

General Description

The MAX9312/MAX9314 are low skew, dual 1-to-5 differential drivers designed for clock and data distribution. These devices accept two inputs. Each input is reproduced at five differential outputs. The differential inputs can be adapted to accept single-ended inputs by connecting the on-chip VBB supply to one input as a reference voltage.

The MAX9312/MAX9314 feature low part-to-part skew (30ps) and output-to-output skew (12ps), making them ideal for clock and data distribution across a backplane or a board. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V sup-

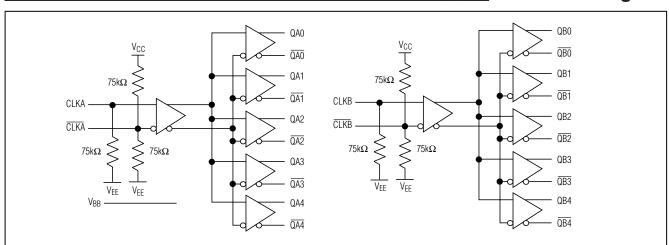
The MAX9312 features an on-chip VBB reference output of 1.425V below the positive supply voltage. The MAX9314 offers an on-chip VBB reference output of 1.32V below the positive supply voltage.

Both devices are offered in space-saving, 32-pin 5mm x 5mm TQFP, 5mm x 5mm QFN, and industry-standard 32-pin 7mm × 7mm TQFP packages.

Applications

Precision Clock Distribution Low-Jitter Data Repeater

Features


- ♦ +2.25V to +3.8V Differential HSTL/LVPECL Operation
- ♦ -2.25V to -3.8V Differential LVECL Operation
- ♦ 30ps (typ) Part-to-Part Skew
- ♦ 12ps (typ) Output-to-Output Skew
- ♦ 312ps (typ) Propagation Delay
- ♦ ≥ 300mV Differential Output at 3GHz
- ♦ On-Chip Reference for Single-Ended Inputs
- ♦ Output Low with Open Input
- ♦ Pin Compatible with MC100LVEP210 (MAX9312) and MC100EP210 (MAX9314)
- ♦ Offered in Tiny QFN* Package (70% Smaller Footprint than LQFP)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX9312ECJ	-40°C to +85°C	32 TQFP (7mm × 7mm)
MAX9312EGJ*	-40°C to +85°C	32 QFN (5mm × 5mm)
MAX9312EHJ*	-40°C to +85°C	32 TQFP (5mm × 5mm)
MAX9314ECJ	-40°C to +85°C	32 TQFP (7mm × 7mm)
MAX9314EGJ*	-40°C to +85°C	32 QFN (5mm × 5mm)
MAX9314EHJ*	-40°C to +85°C	32 TQFP (5mm × 5mm)

^{*}Future product—contact factory for availability.

Functional Diagram

Pin Configuration appears at end of data sheet.

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} - V _{EE}	4.1V
Inputs (CLK_, CLK_)VEE - 0.3V to	$V_{CC} + 0.3V$
CLK_ to CLK_	±3.0V
Continuous Output Current	50mA
Surge Output Current	100mA
V _{BB} Sink/Source Current	±0.65mA
Junction-to-Ambient Thermal Resistance in Still Air	
32-Pin 7mm × 7mm TQFP	+90°C/W
Junction-to-Ambient Thermal Resistance with	
500 LFPM Airflow	
32-Pin 7mm × 7mm TQFP	+60°C/W

Junction-to-Case Thermal Resistance	
32-Pin 7mm × 7mm TQFP	+12°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (CLK_, CLK_, Q_, Q_)	
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} - V_{EE} = +2.25V to +3.8V, outputs loaded with 50Ω $\pm1\%$ to V_{CC} - 2V.) (Notes 1–4)

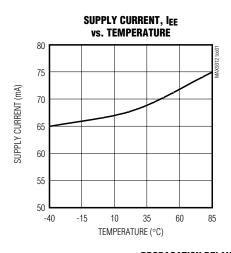
DADAMETED	CVMDOL	CONDIT	TIONS	-40	°C	+25	°C	+85	o°C	UNITS
PARAMETER	SYMBOL	CONDIT	IONS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
INPUTS (CLK_,	CLK_)									
Single-Ended Input High	V	V _{BB} connected to CLK_	MAX9312	V _{CC} - 1.23	Vcc	V _{CC} - 1.23	VCC	V _{CC} - 1.23	Vcc	>
Voltage	V _{IH}	(V _{IL} for V _{BB} connected to CLK_)	MAX9314	V _{CC} - 1.165	Vcc	V _{CC} - 1.165	V _C C	V _{CC} - 1.165	VCC	V
Single-Ended	VIL	V _{BB} connected to CLK_	MAX9312	V _{EE}	V _{CC} - 1.62	V _{EE}	V _{CC} - 1.62	V _{EE}	V _{CC} - 1.62	>
Voltage	VIL	(V _{IL} for V _{BB} connected to CLK_)	MAX9314	V _{EE}	V _{CC} - 1.475	V _{EE}	V _{CC} - 1.475	V _{EE}	V _{CC} - 1.475	V
High Voltage of Differential Input	VIHD			V _{EE} + 1.2	V _C C	V _{EE} + 1.2	Vcc	V _{EE} + 1.2	V _C C	V
Low Voltage of Differential Input	V _{ILD}			V _{EE}	V _{CC} - 0.095	V _{EE}	V _{CC} - 0.095	V _{EE}	V _{CC} - 0.095	V
Differential Input Voltage	V _{IHD} -	For V _{CC} - V _I	EE < 3.0V	0.095	V _{CC} -	0.095	V _{CC} - V _{EE}	0.095	V _{CC} - V _{EE}	V
Voltage	VILU	For V _{CC} - V _I	EE ≥ 3.0V	0.095	3.0	0.095	3.0	0.095	3.0	
Input High Current	lін				150		150		150	μΑ
CLK_ Input Low Current	lilclk			-10	+10	-10	+10	-10	+10	μΑ

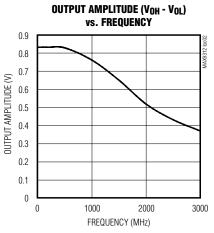
DC ELECTRICAL CHARACTERISTICS (continued)

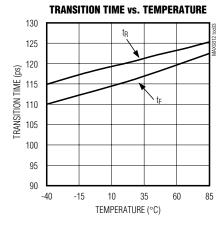
(V_{CC} - V_{EE} = +2.25V to +3.8V, outputs loaded with 50 Ω ±1% to V_{CC} - 2V.) (Notes 1–4)

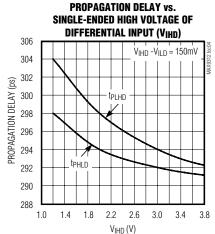
PARAMETER	SYMBOL	CONI	DITIONS	-40	°C	+25	s∘ C	+85°C		UNITS
PARAMETER	STINIBUL	CONL	DITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
CLK_ Input Low Current	IILCLK			-150		-150		-150		μΑ
OUTPUTS (Q,	<u>Q</u> _)									
Single-Ended Output High Voltage	VoH	Figure 1		V _{CC} - 1.025	V _{CC} - 0.900	V _{CC} - 1.025	V _{CC} - 0.900	V _{CC} - 1.025	V _{CC} - 0.900	V
Single-Ended Output Low Voltage	V _O L	Figure 1		V _{CC} - -1.930	V _{CC} - 1.695	V _{CC} - -1.930	V _{CC} - 1.695	V _{CC} - -1.930	V _{CC} - 1.695	V
Differential Output Voltage	VOH - VOL	Figure 1		670	950	670	950	670	950	mV
REFERENCE (V	вв)									
Reference		I _{BB} =	MAX9312	V _{CC} - 1.525	V _{CC} - 1.325	V _{CC} - 1.525	V _{CC} - 1.325	V _{CC} - 1.525	V _{CC} - 1.325	V
Voltage Output (Note 5)	V _{BB}	±0.5mA	MAX9314	V _{CC} - 1.38	V _{CC} - 1.26	V _{CC} - 1.38	V _{CC} - 1.26	V _{CC} - 1.38	V _{CC} - 1.26	V
POWER SUPPLY	Y									
Supply Current (Note 6)	I _{EE}				75		82		95	mA

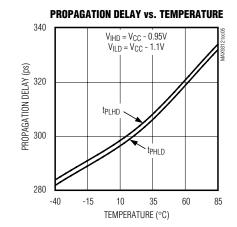
AC ELECTRICAL CHARACTERISTICS


 $(V_{CC} - V_{EE} = +2.25 \text{V to } +3.8 \text{V}, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2 \text{V}, \text{ input frequency} = 1.5 \text{GHz}, \text{ input transition time} = 125 \text{ps} (20\% \text{ to } 80\%), V_{IHD} = V_{EE} + 1.2 \text{V to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15 \text{V}, V_{IHD} - V_{ILD} = 0.15 \text{V to the smaller of } 3 \text{V or } V_{CC} - V_{EE}, \text{ unless otherwise noted}.$ Typical values are at $V_{CC} - V_{EE} = 3.3 \text{V}, V_{IHD} = V_{CC} - 1 \text{V}, V_{ILD} = V_{CC} - 1.5 \text{V}.)$ (Note 7)


DADAMETED	CVMDOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Input- to-Output Delay	tpLHD, tpHLD	Figure 2	220	321	380	220	312	410	260	322	400	ps
Output-to-Output Skew (Note 8)	tskoo			12	46		12	46		10	35	ps
Part-to-Part Skew (Note 9)	tskpp			30	160		30	190		30	140	ps
Added Random	+0.	f _{IN} = 1.5GHz clock pattern		1.2	2.5		1.2	2.5		1.2	2.5	ps
Jitter (Note 10)	tRJ	f _{IN} = 3.0GHz clock pattern		1.2	2.6		1.2	2.6		1.2	2.6	(RMS)
Added Deterministic Jitter (Note 10)	t _D J	3Gbps, 2 ²³ -1 PRBS pattern		80	95		80	95		80	95	ps (pk-pk)
Switching	f	V _{OH} - V _{OL} ≥ 300mV, clock pattern, Figure 2		3.0			3.0			3.0		GHz
Frequency	fMAX	V _{OH} - V _{OL} ≥ 500mV, clock pattern, Figure 2	1.5			1.5			1.5			GHZ
Output Rise/Fall Time (20% to 80%)	t _R , t _F	Figure 2	100	112	140	100	116	140	100	121	140	ps


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** Single-ended input operation using V_{BB} is limited to V_{CC} V_{EE} = 3.0V to 3.8V for the MAX9312 and V_{CC} V_{EE} = 2.7V to 3.8V for the MAX9314.
- **Note 4:** DC parameters production tested at T_A = +25°C. Guaranteed by design and characterization over the full operating temperature range.
- **Note 5:** Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.
- Note 6: All pins open except V_{CC} and V_{EE}.
- Note 7: Guaranteed by design and characterization limits are set at ±6 sigma.
- Note 8: Measured between outputs on the same part at the signal crossing points for a same-edge transition.
- Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 10: Device jitter added to the input signal.


Typical Operating Characteristics


 $(V_{CC} = +3.3V, V_{EE} = 0, V_{IHD} = V_{CC} - 0.95V, V_{ILD} = V_{CL} - 1.25V, input transition time = 125ps (20% to 80%), f_{IN} = 1.5GHz, outputs loaded with 50<math>\Omega$ to V_{CC} - 2V, $T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION						
1, 9, 16, 25, 32	Vcc	Positive Supply Voltage. Bypass from V _{CC} to V _{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.						
2	N.C.	Not Connected						
3	CLKA	Noninverting Differential Clock Input A						
4	CLKA	Inverting Differential Clock Input A						
5	V _{BB}	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass to VCC with a 0.01µF ceramic capacitor.						
6	CLKB	Noninverting Differential Clock Input B						
7	CLKB	Inverting Differential Clock Input B						
8	VEE	Negative Supply Voltage						
10	QB4	Inverting QB4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
11	QB4	Noninverting QB4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
12	QB3	Inverting QB3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
13	QB3	Noninverting QB3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
14	QB2	Inverting QB2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
15	QB2	Noninverting QB2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
17	QB1	Inverting QB1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
18	QB1	Noninverting QB1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
19	QB0	Inverting QB0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
20	QB0	Noninverting QB0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
21	QA4	Inverting QA4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
22	QA4	Noninverting QA4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
23	QA3	Inverting QA3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
24	QA3	Noninverting QA3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
26	QA2	Inverting QA2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
27	QA2	Noninverting QA2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
28	QA1	Inverting QA1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
29	QA1	Noninverting QA1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
30	QA0	Inverting QA0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
31	QA0	Noninverting QA0 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.						

6 _______M/XI/M

Detailed Description

The MAX9312/MAX9314 are low-skew, dual 1-to-5 differential drivers designed for clock and data distribution.

For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.

The differential inputs can be configured to accept single-ended inputs when operating at approximately V_{CC} - V_{EE} = 3.0V to 3.8V for the MAX9312 or V_{CC} - V_{EE} = 2.7V to 3.8V for the MAX9314. This is accomplished by connecting the on-chip reference voltage, V_{BB}, to an input as a reference. For example, the differential CLKA, $\overline{\text{CLKA}}$ input is converted to a noninverting, single-ended input by connecting V_{BB} to $\overline{\text{CLKA}}$ and connecting the single-ended input to CLKA. Similarly, an inverting input is obtained by connecting V_{BB} to CLKA and connecting the single-ended input to $\overline{\text{CLKA}}$. With a differential input configured as single ended (using V_{BB}), the single-ended input can be driven to V_{CC} and V_{EE} or with a single-ended LVPECL/LVECL signal.

When a differential input is configured as a single-ended input (using VBB), the approximate supply range is VCC - VEE = 3.0V to 3.8V for the MAX9312 and VCC - VEE = 2.7V to 3.8V for the MAX9314. This is because one of the inputs must be VEE + 1.2V or higher for proper operation of the input stage. VBB must be at least VEE + 1.2V because it becomes the high-level input when the other (single-ended) input swings below it. Therefore, minimum VBB = VEE + 1.2V.

The minimum VBB output for the MAX9312 is VCC - 1.525V and the minimum VBB output for the MAX9314 is VCC - 1.38V. Substituting the minimum VBB output for each device into VBB = VEE + 1.2V results in a minimum supply of 2.725V for the MAX9312 and 2.58V for the MAX9314. Rounding up to standard supplies gives the single-ended operating supply ranges of VCC - VEE = 3.0V to 3.8V for the MAX9314.

When using the VBB reference output, bypass it with a $0.01\mu F$ ceramic capacitor to VCC. If the VBB reference is not used, it can be left open. The VBB reference can source or sink 0.5mA, which is sufficient to drive two inputs. Use VBB only for inputs that are on the same device as the VBB reference.

The maximum magnitude of the differential input from CLK_ to $\overline{\text{CLK}}$ is 3.0V or V_{CC} - V_{EE}, whichever is less.

This limit also applies to the difference between any reference voltage input and a single-ended input.

The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open. The inverting inputs (CLKA and CLKB) are biased with a 75k Ω pullup to V_{CC} and a 75k Ω pulldown to V_{EE}. The noninverting inputs (CLKA and CLKB) are biased with a 75k Ω pulldown to V_{FE}.

Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously (V_{ILD} cannot be higher than V_{IHD}).

Output levels are referenced to V_{CC} and are considered LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to GND, the outputs are LVPECL. The outputs are LVECL when V_{CC} is connected to GND and V_{EE} is connected to a negative supply.

A single-ended input of at least V_{BB} ± 95 mV or a differential input of at least 95mV switches the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table.

Applications Information

Supply Bypassing

Bypass V_{CC} to V_{EE} with high-frequency surface-mount ceramic $0.1\mu\text{F}$ and $0.01\mu\text{F}$ capacitors in parallel as close to the device as possible, with the $0.01\mu\text{F}$ value capacitor closest to the device. Use multiple parallel vias for low inductance. When using the V_{BB} reference output, bypass it with a $0.01\mu\text{F}$ ceramic capacitor to V_{CC} (if the V_{BB} reference is not used, it can be left open).

Traces

Input and output trace characteristics affect the performance of the MAX9312/MAX9314.

Connect each signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination

Terminate outputs through 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if QA0 is used as a single-ended output, terminate both QA0 and $\overline{\rm QAO}$.

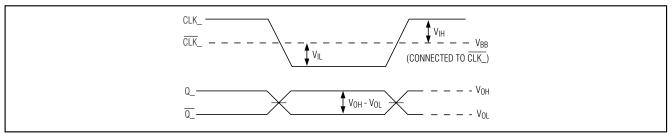
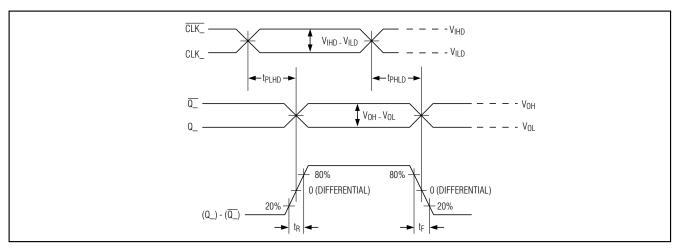
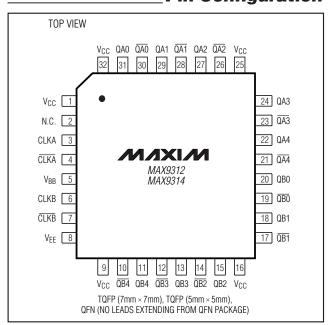
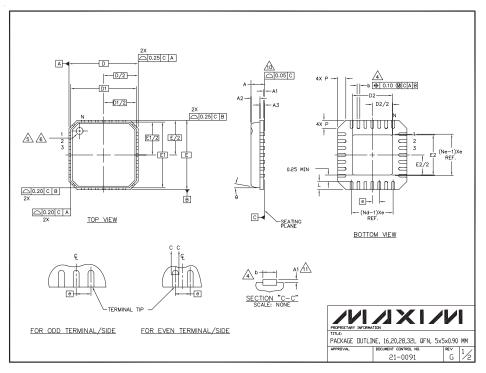
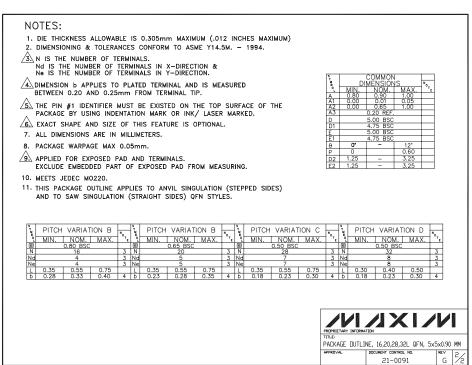


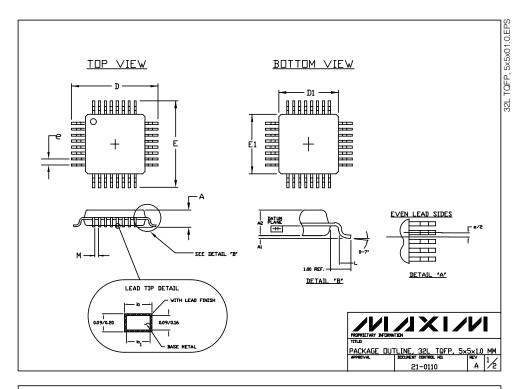
Figure 1. Switching with Single-Ended Input


Figure 2. Differential Transition Time and Propagation Delay Timing Diagram


Pin Configuration

_____Chip Information
TRANSISTOR COUNT: 250



Package Information

Package Information (continued)

- NOTES:

 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5-1982.

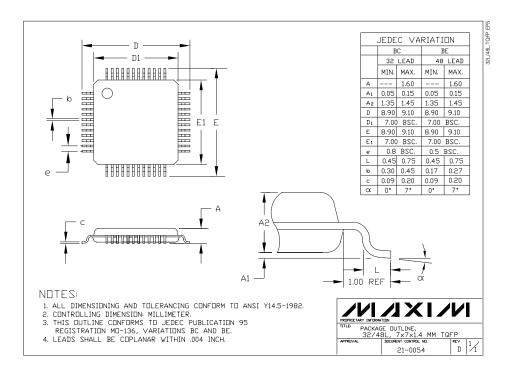
 2. DATUM PLANE EMED IS LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.

 3. DIMENSIONS DI AND EL DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON DI AND EL DIMENSIONS.

 4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE BY 0.15 MILLIMETERS.

 5. DIMENSION IS DICES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. CONTROLLING DIMENSION MILLIMETER.


 7. THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95, REGISTRATION MO-136.

- MD-136. B. LEADS SHALL BE COPLANAR WITHIN .004 INCH.

	JEDEC \	∕ARIATI⊡NS				
	DIMENSIONS	IN MILLIMETERS				
	A	A				
	5×5×1	I.O MM				
	MIN.	MAX.				
Α	マシェ	1.20				
A ₁	0.05	0.15				
Αz	0.95	1.05				
D	7.00	BSC.				
D_1	5.00 BSC.					
Ε	7.00 BSC.					
E1	5.00	5.00 BSC.				
L	0.45	0.75				
М	0.15	₹.				
Ν	32					
6	0.50 BSC.					
ю	0.17	0.27				
bl	0.17	0.23				
	0.17	0,23				

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.