections to the MAX19000 from the GND plane. There is a lot of current in each GND connection to the part; typically GND sources

## Table 13. Level-Setter Transfer Functions

LEVEL	LEVEL-SETTER TRANSFER FUNCTION
VDHV_	DAC voltage $\times$ VDHV_ gain + VDHV_ offset
VDLV	DAC voltage $\times$ VDLV_ gain + VDLV_ offset
VDTV_	DAC voltage $\times$ VDTV_ gain + VDTV_offset
VCHV	DAC voltage $\times \mathrm{VCHV}_{\text {_ }}$ gain $+\mathrm{VCHV}_{\text {_ }}$ offset
VCLV	DAC voltage $\times$ VCLV_ gain + VCLV_ offset
V CPHV	DAC voltage $\times$ VCPHV_gain +VCPHV _ offset
VCPLV	DAC voltage $\times$ VCPLV_ gain + VCPLV_offset
VCOMV	DAC voltage $\times$ VCOMV_gain + VCOMV_offset
VLDHV_*	$\begin{aligned} & (\text { DAC voltage }- \text { VDGS }) \times(20 \mathrm{~mA} / 6 \mathrm{~V}) \times \text { VLDHV_ }^{\prime} \\ & \text { gain }+ \text { VLDHV_ offset } \end{aligned}$
VLDLV_*	$\begin{aligned} & \left(\text { DAC voltage }- \text { VDGS }^{\prime}\right) \times(20 \mathrm{~mA} / 6 \mathrm{~V}) \times \text { VLDLV }_{-} \\ & \text {gain }+ \text { VLDLV_ offset }^{\text {I }} \end{aligned}$

[^1]approximately 90 mA to the part, and this current demand can have significant AC components. The GNDDAC_ connection to the +2.5 V reference and to all MAX19000 chips must also be carefully considered. A star connection should be made between GNDDAC_ and DGS. Voltage differences between GNDDAC_ and DGS should be minimized, as $V_{G}$ is equal to GNDDAC_ - DGS and is an error source for the DAC levels. See the Level Transfer Functions section for more information.

Calibration
After mathematically determining the calibration values, shown in Tables 14 and 15, the calibrated levels need to be checked and potentially adjusted up or down because the DAC gain and offset calibration registers have a nonlinear response that could result in the gain or offset values being off by as much as $\pm 3$ LSBs, based on mathematical calculations from endpoint measurements during calibration.

## Table 14. Offset Calibration Register

CODE	OFFSET VALUE	NOMINAL OFFSET (mV)
11111111	+ FS/2 -1 LSB	+100
$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$
10000001	+1 LSB	-
10000000	0	0
0111111	-1 LSB	-
$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$
00000000	$-\mathrm{FS} / 2$	-100

Table 15. Gain Calibration Register

CODE	OFFSET VALUE	NOMINAL OFFSET (mV)
11111111	$+\mathrm{FS} / 2-1$ LSB	1.02
$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$
10000001	+1 LSB	$\bullet$
10000000	0	-
0111111	-1 LSB	-
$\bullet$	$\bullet$	$\bullet$
$\bullet$	$\bullet$	$\bullet$
00000000	$-\mathrm{FS} / 2$	0.98

# Dual DCL with Integrated Level Setters 

## Table 16. Calibration Points

DAC	GAIN POINT 1 (V) (CODE)	GAIN POINT 2 (V) (CODE)	OFFSET POINT (V) (CODE)	CONDITION
DHV_	0.125 (0x1400)	3.875 (0x2C00)	0.125 (0x1400)	$\mathrm{V}_{\text {DLV }}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=-1.5 \mathrm{~V}$
DLV_	0.125 (0x1400)	3.875 (0x2C00)	0.125 (0x1400)	$\mathrm{V}_{\text {DHV }}=+6 \mathrm{~V}, \mathrm{~V}_{\text {DTV }+}=+1.5 \mathrm{~V}$
DTV_	0.125 (0x1400)	3.875 (0x2C00)	0.125 (0x1400)	$\mathrm{V}_{\text {DLV }}=-2 \mathrm{~V}, \mathrm{~V}_{\text {DHV_ }}=+6 \mathrm{~V}$
CHV_	0.125 (0x1400)	3.875 (0x2C00)	2.0 (0x2000)	-
CLV_	0.125 (0x1400)	3.875 (0x2C00)	2.0 (0x2000)	-
CPHV_	-0.5 (0x1000)	5.75 (0x3800)	2.0 (0x2000)	$\mathrm{V}_{\text {CPLV_ }}=-2 \mathrm{~V}$, IDUT $=-1 \mathrm{~mA}$
CPLV_	-1.75 (0x0800)	4.5 (0x3000)	2.0 (0x2000)	$\mathrm{V}_{\text {CPHV_ }}=+6 \mathrm{~V}$, IDUT $=+1 \mathrm{~mA}$
COMV_	0.125 (0x1400)	3.875 (0x2C00)	2.0 (0x2000)	$\mathrm{VLDHV}_{-}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {LDLV }}=+5.5 \mathrm{~V}$
LDHV_	1 mA (0.3V, 0x151F)	$18 \mathrm{~mA}(5.4 \mathrm{~V}, 0 \times 35 \mathrm{C} 3)$	1 mA (0.3V, 0x151F)	$\begin{aligned} \text { VDUT_ }_{-}= & +5.5 \mathrm{~V}, \mathrm{VCOMV}_{-}=-1.5 \mathrm{~V}, \\ & \text { VLDLV }_{-}=-0.5 \mathrm{~V} \end{aligned}$
LDLV_	$1 \mathrm{~mA}(0.3 \mathrm{~V}, 0 \times 151 \mathrm{~F})$	$18 \mathrm{~mA}(5.4 \mathrm{~V}, 0 \times 35 \mathrm{C} 3)$	1 mA (0.3V, 0x151F)	$\begin{aligned} \text { VDUT_ }_{-}= & -1.5 \mathrm{~V}, \mathrm{VCOMV}_{-}=+5.5 \mathrm{~V}, \\ & \mathrm{VLDHV}_{-}=-0.5 \mathrm{~V} \end{aligned}$

## Calibration Algorithm

The user can perform a system calibration by overwriting the default values in the gain and offset registers for any DAC level. The DAC calibration points are shown in Table 16.
The DAC calibration algorithm is as follows:

1) Set the offset DAC to midpoint (1000 $0000=0 \mathrm{~V}$ nominal).
2) Set the level DAC to gain point 1 (GP1).
3) Set the gain DAC code to minimum $=000000$.
4) Measure the output and call it VGAINMINGP1.
5) Set the gain DAC code to maximum $=111111$.
6) Measure the output and call it VGAINMAXGP1.
7) Set the level DAC to gain point 2 (GP2).
8) Set the gain DAC code to minimum $=000000$.
9) Measure the output and call it VGAINmingr2.
10) Set the gain DAC code to maximum $=111111$.
11) Measure the output and call it VGAINMAXGP2.
12) Calculate the gain code.

The DAC is not OV based, so there are gain differences at OV and at 3 V .
For 63 codes, calculate the average range:

$$
\text { GAINMIN }=(\text { VGAINMINGP2 }- \text { VGAINMINGP1 }) /
$$

(GP2 - GP1)
GAINMAX $=($ VGAINMAXGP2 - VGAINMAXGP1 $) /$
(GP2 - GP1)

> GAINRANGE = GAINMAX - GAINMIN
LSB = GAINRANGE/63

Calculated gain code $=(1-$ GAINMIN $) /$ LSB. Call it GCALC.
13) For gain DAC codes of GCALC - 2 to GCALC +2 , measure the gain (VGP2-VGP1)/(GP2 - GP1) at each code, where VGP_ is the output at level DAC code GP_.
14) From codes GCALC -2 to GCALC +2 , choose the code that yields a gain closest to 1.0 and program the gain DAC to that code.
15) Set the level DAC to the offset point (OP).
16) Set the offset DAC code to minimum $=00000000$.
17) Measure the output and call it VoFFSMIN.
18) Set the offset DAC code to maximum $=11111111$.
19) Measure the output and call it VOFFSMAX.
20) Calculate the offset code:

> OFFSRANGE $=$ VOFFSMAX - VOFFSMIN
> LSB $=$ OFFSRANGE/255

Calculated offset code $=(\mathrm{OP}-$ VOFFSMIN)/LSB. Call it OCALC.
21) For offset DAC codes of OCALC - 2 to OCALC + 2, measure the offset (VOP - OP) at each code, where VOP is the output at level DAC code OP.
22) From codes OCALC - 2 to OCALC + 2, choose the code that yields an offset closest to the desired value and program the offset DAC to that code.
23) The DAC should now be calibrated.

## Dual DCL with Integrated Level Setters

## Calibration Example

The following is a calibration example for a DHV_ driver output high level:

1) With DHV_ $=+0.125 \mathrm{~V}$, VGAINmingP1 $=+0.1600 \mathrm{~V}$ and VGAINMAXGP1 $=+0.084851 \mathrm{~V}$.
2) With DHV_ $=+3.875 \mathrm{~V}$, VGAINMINGP2 $=+3.8239 \mathrm{~V}$ and VGAINMAXGP2 $=+3.9246 \mathrm{~V}$.
3) GAINMIN $=(3.8239 \mathrm{~V}-0.1603 \mathrm{~V}) /(3.875 \mathrm{~V}-0.125 \mathrm{~V})=$ 0.976967.
4) $\operatorname{GAINMAX}=(3.9246 \mathrm{~V}-0.084851 \mathrm{~V}) /(3.875 \mathrm{~V}-0.125 \mathrm{~V})$ $=1.023933$.
5) GAINRANGE $=1.023933-0.976967=0.046966$.
6) $\mathrm{LSB}=$ GAINRANGE/63 $=0.000745$.
7) Gain code $=(1-0.976967) / 0.000745=31$.
8) Remeasured +0.125 V output at gain codes 29 , $30,31,32$, and $33=+0.127601 \mathrm{~V},+0.127091 \mathrm{~V}$, $+0.126848 \mathrm{~V},+0.126473 \mathrm{~V}$, and +0.126098 V .
9) Remeasured +3.875 V output at gain codes 29 , $30,31,32$, and $33=+3.876120 \mathrm{~V},+3.876615 \mathrm{~V}$, $+3.877110 \mathrm{~V},+3.877605 \mathrm{~V}$, and +3.878100 V .
10) Gains at codes $29,30,31,32$, and 33 are +0.999605 , $+0.999837,+1.000070,+1.000302$, and +1.000534 .
11) Adjusted gain code $=31$ (the closest to 1.0).
12) Program the gain DAC to code 31 .
13) Set VDHV_ $=+0.125 \mathrm{~V}$, VoffSMIN $=+0.0269 \mathrm{~V}$, and VOFFSMAX $=+0.2180 \mathrm{~V}$.
14) Calculate the offset code:

> OFFSRANGE $=$ VOFFSMAX - VOFFSMIN $=$ $+0.2180 \mathrm{~V}-0.0269 \mathrm{~V}=+0.1911 \mathrm{~V}$.
> LSB $=$ OFFSRANGE/255 $=+0.000749 \mathrm{~V}$. Calculated offset code $=(0.125 \mathrm{~V}-$ VOFFSMIN $) /$ LSB $=131$.
15) Offsets at codes 129, 130, 131, 132, and 133 are $+0.1222 \mathrm{~V},+0.1230 \mathrm{~V},+0.1237 \mathrm{~V},+0.1245 \mathrm{~V}$, and +0.1252 V .
16) Adjusted offset code $=133$ (the closest to +0.125 V ).
17) Program adjusted offset code.
18) DHV_should now be calibrated.

## Applications

## Device Power-Up State

Upon power-up, the DCL enters low-leakage mode; the DCL and calibration registers default to 0x0004 and $0 \times 2080$, respectively. See Table 12 for initial power-up values for the levels. Power supplies can be powered on in any sequence.


#### Abstract

Alarms


The MAX19000 features two fault-condition alarms. The first is a temperature sense alarm that activates when the MAX19000 internal temperature exceeds $+125^{\circ} \mathrm{C}$. The second fault condition activates when the voltage on DUT_ falls outside programmable voltage levels, higher than $\mathrm{V}_{\mathrm{CPHV}}$ _ or below $\mathrm{V}_{\mathrm{CPLV}}$. The $\mathrm{V}_{\mathrm{CPH}} \mathrm{V}_{-}$and VCPLV_ levels are set by internal 14 -bit DACs and are shared between the high-impedance clamp circuits and OVALARM. Each alarm has an individual enable in the DCL register (channel 0 only) (see Table 10): EN_TEMP_ALARM and EN_OV_ALARM. A binary "1" must be programmed into these enable bits for the monitor circuits to assert their respective alarm outputs (TALARM and OVALARM). Alarm outputs are active low, open drain, and referenced to DGND. It is anticipated that the user implements the latch function in ASIC/ FPGA that monitors the TALARM signal. The MAX19000 OVALARM circuit shares its programmable DAC levels with the driver high-Z clamp circuits. The high-Z clamps can never be disabled. To eliminate their influence on the DUT_ line, one simply programs the high-Z clamp voltages out of the way. The proximity of the driver high-Z clamps to the OVALARM thresholds influences the behavior of the OVALARM operation. The OVALARM circuit positively triggers the OVALARM output when a fault condition due to a VOVH/VCPH threshold crossing can source at least 6 mA of current to the clamp circuit. Fault conditions causing less than 6 mA may or may not


VREF - VGNDDAC_INTRODUCES GAIN ERROR IN DAC OUTPUT VOLTAGE EQUAL TO (VREF - VGNDDAC_)/+2.5V. KEEP GND ERROR LESS THAN THE 20mV GAIN CALIBRATION RANGE. KEEP THE GNDDAAC_- GND WITHIN $\pm 100 \mathrm{mV}$ AND GNDDAC_- DGND WITHIN $\pm 100 \mathrm{mV}$.

Figure 10. Sample Connection Diagram for Two Parts per Board

## Dual DCL with Integrated Level Setters

trigger an OVALARM output. The same is true near the VOVL/NCP threshold crossing for low voltages (i.e., the fault condition would have to sink at least 6 mA of current to the clamp circuit). It should also be noted that when normal high-Z clamp operation is desired because of the lack of source termination at the DUT_, one should disable the OVALARM circuit to eliminate the possibility of nuisance tripping on the OVALARM output due to normal high-Z clamp operation.

Temp Sensor The temp-sensor function is enabled utilizing the TSMUXO bit in the TS register. Contents of the TS register can be modified through the serial interface. Table 17 defines the bit code necessary to enable this function. The tempsensor output is an analog value.

## DATA_ and RCV_ Inputs

DATA_ and RCV_ are terminated differentially with internal $100 \Omega$, as shown in Figure 11.

Power-Supply Considerations
Bypass each supply input to GND and REF to DGS with $0.1 \mu \mathrm{~F}$ capacitors. Additionally, use bulk bypassing of at least $10 \mu \mathrm{~F}$ where the power-supply connections meet the circuit board.

## Exposed Pad

The exposed pad (EP) is internally connected to VEE. Connect EP to a large plane or heat sink to maximize thermal performance. EP is not intended as an electrical connection point. Leave EP electrically unconnected, or connect to $\mathrm{V}_{\mathrm{EE}}$. Do not connect EP to ground.

Table 17. Temp-Sensor Output Control

TSMUX0   (D6)	TEMP OUTPUT
0	High-Z
1	Temp-sensor voltage



Figure 11. DATA_ and RCV_ Terminations

> Chip Information

PROCESS: BiCMOS

## Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE   TYPE	PACKAGE   CODE	OUTLINE   NO.	LAND   PATTERN NO.
64 TQFP-EP	C64E+9R	$\underline{\mathbf{2 1 - 0 1 6 2}}$	$\underline{\mathbf{9 0 - 0 1 6 4}}$

## Dual DCL with Integrated Level Setters

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/09	Initial release	-
1	1/10	Updated General Description, Absolute Maximum Ratings, and Temp Sensor sections; Electrical Characteristics; and Tables 10, 11, and 14	$\begin{gathered} 1,2,15,24,31, \\ 36-39,41,42 \end{gathered}$
2	4/11	Updated Ordering Information, Absolute Maximum Ratings, Electrical Characteristics, Pin Configuration, Pin Description, and Driver Cable-Droop Compensation sections, and Figure 1 and Table 10; added new Calibration section	1-26, 28, 36, 40
3	9/11	Corrected typo in VDAC calculation formula	40


[^0]:    Note 1: POR/RST denotes that values are reset during a power-on reset (POR) or with the assertion of the RST pin. POR denotes that values are reset during a POR only; thus, the device can be reset to a known state without requiring the reprogramming of calibration registers.

    Note 2: Em dash (-) register bits should be set to 0 during write operations
    Note 3: EN_TEMP_ALARM bits are on the CHO DCL register only (shaded table cell).
    Note 4: TSMUXO bit is on the CHO TS register only (shaded table cell).
    Note 5: The following A[7:0] addresses are not allowed addresses and are not tested:
    $0 \times 1 \mathrm{~B} \sim 0 \times 1 \mathrm{E}$
    $0 \times 4 \mathrm{~B} \sim 0 \times 4 \mathrm{E}$ $0 \times 4 B \sim 0 \times 4 \mathrm{~F}$
    $0 \times 8 B \sim 0 \times 8 F$ $0 \times 9 B \sim 0 \times 9 F$
    $0 \times C B \sim 0 \times C F$

    Note 6: Set A7 = 1 to access calibration registers.

[^1]:    *VLDHV_ and VLDLV_levels below zero are truncated.

