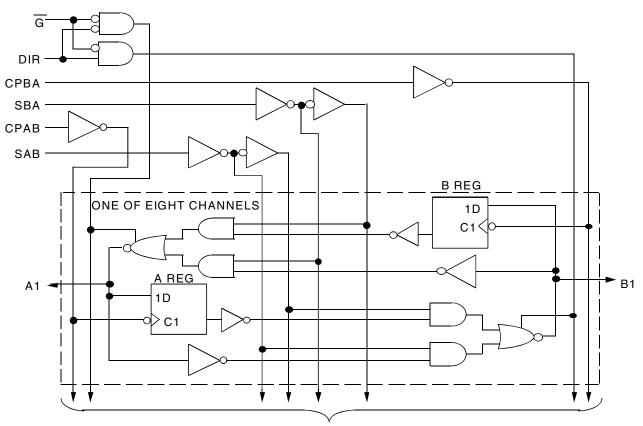


FAST CMOS OCTAL REGISTER (3-STATE)

IDT54/74FCT646T/AT/CT

FFATURFS:

- · Std., A, and C grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - -VOL = 0.3V (typ.)
- High Drive outputs (-15mA loн, 64mA loL)
- Meets or exceeds JEDEC standard 18 specifications
- Military product compliant to MIL-STD-883, Class B and DESC listed (dual marked)
- Power off disable outputs permit "live insertion"
- Available in the following packages:
- Industrial: SOIC, SSOP, QSOP
 - Military: CERDIP, LCC

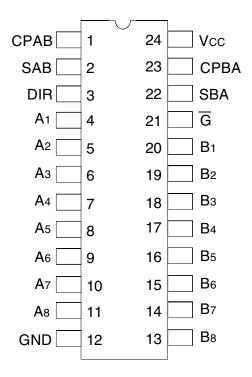

DESCRIPTION:

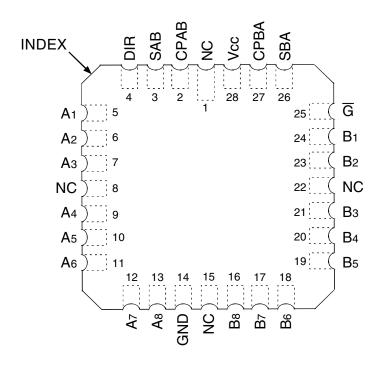
The FCT646T consists of a bus transceiver with 3-state D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The FCT646T utilizes the enable control (\overline{G}) and direction (DIR) pins to control the transceiver functions.

SAB and SBA control pins are provided to select either real-time or stored data transfer. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input level selects real-time data and a high selects stored data.

Data on the A or B data bus, or both, can be stored in the internal D flipflops by low-to-high transitions at the appropriate clock pins (CPAB or CPBA), regardless of the select or enable control pins.

FUNCTIONAL BLOCK DIAGRAM


TO SEVEN OTHER CHANNELS


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND INDUSTRIAL TEMPERATURE RANGES

JUNE 2002

PIN CONFIGURATION

CERDIP/ SOIC/ SSOP/ QSOP TOP VIEW

LCC TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	٧
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Output and I/O terminals only.

PIN DESCRIPTION

Pin Names	Description
A1 - A8	Data Register A Inputs
	Data Register B Outputs
B1 - B8	Data Register B Inputs
	Data Register A Outputs
CPAB, CPBA	Clock Pulse Inputs
SAB, SBA	Output Data Source Select Inputs
DIR, \overline{G}	Output Enable Inputs

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE⁽¹⁾

		Inp	uts			Data	a I/O ⁽²⁾	
G	DIR	CPAB	CPBA	SAB	SBA	A1 - A8	B1 - B8	Operation or Function
Н	Х	H or L	H or L	Х	Х	Input	Input	Isolation
Н	Х	↑	1	Х	Х			Store A and B Data
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to A Bus
L	L	Х	H or L	Х	Н			Stored B Data to A Bus
L	Н	Х	Х	L	Х	Input	Output	Real-Time A Data to B Bus
L	Н	H or L	Х	Н	Χ			Stored A Data to B Bus

NOTES:

- 1. H = HIGH
 - L = LOW
 - X = Don't Care
 - \uparrow = LOW-to-HIGH transition.

Select control = L: clocks can occur simultaneously.

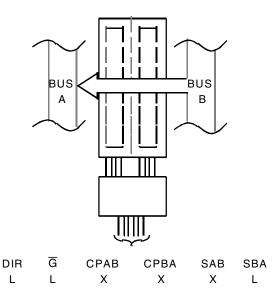
Select control = H: clocks must be staggered in order to load both registers.

- 2. The data output functions may be enabled or disabled by various signals at the GAB or GBA inputs. Data input functions are always enabled, i.e. data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.
- 3. \overline{A} in B Register.
- 4. B in A Register.

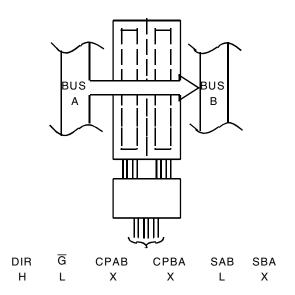
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

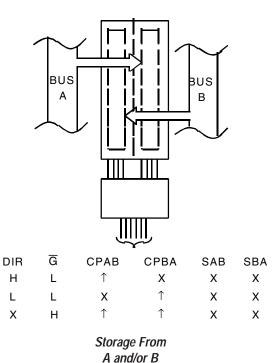
Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = $5.0V \pm 5\%$; Military: TA = -55° C to $+125^{\circ}$ C, Vcc = $5.0V \pm 10\%$

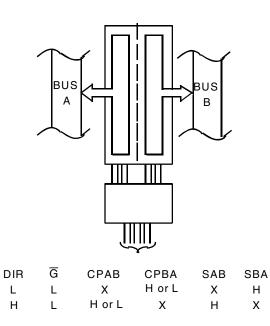

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
lih	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	_	_	±1	μA
lıL	Input LOW Current ⁽⁴⁾	Vcc = Max. VI = 0.5V		_	_	±1	μA
lozh	High Impedance Output Current	Vcc = Max	Vcc = Max Vo = 2.7V		_	±1	μA
lozl	(3-State output pins) ⁽⁴⁾		Vo = 0.5V		_	±1	
lı .	Input HIGH Current ⁽⁴⁾	Vcc = Max., Vi = Vcc (Max.)	Vcc = Max., Vi = Vcc (Max.)		_	±1	μA
Vik	Clamp Diode Voltage	Vcc = Min, In = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	-		_	200	_	mV
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vc	С	_	0.01	1	μA

OUTPUT DRIVE CHARACTERISTICS


Symbol	Parameter	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min	Iон = -6mA MIL	2.4	3.3	_	
		VIN = VIH or VIL	/in = Vih or Vil IOH = -8mA IND				V
			IOH = -12mA MIL		3	_	
			Iон = –15mA IND				
Vol	Output LOW Voltage	Vcc = Min	IOL = 48mA MIL	_	0.3	0.55	V
		VIN = VIH or VIL	IOL = 64mA IND				
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾	-60	-120	-225	mA	
loff	Input/Output Power Off Leakage ⁽⁵⁾	Vcc = 0V, Vin or Vo ≤ 4.5V	_	_	±1	μA	

NOTES


- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. The test limit for this parameter is $\pm 5\mu A$ at $T_A = -55$ °C.
- 5. This parameter is guaranteed but not tested.



Real-Time Transfer Bus B to A

Real-Time Transfer Bus A to B

Transfer Stores (1)
Data to A and/or B

NOTE:

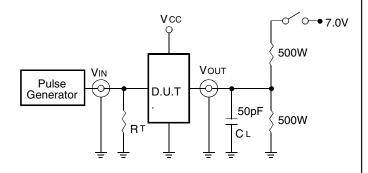
1. Cannot transfer data to A bus and B bus simultaneously.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Unit
∆lcc	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		_	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open G = DIR = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	ı	0.15	0.25	mA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcp = 10MHz 50% Duty Cycle	VIN = VCC VIN = GND	_	1.5	3.5	mA
		G = DIR = GND One Bit Toggling at fi = 5MHz	VIN = 3.4V VIN = GND	_	2	5.5	
		Vcc = Max. Outputs Open fcp = 10MHz	VIN = VCC VIN = GND	_	3.8	7.3 ⁽⁵⁾	
		50% Duty Cycle G = DIR = GND Eight Bits Toggling at fi = 2.5MHz	VIN = 3.4V VIN = GND	_	6	16.3 ⁽⁵⁾	

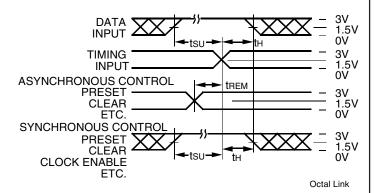
NOTES:

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of Δ Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2+ fiNi)$
 - Icc = Quiescent Current
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - fi = Output Frequency
 - Ni = Number of Outputs at fi
- All currents are in milliamps and all frequencies are in megahertz.

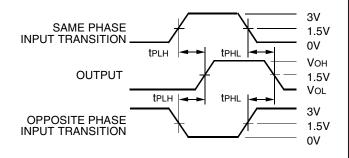

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			54FCT646T			54/74F	CT646AT		54/74FCT646CT				
			Mil.		Ind.		Mil.		Ind.		Mil.		
Symbol	Parameter	Condition ⁽¹⁾	Min.(2)	Max.	Min.(2)	Max.	Min.(2)	Max.	Min.(2)	Max.	Min.(2)	Мах.	Unit
t PLH	Propagation Delay,	CL = 50pF	2	11	2	6.3	2	7.7	1.5	5.4	1.5	6	ns
t PHL	Bus to Bus	$RL = 500\Omega$											
tpzh	Output Enable Time,		2	15	2	9.8	2	10.5	1.5	7.8	1.5	8.9	ns
tpzl	G, DIR to Bus												
tphz	Output Disable Time,		2	11	2	6.3	2	7.7	1.5	6.3	1.5	7.7	ns
tPLZ	G, DIR to Bus												
t PLH	Propagation Delay,		2	10	2	6.3	2	7	1.5	5.7	1.5	6.3	ns
t PHL	Clock to Bus												
t PLH	Propagation Delay,		2	12	2	7.7	2	8.4	1.5	6.2	1.5	7	ns
t PHL	SBA or SAB to Bus												
tsu	Set-up Time HIGH or LOW,		4.5	_	2	_	2	_	2	_	2	_	ns
	Bus to Clock												
tH .	Hold Time HIGH or LOW,		2	_	1.5	_	1.5		1.5	_	1.5	_	ns
	Bus to Clock												
tw	Clock Pulse Width,		6		5	_	5	_	5	_	5	_	ns
	HIGH or LOW												

NOTES:


- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

TEST CIRCUITS AND WAVEFORMS

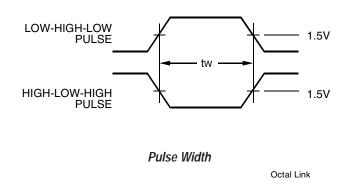


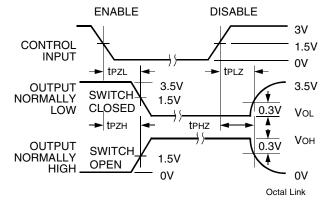
Test Circuits for All Outputs

Octal Link

Set-Up, Hold, and Release Times

Propagation Delay

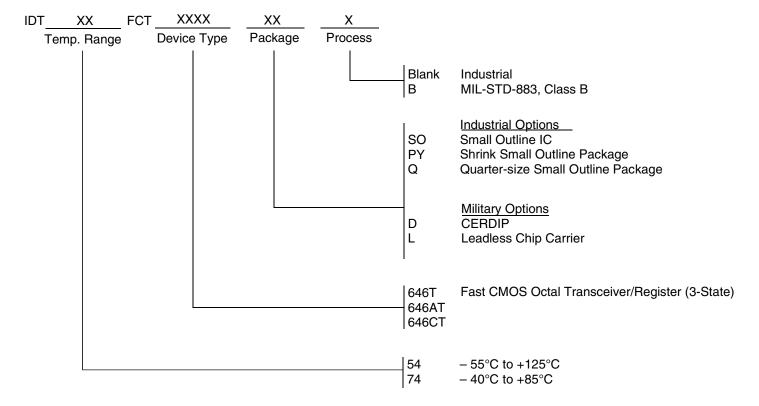

SWITCH POSITION


Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.


Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

Octal Link

ORDERING INFORMATION

