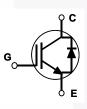


FGA30N60LSD 600 V, 30 A PT IGBT

Features


- Low Saturation Voltage: V_{CE(sat)} = 1.1 V @ I_C = 30 A
- High Input Impedance
- Low Conduction Loss

Applications

Solar Inverter, UPS

November 2013

Using Fairchild's advanced PT technology, the FGA30N60LSD

IGBT offers superior conduction performances, which offer the optimum performance for medium switching application such as

solar inverter, UPS applications where low conduction losses

General Description

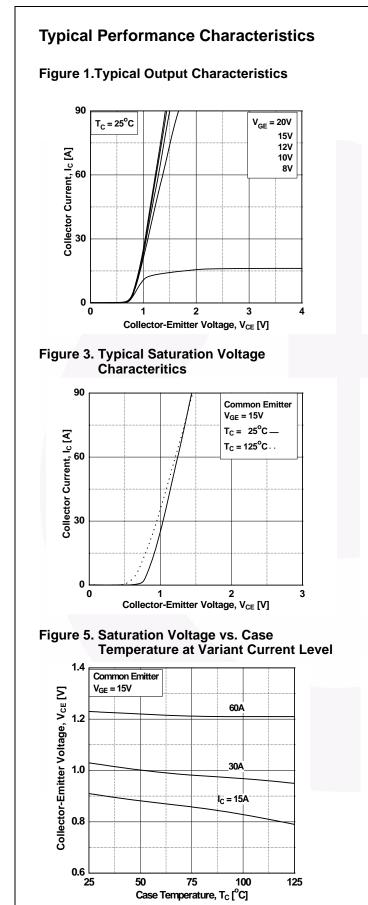
are the most important factor.

Absolute Maximum Ratings

Symbol	Description		Description Ratings	
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ $T_{C} = 25^{\circ}C$	60	A
	Collector Current	@ T _C = 100°C	30	A
I _{CM (1)}	Pulsed Collector Current		90	A
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave		150	A
P _D	Maximum Power Dissipation	@ $T_{C} = 25^{\circ}C$	480	W
	Maximum Power Dissipation	@ T _C = 100°C	192	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature


Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
R _{θJC} (IGBT) Thermal Resistance, Junction-to-Case			0.26	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction-to-Case		0.92	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Part NumberTop MarkPackageFGA30N60LSDTUFGA30N60LSDTO-3P		Top Mark	Package	e Packing Method	Reel Size	Tape Width		Quantity	
		TO-3P	Tube	N/A	N/A		30		
Electric	al Cha	racteristics	of the IG	BT T _C = 25°C unless otherw	ise noted				
Symbol				Test Condition	s Min.	Тур. Ма		x. Unit	
Off Charac	toristics				<u> </u>		+		
BV _{CES}	Collector-Emitter Breakdown Voltage		n Voltage	V _{GE} = 0 V, I _C = 250 uA	600			V	
ΔB _{VCES} / ΔT _J	Temperature Coefficient of Breakdown Voltage		-	$V_{GE} = 0 V, I_C = 250 uA$		0.6		V/°C	
I _{CES}	-	r Cut-Off Current		V _{CE} = V _{CES} , V _{GE} = 0 V			250	uA	
I _{GES}		kage Current		$V_{GE} = V_{GES}, V_{CE} = 0 V$ $V_{GE} = V_{GES}, V_{CE} = 0 V$			±250		
On Charac								l	
V _{GE(th)}	1	eshold Voltage		$I_{\rm C}$ = 250 uA, $V_{\rm CE}$ = $V_{\rm GE}$	4.0	5.5	7.0	V	
GE(ui)				$I_{\rm C} = 30$ A, $V_{\rm GE} = 15$ V		1.1	1.4	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage		-	$I_{C} = 30 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 125^{\circ}\text{C}$		1.0		V	
				I _C = 60 A, V _{GE} = 15 V		1.3		V	
Dynamic C	haracteri	stics			<u> </u>				
C _{ies}	Input Capacitance Output Capacitance					3550		pF	
C _{oes}			$V_{CE} = 30 V, V_{GE} = 0 V,$ f = 1 MHz		245		pF		
C _{res}	Reverse Transfer Capacitance					90		pF	
Switching	Characte	ristics							
t _{d(on)}	Turn-On Delay Time Rise Time				18		ns		
t _r						46		ns	
t _{d(off)}	Turn-Off	Turn-Off Delay Time Fall Time Turn-On Switching Loss		V _{CC} = 400 V, I _C = 30 A,		250		ns	
t _f	Fall Time			$R_{G} = 6.8 \Omega$, $V_{GE} = 15 V$,		1.3	2.0	us	
Eon	Turn-On			Inductive Load, $T_C = 25^{\circ}C$		1.1		mJ	
E _{off}	Turn-Off	Switching Loss				21		mJ	
t _{d(on)}	Turn-On	Delay Time				17		ns	
t _r	Rise Time					45		ns	
t _{d(off)}	Turn-Off	Turn-Off Delay Time		V _{CC} = 400 V, I _C = 30 A,		270		ns	
t _f	Fall Time Turn-On Switching Loss		$R_G = 6.8 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 125$ °C		2.6		us		
E _{on}				°C	1.1		mJ		
E _{off}	Turn-Off	Switching Loss				36		mJ	
Qg	Total Ga	te Charge				225		nC	
Q _{ge}	Gate-Em	nitter Charge		$V_{CE} = 300 \text{ V}, I_{C} = 30 \text{ A},$		30		nC	
Q _{gc}	Gate-Co	llector Charge		V _{GE} = 15 V		105		nC	
L _e	Internal Emitter Inductance			Measured 5mm from PKG	i	7		nH	

Parameter	Conditions			Тур.	Max	Unit
V _{FM}	I _F = 15 A	T _C = 25 °C	-	1.8	2.2	V
	I _F = 15 A	T _C = 125 °C	-	1.6	-	V
I _{RM}	V _R = 600 V	T _C = 25 °C	-	-	100	μΑ
t _{rr}	I _F =1 A, di _F /dt = 100 A/μs, V _R = 30 V	T _C = 25 °C	-	-	35	ns
	I _F =15 A, di _F /dt = 100 A/μs, V _R = 390 V	T _C = 25 °C	-	-	40	ns
t _a	I _F =15 A, di _F /dt = 100 A/μs, V _R = 390 V	T _C = 25 °C	-	18	-	ns
t _b		T _C = 25 °C	-	13	-	ns
Q _{rr}		T _C = 25 °C	-	27.5	-	nC

. . Diada - 4 4 1-

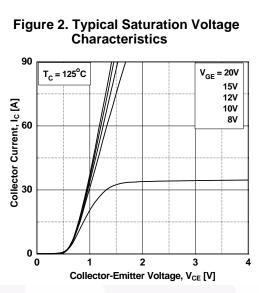


Figure 4. Transfer characteristics

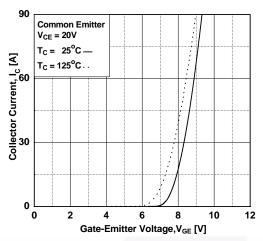
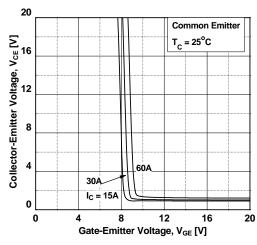



Figure 6. Saturation Voltage vs. Vge

©2008 Fairchild Semiconductor Corporation FGA30N60LSD Rev.C1

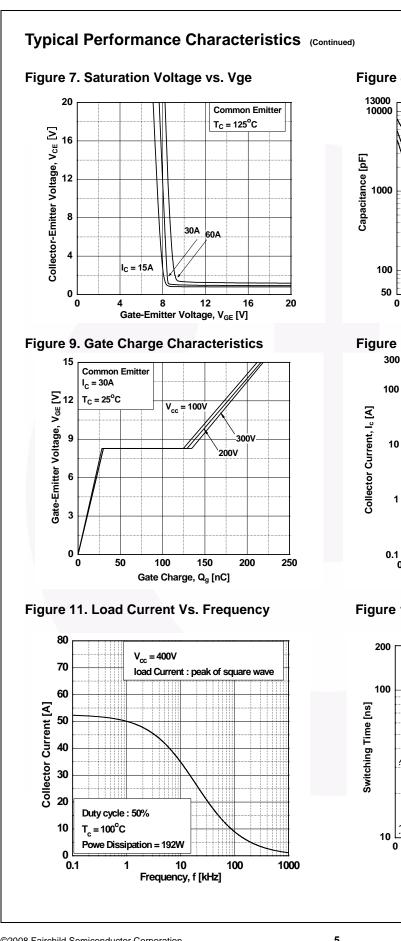
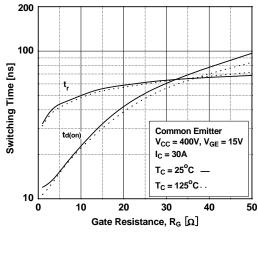


Figure 8. Capacitance characteristics

Common Emitter V_{GE} = 0V, f = 1MHz


 $T_C = 25^{\circ}C$

Cie

C...

30 5 10 15 20 25 Collector-Emitter Voltage, V_{CE} [V] Figure 10. SOA Characteeristics Ic MAX (Pulsed) 50µs Ic MAX (Continuous) 100µs 1ms Single Nonrepetitive DC Operation Pulse $T_c = 25^{\circ}C$ Curves must be derated linearly with increase in temperature 0.1 1 10 100 Collector-Emitter Voltage, V_{CE} [V] . 0.1 1000

Figure 12. Turn-On Characteristics vs. **Gate Resistance**

©2008 Fairchild Semiconductor Corporation FGA30N60LSD Rev.C1

t,

d(on)

70

80

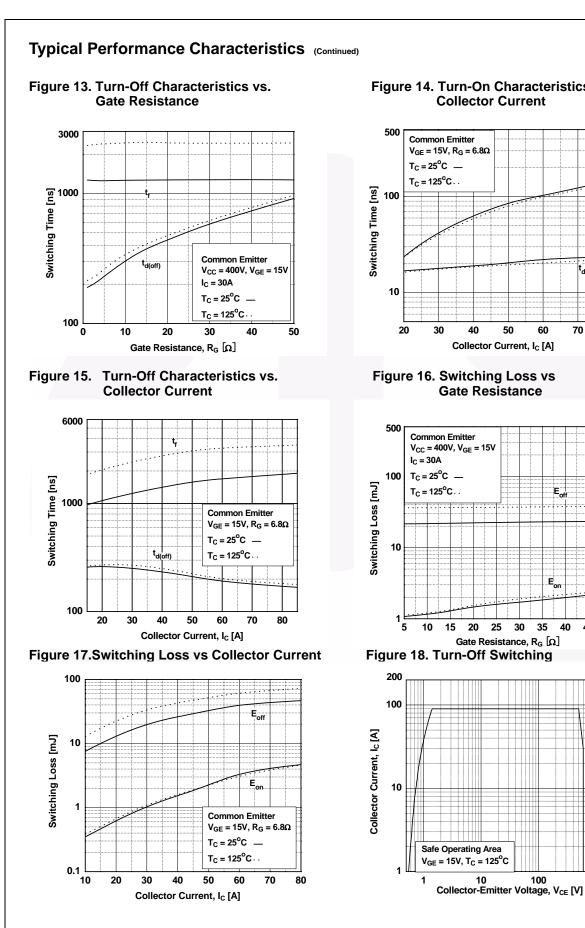


Figure 14. Turn-On Characteristics vs. **Collector Current**

50

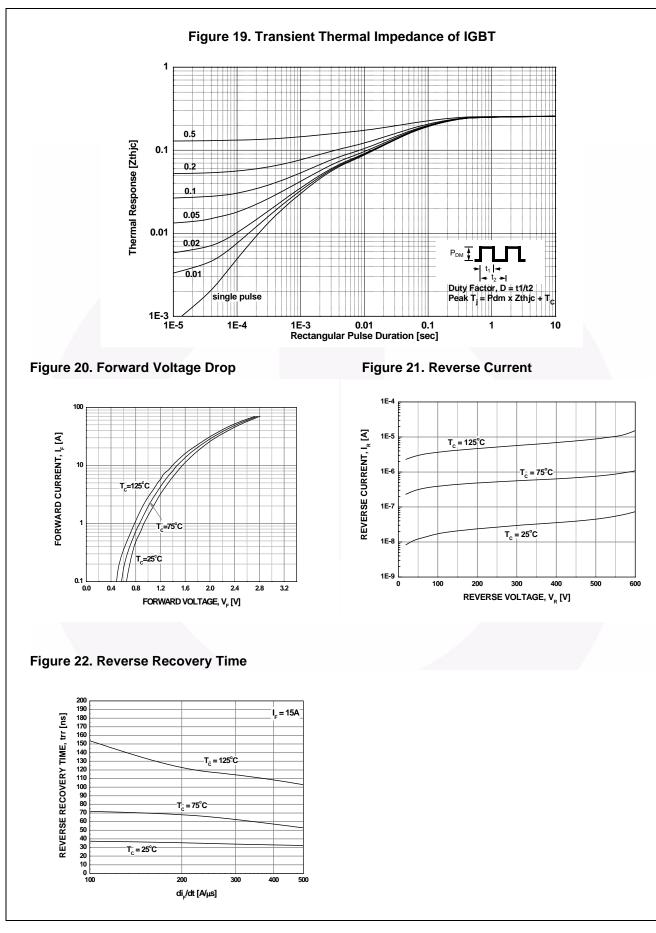
60

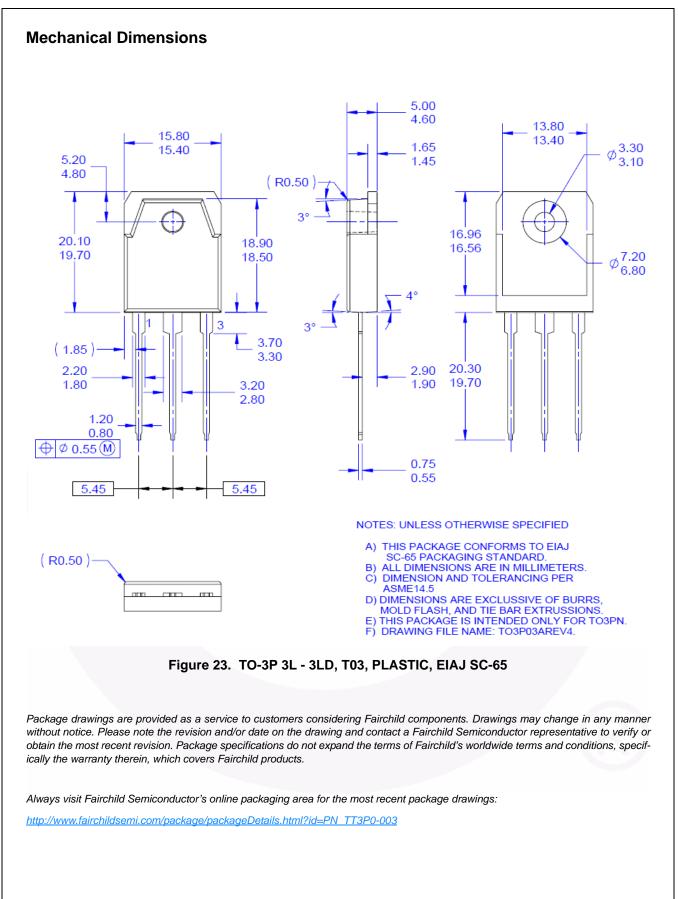
Е

Eor

35

40


30


45

50

©2008 Fairchild Semiconductor Corporation FGA30N60LSD Rev.C1

1000

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

®

AccuPower™ AX-CAF BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FastvCore™ FETBench™

FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET[™] MicroPak™ MicroPak2™ MillerDrive™ MotionMax[™] mWSaver[®] OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

F-PFS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFĔT**® QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ **GENERAL**®' TinyBoost TinyBuck[®] TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT[®]* µSerDes™ $\mu_{_{
m Ser}}$ UHC®

600 V, 30 A PT IGBT —

600 V, 30 A PT IGB1

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

R

FACT®

FAST®

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166