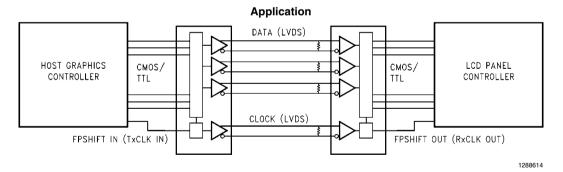
National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

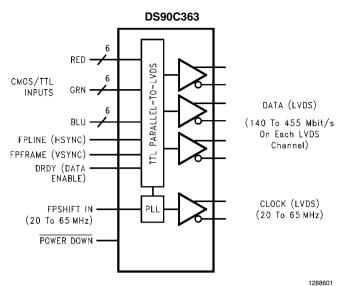
DS90C363/DS90CF364

+3.3V Programmable LVDS Transmitter 18-Bit Flat Panel Display (FPD) Link - 65 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link - 65 MHz

General Description


The DS90C363 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF364 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 65 MHz. 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughputs is 170 Mbytes/sec. The Transmitter is offered with programmable edge data strobes for convenient interface with a variety of graphics controllers. The Transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge Transmitter will interoperate with a Falling edge Receiver (DS90CF364) without any translation logic.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed \mbox{TTL} interfaces.


Features

- 20 to 65 MHz shift clock support
- Programmable Transmitter (DS90C363) strobe select (Rising or Falling edge strobe)
- Single 3.3V supply
- Chipset (Tx + Rx) power consumption < 250 mW (typ)</p>
- Power-down mode (< 0.5 mW total)
- Single pixel per clock XGA (1024×768) ready
- Supports VGA, SVGA, XGA and higher addressability.
- Up to 170 Megabyte/sec bandwidth
- Up to 1.3 Gbps throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe Receiver
- Compatible with TIA/EIA-644 LVDS standard
- ESD rating > 7 kV
- Operating Temperature: -40°C to +85°C

Block Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Order Number DS90C363MTD See NS Package Number MTD48

DS90CF364 RED PARALLEL CMOS/TTL GRN OUTPUTS DATA (LVDS) LVDS-T0-TTL - BLU (140 To 455 Mbit/s On Each LVDS - FPLINE (HSYNC) Channel) - FPFRAME (VSYNC) DRDY (DATA ENABLE) CLOCK (LVDS) FPSHIFT OUT (20 To 65 MHz) (20 To 65 MHz) POWER DOWN

Order Number DS90CF364MTD See NS Package Number MTD48 1288624

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{ll} \text{Duration} & \text{Continuous} \\ \text{Junction Temperature} & +150^{\circ}\text{C} \\ \text{Storage Temperature} & -65^{\circ}\text{C to } +150^{\circ}\text{C} \end{array}$

Lead Temperature

(Soldering, 4 sec) +260°C

Maximum Package Power Dissipation Capacity @ 25°C

MTD48 (TSSOP) Package:

DS90C363 1.98 W DS90CF364 1.89 W

Package Derating:

DS90C363 16 mW/°C above +25°C DS90CF364 15 mW/°C above +25°C

ESD Rating

(HBM, 1.5 k Ω , 100 pF) > 7 kV

Recommended Operating Conditions

	Min	No m	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature (T_A)	-40	+25	+85	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V _{CC})			100	mV_{PP}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Units	
CMOS/TT	L DC SPECIFICATIONS						
V_{IH}	High Level Input Voltage			2.0		V_{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$		2.7	3.3		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.06	0.3	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V or 0.	.4V		±5.1	±10	μA
I _{os}	Output Short Circuit Current	V _{OUT} = 0V			-60	-120	mA
LVDS DC	SPECIFICATIONS	•		•			
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$		250	345	450	mV
ΔV_{OD}	Change in V _{OD} between]				35	mV
	complimentary output states						
V _{OS}	Offset Voltage (Note 4)			1.125	1.25	1.375	V
ΔV _{OS}	Change in V _{OS} between					35	mV
	complimentary output states						
Ios	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$			-3.5	-5	mA
I _{oz}	Output TRI-STATE® Current	PWR DWN = 0V,			±1	±10	μA
		$V_{OUT} = 0V \text{ or } V_{CC}$					
V _{TH}	Differential Input High Threshold	$V_{CM} = +1.2V$				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{CC} = 3.6V$				±10	μA
		$V_{IN} = 0V, V_{CC} = 3.6V$				±10	μA
TRANSM	ITTER SUPPLY CURRENT	•		•			
ICCTW	Transmitter Supply Current, Worst Case	$R_L = 100\Omega$,	f = 32.5 MHz		31	45	mA
		$C_L = 5 pF,$	f = 37.5 MHz		32	50	mA
		Worst Case Pattern	f = 65 MHz		42	55	mA
		(Figures 1, 3), $T_A = -40^\circ$					
		C to +85°C		1			

Symbol	Parameter	Conditions			Тур	Max	Units
ICCTG	Transmitter Supply Current, 16 Grayscale	$R_{l} = 100\Omega$,	f = 32.5 MHz		23	35	mA
		$C_L = 5 pF,$	f = 37.5 MHz		28	40	mA
		16 Grayscale Pattern	f = 65 MHz		31	45	mA
		(Figures 2, 3), $T_A = -40^{\circ}C$					
		to +85°C					
ICCTZ	Transmitter Supply Current	PWR DWN = Low			10	55	μΑ
	Power Down	Driver Outputs in TRI-STA	TE® under				
		Power Down Mode					
RECEIVE	R SUPPLY CURRENT			,	,		
ICCRW	Receiver Supply Current, Worst Case	C _L = 8 pF, Worst Case	f = 32.5 MHz		49	65	mA
		Pattern (Figures 1, 4),	f = 37.5 MHz		53	70	mA
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	f = 65 MHz		78	105	mA
ICCRG	Receiver Supply Current, 16 Grayscale	C _L = 8 pF, 16 Grayscale	f = 32.5 MHz		28	45	mA
		Pattern (Figures 2, 4),	f = 37.5 MHz		30	47	mA
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	f = 65 MHz		43	60	mA
ICCRZ	Receiver Supply Current	PWR DWN = Low			10	55	μΑ
	Power Down	Receiver Outputs Stay Low during					
		Power Down Mode					

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Transmitter Switching Characteristics

Over recommended operating supply and -40°C to +85°C ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 3)		0.75	1.5	ns	
LHLT	LVDS High-to-Low Transition Time (Figure 3)		0.75	1.5	ns	
TCIT	TxCLK IN Transition Time (Figure 5)				5	ns
TCCS	TxOUT Channel-to-Channel Skew (Figure 6)			250		ps
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 17)	f = 65 MHz	-0.4	0	0.3	ns
TPPos1	Transmitter Output Pulse Position for Bit 1		1.8	2.2	2.5	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		4.0	4.4	4.7	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		6.2	6.6	6.9	ns
TPPos4	Transmitter Output Pulse Position for Bit 4	8.4	8.8	9.1	ns	
TPPos5	Transmitter Output Pulse Position for Bit 5		10.6	11.0	11.3	ns
TPPos6	Transmitter Output Pulse Position for Bit 6	12.8	13.2	13.5	ns	
TCIP	TxCLK IN Period (Figure 7)	15	Т	50	ns	
TCIH	TxCLK IN High Time (Figure 7)		0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 7)		0.35T	0.5T	0.65T	ns
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 65 MHz	2.5			ns
THTC	TxIN Hold to TxCLK IN (Figure 7)	0			ns	
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 3.3V (F	3.0	3.7	5.5	ns	
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)			10	ms	
TPDD	Transmitter Power Down Delay (Figure 15)				100	ns

Note 2: Typical values are given for V_{CC} = 3.3V and T $_{A}$ = +25C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}).

Note 4: V_{OS} previously referred as V_{CM}.

Receiver Switching Characteristics

Over recommended operating supply and -40°C to +85°C ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 4)		2.2	5.0	ns	
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 4)			2.2	5.0	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 18)	f = 65 MHz	0.7	1.1	1.4	ns
RSPos1	Receiver Input Strobe Position for Bit 1		2.9	3.3	3.6	ns
RSPos2	Receiver Input Strobe Position for Bit 2		5.1	5.5	5.8	ns
RSPos3	Receiver Input Strobe Position for Bit 3		7.3	7.7	8.0	ns
RSPos4	Receiver Input Strobe Position for Bit 4		9.5	9.9	10.2	ns
RSPos5	Receiver Input Strobe Position for Bit 5		11.7	12.1	12.4	ns
RSPos6	Receiver Input Strobe Position for Bit 6	13.9	14.3	14.6	ns	
RSKM	RxIN Skew Margin (<i>Note 5</i>) (<i>Figure 19</i>) f = 65 MHz		400			ps
RCOP	RxCLK OUT Period (Figure 8)		15	Т	50	ns
RCOH	RxCLK OUT High Time (Figure 8)	f = 65 MHz	7.3	8.6		ns
RCOL	RxCLK OUT Low Time (Figure 8)	f = 65 MHz	3.45	4.9		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 8)	f = 65 MHz	2.5	6.9		ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 8)	2.5	5.7		ns	
RCCD	RxCLK IN to RxCLK OUT Delay @ 25°C, V _{CC} = 3.3V (Figure 10)			7.1	9.0	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 12)				10	ms
RPDD	Receiver Power Down Delay (Figure 16)				1	μs

Note 5: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).

AC Timing Diagrams

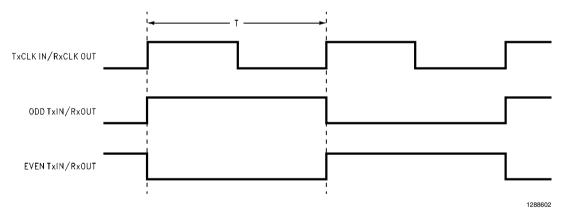


FIGURE 1. "Worst Case" Test Pattern

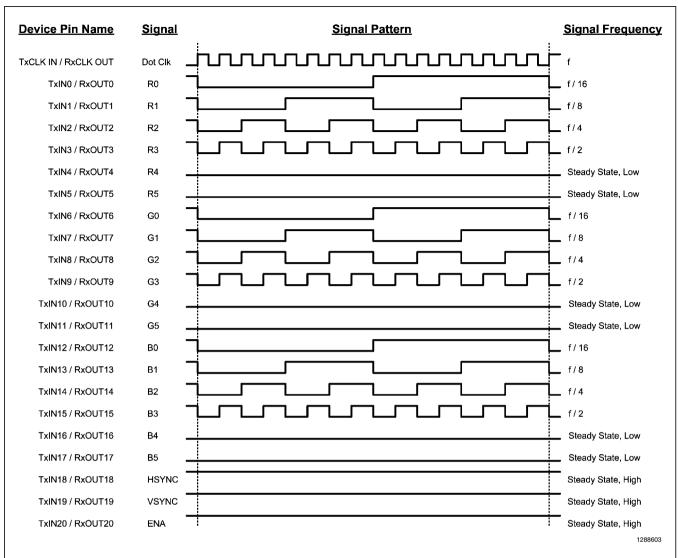


FIGURE 2. "16 Grayscale" Test Pattern (Note 6, Note 7, Note 8, Note 9)

Note 6: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and CMOS/TTL I/O.

Note 7: The 16 grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical stripes across the display.

Note 8: Figures 1, 2 show a falling edge data strobe (TxCLK IN/RxCLK OUT).

Note 9: Recommended pin to signal mapping. Customer may choose to define differently.

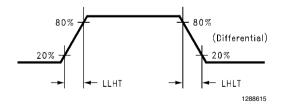


FIGURE 3. DS90C363 (Transmitter) LVDS Output Load and Transition Times

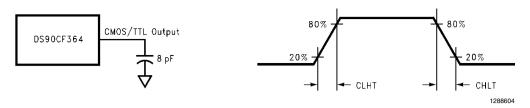


FIGURE 4. DS90CF364 (Receiver) CMOS/TTL Output Load and Transition Times

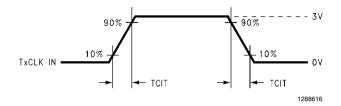
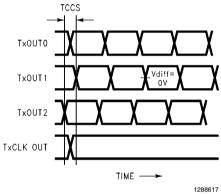



FIGURE 5. DS90C363 (Transmitter) Input Clock Transition Time

Measurements at Vdiff=0V TCCS measured between earliest and latest LVDS edges TxCLK Differential Low \rightarrow High Edge

FIGURE 6. DS90C363 (Transmitter) Channel-to-Channel Skew

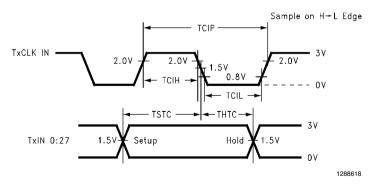


FIGURE 7. DS90C363 (Transmitter) Setup/Hold and High/Low Times

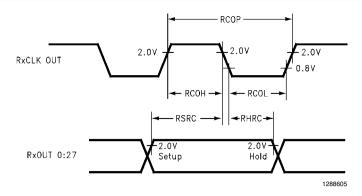


FIGURE 8. DS90CF364 (Receiver) Setup/Hold and High/Low Times

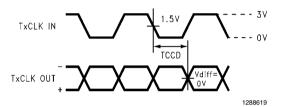


FIGURE 9. DS90C363 (Transmitter) Clock In to Clock Out Delay (Falling Edge Strobe)

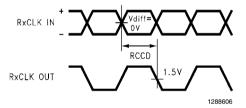


FIGURE 10. DS90CF364 (Receiver) Clock In to Clock Out Delay

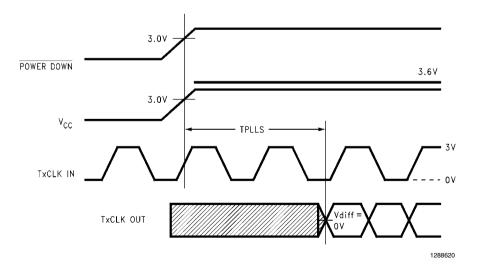


FIGURE 11. DS90C363 (Transmitter) Phase Lock Loop Set Time

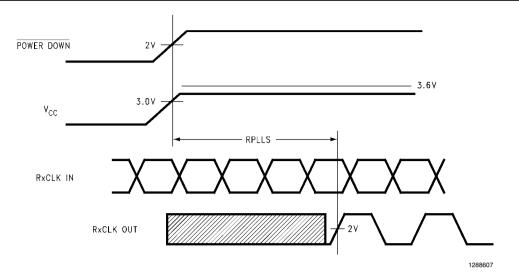


FIGURE 12. DS90CF364 (Receiver) Phase Lock Loop Set Time

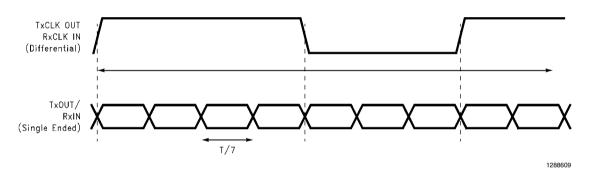


FIGURE 13. Seven Bits of LVDS in One Clock Cycle

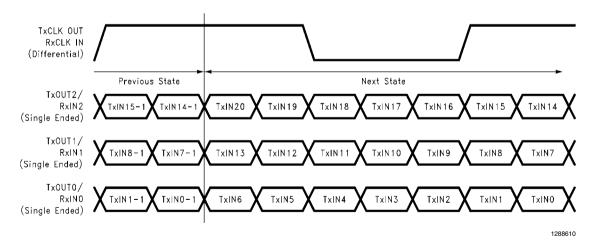


FIGURE 14. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs

9

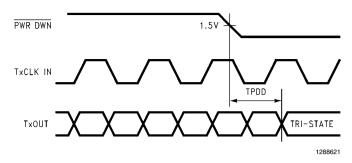


FIGURE 15. Transmitter Power Down Delay

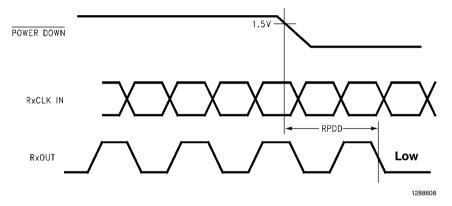


FIGURE 16. Receiver Power Down Delay

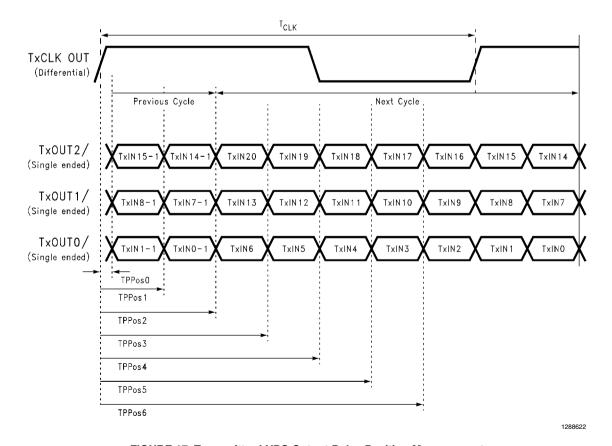


FIGURE 17. Transmitter LVDS Output Pulse Position Measurement

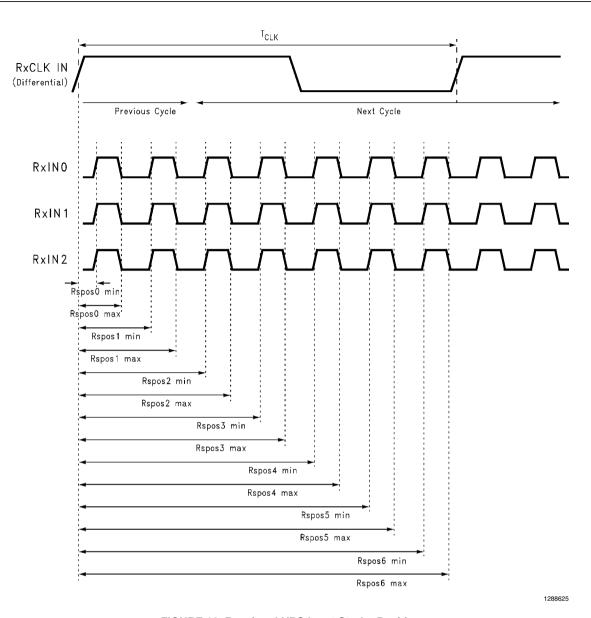
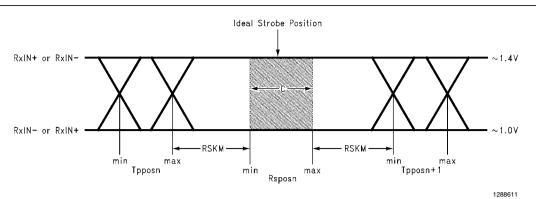



FIGURE 18. Receiver LVDS Input Strobe Position

C—Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max

Tppos—Transmitter output pulse position (min and max)

RSKM = Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) (Note Cycle-to-cycle jitter is less than 250 ps at 65 MHz.) + ISI (Inter-symbol interference) (Note ISI is dependent on interconnect length; may be zero.)

Cable Skew-typically 10 ps-40 ps per foot, media dependent

Note 10: Cycle-to-cycle jitter is less than 250 ps at 65 MHz.

Note 11: ISI is dependent on interconnect length; may be zero.

FIGURE 19. Receiver LVDS Input Skew Margin

DS90C363 Pin Descriptions — FPD Link Transmitter

Pin Name	I/O	No	Description
TxIN	1	21	TTL level input. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines—FPLINE, FPFRAME and
			DRDY (also referred to as HSYNC, VSYNC, Data Enable).
TxOUT+	0	3	Positive LVDS differential data output.
TxOUT-	0	3	Negative LVDS differential data output.
FPSHIFT IN	I	1	TTL level clock input. The falling edge acts as data strobe. Pin name TxCLK IN.
R_FB	I	1	Programmable strobe select.
RTxCLK OUT+	0	1	Positive LVDS differential clock output.
TxCLK OUT-	0	1	Negative LVDS differential clock output.
PWR DWN	1	1	TTL level input. When asserted (low input) TRI-STATES the outputs, ensuring low current at power down.
V _{cc}	1	3	Power supply pins for TTL inputs.
GND	1	4	Ground pins for TTL inputs.
PLL V _{CC}	1	1	Power supply pin for PLL.
PLL GND	I	2	Ground pins for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs.
LVDS GND	I	3	Ground pins for LVDS outputs.

DS90CF364 Pin Descriptions — FPD Link Receiver

Pin Name	I/O	No	Description
RxIN+	I	3	Positive LVDS differential data inputs.
RxIN-	I	3	Negative LVDS differential data inputs.
RxOUT	0	21	TTL level data outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines—FPLINE, FPFRAME, DRDY (also referred to as HSYNC, VSYNC, Data Enable).
RxCLK IN+	I	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
FPSHIFT OUT	0	1	TTL level clock output. The falling edge acts as data strobe. Pin name RxCLK OUT.
PWR DWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	T	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	П	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.

DS90CF364 Pin Diagrams 48 V_{CC} RxOUT17 • - RXOUT16 DS90C363 RxOUT18 RxOUT15 GND 45 RxOUT14 TxIN4 <u>48</u> TxIN3 RxOUT19 ${\rm v}_{\rm cc}$ TxIN2 RxOUT20 - GND 43 TxIN5 GND N/C. RxOUT13 LVDS GND · V_{CC} TxIN6 TxIN1 44 TxIN0 41 RXOUT12 RxIN0-GND . 43 N/C RxIN0+ RxOUT11 TxIN7 39 42 LVDS GND 10 RxIN1-38 GND RxOUT10 TxIN8 41 Tx0UT0-RxIN1+ V_{CC} 40 TxOUTO+ LVDS $V_{\rm CC}$ - RxOUT9 TxIN9 36 39 TxOUT1-36 V_{CC} 35 RxOUT8 LVDS GNĎ TxIN10 38 TxOUT1+ RxIN2-34 RXOUT7 GND 37 LVDS V_{CC} RxIN2+ RxOUT6 TxIN11 16 36 LVDS GND RxCLK IN-TxIN12 35 TxOUT2-RxCLK IN+ - GND R_FB 34 TxOUT2+ LVDS GND Rx0UT5 TxIN13 PLL GND RxOUT4 33 TxCLK OUT-PLL V_{CC} 29 TxIN14 28 V_{CC} RxOUT3 32 TxCLK OUT+ GND PLL GND . UDS GND PWR DWN 23 - RxOUT2 TxIN15 30 PLL GND - RxOUT1 TxIN16 RxCLK OUT . 29 PLL V_{CC} RxOUTO . GND TxIN17

25 TxIN20 1288623

28 PLL GND

27 PWR DWN

26 TxCLK IN

Truth Table

TxIN19 GND 24

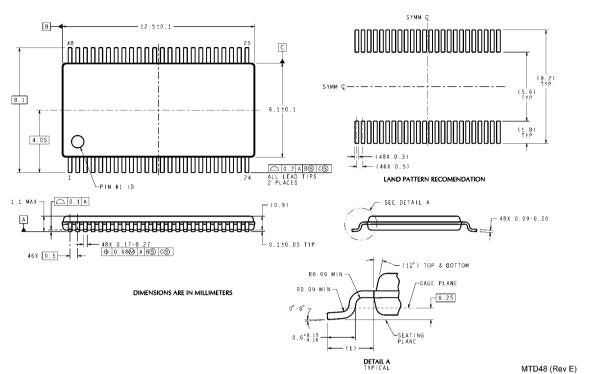
 V_{CC} TxIN 18 22

TABLE 1. Programmable Transmitter

Pin	Condition	Strobe Status
R_FB	$R_FB = V_{CC}$	Rising edge strobe
R_FB	R_FB = GND	Falling edge strobe

Applications Information

The DS90C363 and DS90CF364 are backward compatible with the existing 5V FPD Link transmitter/receiver pair (DS90CF563 and DS90CF564). To upgrade from a 5V to a 3.3V system the following must be addressed:


- Change 5V power supply to 3.3V. Provide this supply to the V_{CC} , LVDS V_{CC} and PLL V_{CC} of both the transmitter and receiver devices. This change may enable the removal of a 5V supply from the system, and power may be supplied from an existing 3V power source.
- The DS90C363 (transmitter) incorporates a rise/fall strobe select pin. This select function is on pin 14, formerly a V_{CC} connection on the 5V products. When the rise/fall strobe select pin is connected to V cc, the part is configured with a rising edge strobe. In a system currently using a 5V rising edge strobe transmitter

(DS90CR563), no layout changes are required to accommodate the new rise/fall select pin on the 3.3V transmitter. The V_{CC} signal may remain at pin 14, and the device will be configured with a rising edge strobe. When converting from a 5V falling edge transmitter (DS90CF563) to the 3V transmitter a minimal board layout change is necessary. The 3.3V transmitter will not be configured with a falling edge strobe if V_{CC} remains connected to the select pin. To guarantee the 3.3V transmitter functions with a falling edge strobe pin 14 should be connected to ground OR left unconnected. When not connected (left open) and internal pull-down resistor ties pin 14 to ground, thus configuring the transmitter with a falling edge strobe.

1288613

The DS90C363 transmitter input and control inputs accept 3.3V TTL/CMOS levels. They are not 5V tolerant.

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Molded Thin Shrink Small Outline Package, JEDEC Dimensions show in millimeters
Order Number DS90C363MTD and DS90CF364MTD
NS Package Number MTD48

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com