
SCBS160C - DECEMBER 1992 - REVISED MAY 1997

- Members of the Texas Instruments
 Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16373A are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

SN54ABT16373A . . . WD PACKAGE SN74ABT16373A . . . DGG OR DL PACKAGE (TOP VIEW)

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

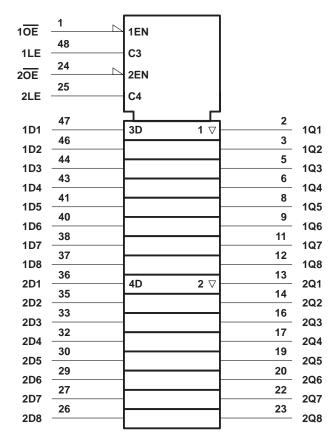
A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

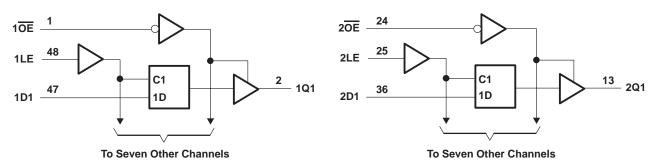
When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16373A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16373A is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

FUNCTION TABLE (each 8-bit section)


	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q ₀
Н	X	Χ	Z

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, I _O : SN54ABT16373A	96 mA
SN74ABT16373A	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	89°C/W
DL package	94°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			SN54ABT	16373A	SN74ABT	16373A	UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	Vcc	0	VCC	V	
IOH	High-level output current			-24		-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200	·	200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST COL	UDITIONS	Т	A = 25°C	;	SN54ABT	16373A	SN74ABT1	16373A	UNIT	
PARAMETER	TEST CO	NULLIONS	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNII	
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			-1.2		-1.2		-1.2	V	
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
Vari	$V_{CC} = 5 \text{ V}, \qquad I_{OH} = -3 \text{ m}$		3			3		3		V	
VOH	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V	
	VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VOL	V _{CC} = 4.5 V	$I_{OL} = 48 \text{ mA}$			0.55		0.55			V	
VOL	VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}				100						mV	
Ц	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$ $V_{I} = V_{CC} \text{ or GND}$				±1		±1		±1	μΑ	
I _{OZPU} ‡	V _{CC} = 0 to 2.1 \ V _O = 0.5 V to 2.			±50		±50		±50	μА		
I _{OZPD} ‡	V _{CC} = 2.1 V to 0 V _O = 0.5 V to 2.	$V_{CC} = 2.1 \text{ V to 0},$ $V_{O} = 0.5 \text{ V to 2.7 V}, \overline{OE} = X$			±50		±50		±50	μΑ	
lozh	V _{CC} = 2.1 V to 5 V _O = 2.7 V, OE				10		10		10	μΑ	
lozL	V _{CC} = 2.1 V to 5 V _O = 0.5 V, OE	5.5 V, ≥ 2 V			-10		-10		-10	μΑ	
loff	$V_{CC} = 0$, V_{I} or V_{I}	'O ≤ 4.5 V			±100				±100	μΑ	
ICEX Outputs high	V _C C = 5.5 V,	V _O = 5.5 V			50		50		50	μΑ	
IO§	V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
Outputs high					2		2		2		
I _{CC} Outputs low	$V_{CC} = 5.5 \text{ V, I}_{O}$ $V_{I} = V_{CC} \text{ or GN}$				85		85		85	mA	
Outputs disabled	1 100 57 611				2		2		2		
ΔICC¶		V _{CC} = 5.5 V, One input at 3.4 V, Other inputs at V _{CC} or GND			1.5		1.5		1.5	mA	
Ci	V _I = 2.5 V or 0.5	V		3.5						pF	
Co	$V_0 = 2.5 \text{ V or } 0.$	5 V		9.5						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		V _{CC} = T _A = 2	$V_{CC} = 5 \text{ V},$ $T_A = 25^{\circ}\text{C}^{\#}$		16373A	SN74ABT	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE high	3.3		3.3		3.3		ns
t _{su}	Setup time, data before LE↓	1.5		2.4		1.5		ns
t _h	Hold time, data after LE↓	1		2.2		1		ns

[#]These values apply only to the SN74ABT16373A.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

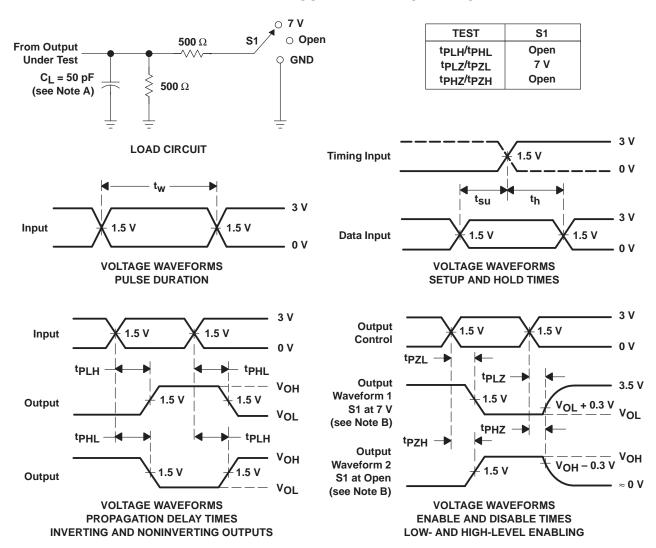
[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V 4 = 25°C	/, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
t _{PLH}	D	Q	1.4	3.7	5.3	1.4	6.5	ns
t _{PHL}	Б	Q	2	4	5.4	2	6.5	115
^t PLH	LE	Q	1.7	4.1	5.7	1.7	7	ns
t _{PHL}	LL	Q	2.3	4.3	5.6	2.3	6.3	115
^t PZH	ŌĒ	Q	1.1	3.4	5	1.1	6.4	no
t _{PZL}	OE	Q	1.5	3.5	4.9	1.5	5.8	ns
^t PHZ	ŌĒ	Q	2.4	5.1	7.1	2.4	8.3	ne
t _{PLZ}	OE	l q	1.6	4.4	6.3	1.6	8	ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

				SN74	ABT163	73A		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C	C = 5 V \ = 25°C	', ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
t _{PLH}	D	Q	1.4	3.7	5.3	1.4	6.3	ns
t _{PHL}	D	Q	2	4	5.4	2	6.2	115
t _{PLH}	LE	Q	1.7	4.1	5.7	1.7	6.7	
t _{PHL}	LE	Q	2.3	4.3	5.6	2.3	6.1	ns
^t PZH	ŌĒ	Q	1.1	3.4	5	1.1	6.1	ns
^t PZL	OE OE	ά	1.5	3.5	4.9	1.5	5.6	115
^t PHZ	ŌĒ	Q	2.4	5.1	7.1	2.4	8.1	ne
t _{PLZ}] OE	Q	1.6	4.4	5.8	1.6	6.5	ns

SCBS160C - DECEMBER 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Q} = 50 Ω , t_{f} \leq 2.5 ns, t_{f} \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

Product Folder: SN54ABT16373A, 16-Bit Transparent D-type Latches With 3-State Outputs

Contact Us	Buy ⊿	About TI 🗸	TI Worldwide	my.TI			Search	: Advanced Search
			Products 4	- 1	Applications .	Support 4	Keyword	
							Part Number	

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG |
APPLICATION NOTES | USER GUIDES | BLOCK DIAGRAMS | MORE LITERATURE

PRODUCT SUPPORT: TRAINING

SN54ABT16373A, 16-Bit Transparent D-type Latches With 3-State Outputs

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN54ABT16373A	<u>SN74ABT16373A</u>
Voltage Nodes (V)	5	5
Vcc range (V)	4.5 to 5.5	4.5 to 5.5
Input Level	TTL	TTL
Output Level	TTL	TTL
Output Drive (mA)		-32/64
No. of Outputs	16	16
Static Current		43.5
th (ns)		1
tpd max (ns)		6.7
tsu (ns)		1.5
Logic	True	True

FEATURES ABack to Top

- Members of the Texas Instruments WidebusTM Family
- State-of-the-Art *EPIC*-II *B*TM BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- · High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

DESCRIPTION▲Back to Top

The 'ABT16373A are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (OE\) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE\ does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Product Folder: SN54ABT16373A, 16-Bit Transparent D-type Latches With 3-State Outputs

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE\ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16373A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16373A is characterized for operation from -40°C to 85°C.

TECHNICAL DOCUMENTS

To view the following documents, Acrobat Reader 4.0 is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET ▲Back to Top

Full datasheet in Acrobat PDF: sn54abt16373a.pdf (108 KB,Rev.C) (Updated: 05/01/1997)

APPLICATION NOTES

▲Back to Top

View Application Notes for <u>Digital Logic</u>

- Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) (SCBA008B Updated: 06/01/1997)
- Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) (SCBA001A Updated: 03/01/1997)
- Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) (SCBA012A Updated: 08/01/1997)
- Designing With Logic (Rev. C) (SDYA009C Updated: 06/01/1997)
- Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 Updated: 06/20/2001)
- Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) (SCBA006A Updated: 12/01/1996)
- Implications of Slow or Floating CMOS Inputs (Rev. C) (SCBA004C Updated: 02/01/1998)
- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices (SZZA033 Updated: 05/10/2002)
- Quad Flatpack No-Lead Logic Packages (Rev. C) (SCBA017C Updated: 11/22/2002)
- TI IBIS File Creation, Validation, and Distribution Processes (SZZA034 Updated: 08/29/2002)
- Understanding Advanced Bus-Interface Products Design Guide (SCAA029, 253 KB Updated: 05/01/1996)
- Understanding and Interpreting Texas Instruments Standard-Logic Products Data Sh (Rev. A) (SZZA036A Updated: 02/27/2003)

MORE LITERATURE

- Enhanced Plastic Portfolio Brochure (SGZB004, 387 KB Updated: 08/19/2002)
- Logic Reference Guide (SCYB004, 1032 KB Updated: 10/23/2001)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- Military Brief (SGYN138, 803 KB Updated: 10/10/2000)
- Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (Rev. A) (SDYZ001A, 138 KB Updated: 07/01/1996)
- Palladium Lead Finish User's Manual (SDYV001, 2041 KB Updated: 11/01/1996)
- QML Class V Space Products Military Brief (Rev. A) (SGZN001A, 257 KB Updated: 10/07/2002)

USER GUIDES ▲Back to Top

LOGIC Pocket Data Book (SCYD013, 4837 KB - Updated: 12/05/2002)

BLOCK DIAGRAMS

Radar

PRICING/AVAILABILITY/PKG

▲Back to Top

Product Folder: SN54ABT16373A, 16-Bit Transparent D-type Latches With 3-State Outputs

DEVICE INFORMATION Updated Daily							TI INVENTORY STATUS As Of 09:00 AM GMT, 17 Apr 2003			REPORTED DISTRIBUTOR INVENTORY As Of 09:00 AM GMT, 17 Apr 2003			
ORDERABLE DEVICE	<u>STATUS</u>	PACKAGE TYPE PINS	TEMP (°C)	DSCC NUMBER	PRODUCT CONTENT	BUDGETARY PRICING QTY \$US	STD PACK QTY	IN STOCK	IN PROGRESS QTY DATE	LEAD TIME	DISTRIBUTOR COMPANY REGION	IN STOCK	PURCHASE
5962-9320001QXA	ACTIVE	<u>CFP</u> (WD) 48	-55 TO 125		View Contents	1KU 18.96	1	<u>248</u> *	>10k 20 May	8 WKS	None Reported <u>View Distributors</u>		
SNJ54ABT16373AWD	ACTIVE	<u>CFP</u> (WD) 48	-55 TO 125	5962- 9320001QXA	View Contents	1KU 18.96	1	1098*	>10k 20 May	8 WKS	<u>Avnet</u> Americas	2	BUY NOW

Table Data Updated on: 4/17/2003

 $\underline{Products} \mid \underline{Applications} \mid \underline{Support} \mid \underline{my.TI}$

TEXAS INSTRUMENTS © Copyright 1995-2002 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Terms of Use