

HGTP14N36G3VL, HGT1S14N36G3VL, HGT1S14N36G3VLS

December 2001

14A, 360V N-Channel, Logic Level, Voltage Clamping IGBTs

Features

- Logic Level Gate Drive
- Internal Voltage Clamp
- ESD Gate Protection
- T_J = 175°C
- Ignition Energy Capable

Description

This N-Channel IGBT is a MOS gated, logic level device which is intended to be used as an ignition coil driver in automotive ignition circuits. Unique features include an active voltage clamp between the collector and the gate which provides Self Clamped Inductive Switching (SCIS) capability in ignition circuits. Internal diodes provide ESD protection for the logic level gate. Both a series resistor and a shunt resister are provided in the gate circuit.

PACKAGING	AVAILABILITY	
1 AOIGAOIGO		

PART NUMBER	PACKAGE	BRAND
HGTP14N36G3VL	TO-220AB	14N36GVL
HGT1S14N36G3VL	TO-262AA	14N36GVL
HGT1S14N36G3VLS	TO-263AB	14N36GVL

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., HGT1S14N36G3VLS9A.

The development type number for this device is TA49021.

N-CHANNEL ENHANCEMENT MODE COLLECTOR

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	HGTP14N36G3VL, HGT1S14N36G3VL, HGT1S14N36G3VLS	UNITS
Collector-Emitter Bkdn Voltage at 10mA BV _{CER}	390	V
Emitter-Collector Bkdn Voltage at 10mA BV _{ECS}	24	V
Collector Current Continuous at $V_{GE} = 5V$, $T_C = +25^{\circ}C$	18	А
at $V_{GE} = 5V$, $T_{C} = +100^{\circ}C$ I_{C100}	14	А
Gate-Emitter Voltage (Note)	±10	V
Inductive Switching Current at L = 2.3mH, $T_C = +25^{\circ}C$ I_{SCIS}	17	А
at L = 2.3mH, T_{C} = + 175°C	12	А
Collector to Emitter Avalanche Energy at L = 2.3mH, T_{C} = +25°C E _{AS}	332	mJ
Power Dissipation Total at $T_c = +25^{\circ}C$ P_D	100	W
Power Dissipation Derating $T_{C} > +25^{\circ}C$	0.67	W/°C
Operating and Storage Junction Temperature Range	-40 to +175	°C
Maximum Lead Temperature for Soldering	260	°C
Electrostatic Voltage at 100pF, 1500Ω ESD	6	KV
NOTE: May be exceeded if I _{GEM} is limited to 10mA.		

Electrical Specifications T_{C} = +25°C, Unless Otherwise Specified

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		LIMITS							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	UNITS	МАХ	ТҮР	MIN	TEST CONDITIONS		SYMBOL	PARAMETERS	
$ \begin{array}{ c c c c c } \begin{tabular}{ c c c c c } \hline P_{CE} = 0.7 \\ P_{CE} = 0.7 \\ P_{CE} = 16.2 \\ \hline P_{C} = +25^{\circ}C & 3.30 & 3.60 & 3.80 & 3.80 \\ \hline P_{C} = +0^{\circ}C & 3.20 & 3.50 & 3.85 & 1 \\ \hline P_{C} = -40^{\circ}C & 3.20 & 3.50 & 3.85 & 1 \\ \hline P_{C} = -40^{\circ}C & 3.20 & 3.50 & 3.85 & 1 \\ \hline P_{C} = -40^{\circ}C & 1 & 1 & 1 & 1 & 1 \\ \hline P_{C} = -40^{\circ}C & 1 & 2.7 & 1 & 1 & 1 \\ \hline P_{C} = -40^{\circ}C & 1 & 1 & 1 & 1 & 1 \\ \hline P_{C} = +25^{\circ}C & 1 & 1 & 1 & 1 & 1 \\ \hline P_{C} = +25^{\circ}C & 1 & 1 & 1 & 1 & 1 \\ \hline P_{C} = +175^{\circ}C & 1 & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} = +10^{\circ} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & P_{C} & P_{C} & 1 & 1 & 1 & 1 \\ \hline P_{C} = +10^{\circ} & P_{C} & P_$	V	400	355	320	T _C = +175°C	$I_{\rm C} = 10 {\rm mA},$	BV _{CER}	Collector-Emitter Breakdown Voltage	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V	390	360	330	$T_{\rm C}$ = +25°C	$V_{GE} = 0V$ $R_{GE} = 1k\Omega$			
$ \begin{array}{ c c c c c c } \mbox{Gate-Emitter Plateau Voltage} & V_{GEP} & I_C = 7A, \\ V_{CE} = 12V & T_C = +25^{\circ}C & \cdot & 2.7 & \cdot & 1 \\ \mbox{Gate Charge} & Q_{G(ON)} & I_C = 7A, \\ V_{CE} = 12V & T_C = +25^{\circ}C & \cdot & 24 & \cdot & 1 \\ \mbox{Collector-Emitter Clamp Breakdown} & BV_{CE(CL)} & I_C = 7A \\ \mbox{Voltage} & BV_{CEG} & I_C = 10mA & T_C = +25^{\circ}C & 24 & 28 & \cdot & 1 \\ \mbox{Emitter-Collector Breakdown Voltage} & BV_{CC} & I_C = 10mA & T_C = +25^{\circ}C & 24 & 28 & \cdot & 1 \\ \mbox{Collector-Emitter Leakage Current} & I_{CER} & V_{CE} = 250V \\ \mbox{R}_{GE} = 1k\Omega & T_C = +25^{\circ}C & \cdot & \cdot & 250 & 1 \\ \mbox{Collector-Emitter Saturation Voltage} & V_{CE(SAT)} & I_C = 7A \\ \mbox{V}_{GE} = 4.5V & T_C = +25^{\circ}C & \cdot & 1.25 & 1.45$	V	385	350	320	$T_{\rm C} = -40^{\rm o}{\rm C}$				
$ \begin{array}{c c c c c c } Gabbabababababababababababababababababa$	V	-	2.7	-	T _C = +25°C	I _C = 7A, V _{CE} = 12V	V _{GEP}	Gate-Emitter Plateau Voltage	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nC	-	24	-	T _C = +25°C	I _C = 7A, V _{CE} = 12V	Q _{G(ON)}	Gate Charge	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	410	380	350	T _C = +175°C	I _C = 7A R _G = 1000Ω	BV _{CE(CL)}	Collector-Emitter Clamp Breakdown Voltage	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	-	28	24	$T_{\rm C}$ = +25°C	I _C = 10mA	BV _{ECS}	Emitter-Collector Breakdown Voltage	
$ \begin{array}{ c c c c c c } \hline R_{GE} = 1K\Omega & \hline T_{C} = +175^{\circ}C & \ddots & 1 & 250 \\ \hline T_{C} = +175^{\circ}C & \ddots & 1 & 250 & 1 & 155 & 1 & 155 & 1 & 155 & 1 & 155 & 1 & 1$	μA	25	-	-	$T_{\rm C}$ = +25°C	V _{CE} = 250V	I _{CER}	Collector-Emitter Leakage Current	
$ \begin{array}{c} \mbox{Collector-Emitter Saturation Voltage} \\ \mbox{Ce}(SAT) \\ \mbox{Ge} = 4.5V \\ & \begin{array}{c} I_{C} = 7A \\ V_{GE} = 4.5V \\ \hline T_{C} = +175^{\circ}C \\ \hline T_{C} = +175^{\circ}C \\ \hline T_{C} = +25^{\circ}C \\ \hline T_{C} = +175^{\circ}C \\ \hline T_{C} = +10^{\circ}C \\ \hline T_{C} $	μA	250	-	-	T _C = +175 ^o C	$R_{GE} = 1822$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	1.45	1.25	-	T _C = +25°C	$I_{\rm C} = 7A$	bllector-Emitter Saturation Voltage $V_{CE(SAT)}$ $I_C = 7A$		
$ \frac{I_{C} = 14A}{V_{GE} = 5V} \qquad \begin{array}{ccc} T_{C} = +25^{\circ}C & & & 1.6 & 2.2 \\ \hline T_{C} = +175^{\circ}C & & & 1.7 & 2.9 \\ \hline Gate-Emitter Threshold Voltage & V_{GE(TH)} & I_{C} = 1mA \\ V_{CE} = V_{GE} & & T_{C} = +25^{\circ}C & 1.3 & 1.8 & 2.2 \\ \hline Gate Series Resistance & R_{1} & & T_{C} = +25^{\circ}C & & . & . & . & . \\ \hline Gate-Emitter Resistance & R_{2} & & T_{C} = +25^{\circ}C & 1.0 & 20 & 30 \\ \hline Gate-Emitter Leakage Current & I_{GES} & V_{GE} = \pm 10V & & . & . & . & . & . \\ \hline Gate-Emitter Breakdown Voltage & BV_{GES} & I_{GES} = \pm 2mA & & . & . & . & . & . & . & . \\ \hline Current Turn-Off Time-Inductive Load & t_{D(OFF)I} + & I_{C} = 7A, R_{L} = 28D & . & . & . & . & . & . & . & . & . \\ \hline \end{array}$	V	1.6	1.15	-	T _C = +175 ^o C	v _{GE} = 4.5V			
VGE = 3V T_C = +175°C 1.7 2.9 Gate-Emitter Threshold Voltage $V_{GE(TH)}$ $I_C = 1mA$ $T_C = +25°C$ 1.3 1.8 2.2 Gate Series Resistance R_1 $I_C = TA_{GE}$ $T_C = +25°C$ 75 Gate-Emitter Resistance R_1 $I_C = TA_{GE}$ $T_C = +25°C$ 10 20 30 30 Gate-Emitter Resistance R_2 $V_{GE} = \pm 10V$ $T_C = +25°C$ 10 20 30 41000 100	V	2.2	1.6	-	$T_{\rm C}$ = +25°C	$I_{\rm C} = 14A$			
Gate-Emitter Threshold Voltage $V_{GE(TH)}$ $I_C = 1mA$ $V_{CE} = V_{GE}$ $T_C = +25^{\circ}C$ 1.31.82.2Gate Series Resistance R_1 $T_C = +25^{\circ}C$ $ 75$ $-$ Gate-Emitter Resistance R_2 $T_C = +25^{\circ}C$ 102030Gate-Emitter Leakage Current I_{GES} $V_{GE} = \pm 10V$ ± 330 ± 500 ± 1000 Gate-Emitter Breakdown Voltage BV_{GES} $I_{GES} = \pm 2mA$ ± 12 ± 14 $-$ Current Turn-Off Time-Inductive Load $t_{D(OFF)I}$ + $I_C = 7A, R_L = 28\Omega$ $ 7$ $-$	V	2.9	1.7	-	T _C = +175°C	V _{GE} = 5V			
Gate Series Resistance R_1 $T_C = +25^{\circ}C$ \cdot 75 \cdot Gate-Emitter Resistance R_2 $T_C = +25^{\circ}C$ 10 20 30 Gate-Emitter Leakage Current I_{GES} $V_{GE} = \pm 10V$ ± 330 ± 500 ± 1000 Gate-Emitter Breakdown Voltage BV_{GES} $I_{GES} = \pm 2mA$ ± 12 ± 14 $-$ Current Turn-Off Time-Inductive Load $t_{D(OFF)I}$ + $I_C = 7A, R_L = 28\Omega$ $ 7$ $-$	V	2.2	1.8	1.3	$\begin{array}{c} I_{C} = 1mA \\ V_{CE} = V_{GE} \end{array} T_{C} = +25^{o}C \end{array}$		V _{GE(TH)}	Gate-Emitter Threshold Voltage	
Gate-Emitter Resistance R_2 $T_C = +25^{\circ}C$ 102030Gate-Emitter Leakage Current I_{GES} $V_{GE} = \pm 10V$ ± 330 ± 500 ± 1000 Gate-Emitter Breakdown Voltage BV_{GES} $I_{GES} = \pm 2mA$ ± 12 ± 14 $-$ Current Turn-Off Time-Inductive Load $t_{D(OFF)I}$ + $I_C = 7A, R_L = 28\Omega$ $ 7$ $-$	Ω	-	75	-	T _C = +25°C		R ₁	Gate Series Resistance	
Gate-Emitter Leakage Current I_{GES} $V_{GE} = \pm 10V$ ± 330 ± 500 ± 1000 Gate-Emitter Breakdown Voltage BV_{GES} $I_{GES} = \pm 2mA$ ± 12 ± 14 -Current Turn-Off Time-Inductive Load $t_{D(OFF)I}$ + $I_C = 7A, R_L = 28\Omega$ -7-	kΩ	30	20	10	T _C = +25 ^o C		R ₂	Gate-Emitter Resistance	
Gate-Emitter Breakdown Voltage BV_{GES} $I_{GES} = \pm 2mA$ ± 12 ± 14 -Current Turn-Off Time-Inductive Load $t_{D(OFF)I} + I_C = 7A, R_L = 28\Omega$ -7-	μΑ	±1000	±500	±330	$V_{GE} = \pm 10 V$		I _{GES}	Gate-Emitter Leakage Current	
Current Turn-Off Time-Inductive Load $t_{D(OFF)I} + I_C = 7A, R_L = 28\Omega$ - 7 -	V	-	±14	±12	I _{GES} = ±2mA		BV _{GES}	Gate-Emitter Breakdown Voltage	
$ \begin{array}{l} t_{F(OFF)I} & {\sf R}_{\sf G} = 25\Omega, {\sf L} = 550 \mu {\sf H}, \\ {\sf V}_{\sf CL} = 300 {\sf V}, {\sf V}_{\sf GE} = 5 {\sf V}, \\ {\sf T}_{\sf C} = +175^{\circ} {\sf C} \end{array} $	μs	-	7	-	$\begin{split} I_{C} &= 7A, R_{L} = 28\Omega \\ R_{G} &= 25\Omega, L = 550\mu H, \\ V_{CL} &= 300V, V_{GE} = 5V, \\ T_{C} &= +175^{\circ} C \end{split}$		t _{D(OFF)} I + t _{F(OFF)} I	Current Turn-Off Time-Inductive Load	
Inductive Use Test I_{SCIS} $L = 2.3 \text{mH}$, $T_C = +175^{\circ}\text{C}$ 12	А	-	-	12	T _C = +175°C	L = 2.3mH, $T_{\rm C} = +175^{\circ}{\rm C}$		Inductive Use Test	
$T_{\rm C} = +25^{\rm o}{\rm C}$ 17	А	-	-	17	T _C = +25°C				
Thermal Resistance $R_{\theta JC}$ -1.5	°C/W	1.5	-	-			$R_{\theta JC}$	Thermal Resistance	

+25

+75

T.I., JUNCTION TEMPERATURE (°C)

V_{GE} = 5.0V

+125

+175

1.50

-25

+25

FIGURE 6. SATURATION VOLTAGE AS A FUNCTION OF

+75

T_J, JUNCTION TEMPERATURE (°C)

V_{GE} = 5.0V

+125

+175

-25

1.05

Typical Performance Curves (Continued)

FIGURE 13. CAPACITANCE AS A FUNCTION OF COLLECTOR-EMITTER VOLTAGE

FIGURE 14. GATE CHARGE WAVEFORMS

Test Circuits

FIGURE 17. SELF CLAMPED INDUCTIVE SWITCHING CURRENT TEST CIRCUIT

FIGURE 18. CLAMPED INDUCTIVE SWITCHING TIME TEST CIRCUIT

Handling Precautions for IGBT's

Insulated Gate Bipolar Transistors are susceptible to gateinsulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBT's are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBT's can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept

shorted together either by the use of metal shorting springs or by the insertion into conductive material such as †"ECCOSORBD LD26" or equivalent.

- 2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means for example, with a metallic wristband.
- 3. Tips of soldering irons should be grounded.
- 4. Devices should never be inserted into or removed from circuits with power on.
- Gate Voltage Rating -The gate-voltage rating of V_{GEM} may be exceeded if I_{GEM} is limited to 10mA.
- † Trademark Emerson and Cumming, Inc

FAIRCHILD CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Home >> Find products >>

HGT1S14N36G3VLS

14A, 380V Logic Level, Voltage Clamped, Avalanche Energy Rated, ESD Protected IGBT

Contents

General description
 Features
 Product status/pricing/packaging
 Order Samples

•Qualification Support

Datasheet

datasheet

PDF

<u></u>

Download this

e-mail this datasheet

General description

This N-Channel IGBT is a MOS gated, logic level device which is intended to be used as an ignition coil driver in auto-motive ignition circuits. Unique features include an active voltage clamp between the collector and the gate which pro-vides Self Clamped Inductive Switching (SCIS) capability in ignition circuits. Internal diodes provide ESD protection for the logic level gate. Both a series resistor and a shunt resister are provided in the gate circuit.

Formerly Developmental Type TA49021.

back to top

Features

- Logic Level Gate Drive
- Internal Voltage Clamp
- ESD Gate Protection
- T_J = 175°C
- Ignition Energy Capable

back to top

Product status/pricing/packaging

Request samples

How to order products

-

Product Change Notices (PCNs)

<u>. ,</u>

<u>Support</u>

Sales support

Quality and reliability

<u>_____</u>

Design center

This page Print version

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
HGT1S14N36G3VLS	Full Production	Full Production	\$2.58	TO-263(D2PAK)	2	RAIL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) & T (Die Trace Code) Line 2: 14N36GVL
HGT1S14N36G3VLT	Full Production	Full Production	\$2.64	TO-263(D2PAK)	2	TAPE REEL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) & T (Die Trace Code) Line 2: 14N36GVL

* Fairchild 1,000 piece Budgetary Pricing
 ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product HGT1S14N36G3VLS is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product
HGT1S14N36G3VLS
HGT1S14N36G3VLT

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (