MTY25N60E

Preferred Device

Power MOSFET

25 Amps, 600 Volts N-Channel TO-264

This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced Power MOSFET is designed to withstand high energy in the avalanche and commutation modes. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- Robust High Voltage Termination
- Avalanche Energy Specified
- Diode is Characterized for Use in Bridge Circuits
- $I_{\text {DSS }}$ and $V_{D S(o n)}$ Specified at Elevated Temperature

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	$V_{\text {DSS }}$	600	Vdc
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$)	$V_{\text {DGR }}$	600	Vdc
Gate-Source Voltage - Continuous - Non-Repetitive ($\mathrm{t}_{\mathrm{p}} \leq 10 \mathrm{~ms}$)	$V_{G S}$ $V_{G S M}$	$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	Vdc Vpk
Drain Current - Continuous @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ - Single Pulse ($\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$)	$\begin{gathered} \mathrm{ID}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{DM}} \end{gathered}$	25	Adc Apk
Total Power Dissipation Derate above $25^{\circ} \mathrm{C}$		$\begin{aligned} & \hline 300 \\ & 2.38 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Operating and Storage Temperature Range	$\overline{T_{\mathrm{J}}, \mathrm{~T}_{\mathrm{stg}}}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Single Pulse Drain-to-Source Avalanche } \\ & \text { Energy - Starting } T_{J}=25^{\circ} \mathrm{C} \\ & \left(\mathrm{~V}_{\mathrm{DD}}=100 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{Vdc},\right. \text { Peak } \\ & \left.\mathrm{L}_{\mathrm{L}}=25 \mathrm{Apk}, \mathrm{~L}=10 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega\right) \end{aligned}$		3000	mJ
Thermal Resistance - Junction to Case - Junction to Ambient	$\mathrm{R}_{\text {өJc }}$ $\mathrm{R}_{\text {өJA }}$	$\begin{gathered} 0.42 \\ 40 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes, $1 / 8^{\prime \prime}$ from case for 10 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

ON Semiconductor

http://onsemi.com

25 AMPERES 600 VOLTS

$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}=210 \mathrm{~m} \Omega$
N -Channel

TO-264 CASE 340G Style 1

MARKING DIAGRAM \& PIN ASSIGNMENT

LL	$=$ Location Code
Y	$=$ Year
WW	$=$ Work Week

ORDERING INFORMATION

Device	Package	Shipping
MTY25N60E	TO-264	25 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}\right) \\ & \text { Temperature Coefficient (Positive) } \end{aligned}$	$V_{(B R) D S S}$	600	$\begin{gathered} - \\ 714 \end{gathered}$	-	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
Zero Gate Voltage Drain Current $\begin{aligned} & \left(V_{D S}=600 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=600 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}\right) \end{aligned}$	IDSS	-	-	$\begin{gathered} 10 \\ 200 \end{gathered}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current ($\left.\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{I}_{\text {GSS }}$	-	-	100	nAdc

ON CHARACTERISTICS (Note 1.)

SOURCE-DRAIN DIODE CHARACTERISTICS

Forward On-Voltage	$\begin{gathered} \left(\mathrm{I}_{\mathrm{S}}=25 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ \left(\mathrm{I}_{\mathrm{S}}=25 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{gathered}$	$\mathrm{V}_{\text {SD }}$	-	$\begin{aligned} & 0.9 \\ & 0.8 \end{aligned}$	1.2	Vdc
Reverse Recovery Time (See Figure 14)	$\begin{gathered} \left(\mathrm{I}_{\mathrm{S}}=25 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ \left.\mathrm{d} \mathrm{I}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}\right) \end{gathered}$	$t_{\text {rr }}$	-	620	-	ns
		t_{a}	-	310	-	
		t_{b}	-	310	-	
Reverse Recovery Stored Charge		Q_{RR}	-	10.42	-	$\mu \mathrm{C}$

INTERNAL PACKAGE INDUCTANCE

Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die)	L_{D}	-	4.5	-
Internal Source Inductance (Measured from the source lead $0.25^{\prime \prime}$ from package to source bond pad)	L_{S}	-	7.5	-

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
2. Switching characteristics are independent of operating junction temperature.

MTY25N60E

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance versus Drain Current and Temperature

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance versus Drain Current and Gate Voltage

Figure 6. Drain-To-Source Leakage Current versus Voltage

MTY25N60E

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals ($\Delta \mathrm{t}$) are determined by how fast the FET input capacitance can be charged by current from the generator.
The published capacitance data is difficult to use for calculating rise and fall because drain-gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current $\left(\mathrm{I}_{\mathrm{G}(\mathrm{AV})}\right)$ can be made from a rudimentary analysis of the drive circuit so that
$\mathrm{t}=\mathrm{Q} / \mathrm{I}_{\mathrm{G}}(\mathrm{AV})$
During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, $\mathrm{V}_{\text {SGP }}$. Therefore, rise and fall times may be approximated by the following:
$\mathrm{t}_{\mathrm{r}}=\mathrm{Q}_{2} \times \mathrm{R}_{\mathrm{G}} /\left(\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{GSP}}\right)$
$\mathrm{t}_{\mathrm{f}}=\mathrm{Q}_{2} \times \mathrm{R}_{\mathrm{G}} / \mathrm{V}_{\mathrm{GSP}}$
where
$\mathrm{V}_{\mathrm{GG}}=$ the gate drive voltage, which varies from zero to V_{GG} $\mathrm{R}_{\mathrm{G}}=$ the gate drive resistance and Q_{2} and $\mathrm{V}_{\mathrm{GSP}}$ are read from the gate charge curve.
During the turn-on and turn-off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}=\mathrm{R}_{\mathrm{G}} \mathrm{C}_{\mathrm{iss}} \operatorname{In}\left[\mathrm{V}_{\mathrm{GG}} /\left(\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{GSP}}\right)\right]$ $\mathrm{t}_{\mathrm{d}(\mathrm{off})}=\mathrm{R}_{\mathrm{G}} \mathrm{C}_{\mathrm{iss}} \operatorname{In}\left(\mathrm{V}_{\mathrm{GG}} / \mathrm{V}_{\mathrm{GSP}}\right)$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 7a. Capacitance Variation

The capacitance ($\mathrm{C}_{\mathrm{iss}}$) is read from the capacitance curve at a voltage corresponding to the off-state condition when calculating $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ and is read at a voltage corresponding to the on-state when calculating $\mathrm{t}_{\mathrm{d}(\text { off })}$.
At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

Figure 7b. High Voltage Capacitance Variation

Figure 8. Gate Charge versus Gate-to-Source Voltage

Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ of $25^{\circ} \mathrm{C}$. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance-General Data and Its Use."

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage ($\mathrm{V}_{\mathrm{DSS}}$) is exceeded and the transition time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ do not exceed $10 \mu \mathrm{~s}$. In addition the total power averaged over a complete switching cycle must not exceed $\left(T_{J(M A X)}-T_{C}\right) /\left(R_{\theta J C}\right)$.

A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non-linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_{D}), in accordance with industry custom. The energy rating must be derated for temperature as shown

MTY25N60E

in the accompanying graph (Figure 12). Maximum energy
at currents below rated continuous I_{D} can safely be assumed to equal the values indicated.

SAFE OPERATING AREA

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

Figure 13. Thermal Response

Figure 14. Diode Reverse Recovery Waveform

MTY25N60E

PACKAGE DIMENSIONS

TO-264
CASE 340G-02
ISSUE H

MTY25N60E

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

