National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

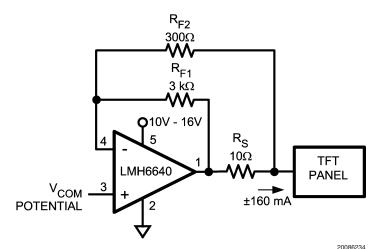
information and details on our current products and services.

0.35Ω

LMH6640 TFT-LCD Single, 16V Rail-to-Rail High Output **Operational Amplifier General Description** Features

The LMH[™]6640 is a voltage feedback operational amplifier with a rail-to-rail output drive capability of 100 mA. Employing National's patented VIP10 process, the LMH6640 delivers a bandwidth of 190 MHz at a current consumption of only 4mA. An input common mode voltage range extending to 0.3V below the V- and to within 0.9V of V+, makes the LMH6640 a true single supply op-amp. The output voltage range extends to within 100 mV of either supply rail providing the user with a dynamic range that is especially desirable in low voltage applications.

The LMH6640 offers a slew rate of 170 V/µs resulting in a full power bandwidth of approximately 28 MHz with 5V single supply (2 V_{PP} , -1 dB). Careful attention has been paid to ensure device stability under all operating voltages and modes. The result is a very well behaved frequency response characteristic for any gain setting including +1, and excellent specifications for driving video cables including total harmonic distortion of -64 dBc @ 5 MHz, differential gain of 0.12% and differential phase of 0.12°.


 $(V_{S} = 16V, R_{L} = 2 k\Omega \text{ to } V^{+}/2, 25^{\circ}C, \text{ Typical Values Unless}$ Specified) 4 mA

- Supply current (no load)
- Output resistance (closed loop 1 MHz)
- 190 MHz ■ -3 dB BW (A_V = 1)
- Settling time (±0.1%, 2 V_{PP}) 35 ns Input common mode voltage -0.3V to 15.1V
- Output voltage swing 100 mV from rails
- Linear output current ±100 mA
- Total harmonic distortion (2 V_{PP}, 5 MHz) -64 dBc
- Fully characterized for: 5V & 16V
- No output phase reversal with CMVR exceeded
- **Differential gain** ($R_1 = 150\Omega$) 0.12%
- 0.12° • Differential phase ($R_L = 150\Omega$)

Applications

- TFT panel V_{COM} buffer amplifier
- Active filters
- CD/DVD ROM
- ADC buffer amplifier
- Portable video
- Current sense buffer

Typical Application

Typical Application as a TFT Panel V_{COM} Driver

MH6640 TFT-LCD Single, 16V Rail-to-Rail High Output Operational Amplifier

LMH[™] is a trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	2 KV
Machine Model	200V
V _{IN} Differential	±2.5V
Input Current	±10 mA
Supply Voltages (V ⁺ - V ⁻)	18V
Voltage at Input/Output Pins	V^+ +0.8V, V^- -0.8V
Storage Temperature Range	−65°C to +150°C

Junction Temperature (Note 4)	+150°C
Soldering Information	
Infrared or Convection (20 sec.)	235°C
Wave Soldering (10 sec.)	260°C

Operating Ratings (Note 3)

Supply Voltage (V ⁺ - V ⁻)	4.5V to 16V
Operating Temperature Range	–40°C to +85°C
(Note 4)	
Package Thermal Resistance (Note 4)	
5-Pin SOT23	265°C/W

5V Electrical Characteristics

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 k\Omega$ to $V^+/2$. **Boldface** limits apply at temperature extremes. (Note 9)

Symbol	Parameter			Min	Тур	Max	Units	
				(Note 6)	(Note 5)	(Note 6)		
BW	-3 dB Bandwidth	$A_V = +1 \ (R_L = 100\Omega)$			150		MHz	
		$A_{V} = -1 \ (R_{L} = 100\Omega)$			58		IVITZ	
BW _{0.1 dB}	0.1 dB Gain Flatness	$A_V = -3$			18		MHz	
FPBW	Full Power Bandwidth	$A_V = +1, V_{OUT} = 2 V_{PP}, -1$	dB		28		MHz	
LSBW	-3 dB Bandwidth	$A_V = +1, V_O = 2 V_{PP} (R_L = -1)$	100Ω)		32		MHz	
GBW	Gain Bandwidth Product	$A_V = +1, (R_L = 100\Omega)$			59		MHz	
SR	Slew Rate (Note 8)	$A_V = -1$			170		V/µs	
e _n	Input Referred Voltage Noise		f = 10 kHz		23		nV/	
			f = 1 MHz		15		√Hz	
i _n	Input Referred Current Noise		f = 10 kHz		1.1		pA/	
			f = 1 MHz		0.7		√Hz	
THD	Total Harmonic Distortion	f = 5 MHz, V_O = 2 V_{PP} , A_V = +2 R _L = 1 kΩ to V ⁺ /2			-65		dBc	
t _s	Settling Time	$V_{\rm O} = 2 V_{\rm PP}, \pm 0.1\%, A_{\rm V} = -1$			35		ns	
V _{OS}	Input Offset Voltage				1	5 7	mV	
Ι _Β	Input Bias Current (Note 7)				-1.2	-2.6 -3.25	μA	
l _{os}	Input Offset Current				34	800 1400	nA	
CMVR	Common Mode Input Voltage Range	CMRR ≥ 50 dB			-0.3	-0.2 - 0.1	V	
				4.0	4.1		V	
				3.6				
CMRR	Common Mode Rejection Ratio	$V^- \leq V_{CM} \leq V^+ - 1.5 V$		72	90		dB	
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 4 V_{PP}, R_{L} = 2 k\Omega$ to V	+/2	86 82	95		dB	
		$V_{O} = 3.75 V_{PP}, R_{L} = 150\Omega$ t	to V+/2	74 70	78			
Vo	Output Swing High	$R_L = 2 k\Omega$ to V ⁺ /2		4.90	4.94			
-		$R_{\rm L} = 150\Omega$ to V ⁺ /2		4.75	4.80			
	Output Swing Low	$R_L = 2 k\Omega$ to V ⁺ /2			0.06	0.10	V	
		$R_1 = 150\Omega$ to V ⁺ /2			0.20	0.25		

5V Electrical Characteristics (Continued)

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 k\Omega$ to $V^+/2$. Boldface limits apply at temperature extremes. (Note 9)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
			(Note 6)	(Note 5)	(Note 6)		
I _{SC}	Output Short Circuit Current	Sourcing to V ⁺ /2	100	130			
	(Note 3)		75			mA	
		Sinking from V ⁺ /2	100	130		ША	
			70				
I _{OUT}	Output Current	$V_{\rm O}$ = 0.5V from either Supply		+75/-90		mA	
PSRR	Power Supply Rejection Ratio	$4V \le V^+ \le 6V$	72	80		dB	
I _S	Supply Current	No Load		3.7	5.5	mA	
					8.0		
R _{IN}	Common Mode Input	$A_V = +1$, f = 1 kHz, $R_S = 1 M\Omega$		15		MΩ	
	Resistance					10122	
CIN	Common Mode Input	$A_V = +1, R_S = 100 \text{ k}\Omega$		1.7		pF	
	Capacitance					рі	
R _{OUT}	Output Resistance Closed Loop	$R_F = 10 \text{ k}\Omega$, f = 1 kHz, $A_V = -1$		0.1		Ω	
		$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ MHz}, A_V = -1$		0.4		Ω	
DG	Differential Gain	NTSC, $A_V = +2$		0.13		%	
		$R_L = 150\Omega$ to V ⁺ /2					
DP	Differential Phase	NTSC, $A_V = +2$		0.10		dag	
		$R_L = 150\Omega$ to V ⁺ /2				deg	

16V Electrical Characteristics

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 16V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 \text{ k}\Omega$ to $V^+/2$. Boldface limits apply at temperature extremes. (Note 9)

Symbol	mbol Parameter Conditions		Min	Тур	Max	Units		
				(Note 6)	(Note 5)	(Note 6)		
BW	-3 dB Bandwidth	$A_{V} = +1 \ (R_{L} = 100\Omega)$			190			
		$A_{V} = -1 \ (R_{L} = 100\Omega)$			60		MHz	
BW _{0.1 dB}	0.1 dB Gain Flatness	$A_V = -2.7$			20		MHz	
LSBW	-3 dB Bandwidth	$A_V = +1, V_O = 2 V_{PP} (R_L =$	100Ω)		35		MHz	
GBW	Gain Bandwidth Product	$A_V = +1, (R_L = 100\Omega)$			62		MHz	
SR	Slew Rate (Note 8)	$A_V = -1$			170		V/µs	
e _n	Input Referred Voltage Noise		f = 10 kHz		23		nV/√Hz	
			f = 1 MHz		15		1 nV/ √HZ	
i _n	Input Referred Current Noise		f = 10 kHz		1.1		pA/ √Hz	
			f = 1 MHz		0.7			
THD	Total Harmonic Distortion	$f = 5 \text{ MHz}, V_0 = 2 V_{PP}, A_V$	= +2		-64		dBc	
		$R_L = 1 \ k\Omega$ to V ⁺ /2					ubc	
t _s	Settling Time	$V_{O} = 2 V_{PP}, \pm 0.1\%, A_{V} = -1$			35		ns	
Vos	Input Offset Voltage				1	5	mV	
						7		
I _B	Input Bias Current (Note 7)				-1	-2.6	μΑ	
						-3.5	μ	
l _{os}	Input Offset Current				34	800	nA	
						1800		
CMVR	Common Mode Input Voltage	CMRR ≥ 50 dB			-0.3	-0.2	- v	
	Range					-0.1		
				15.0	15.1			
				14.6				
CMRR	Common Mode Rejection Ratio	$V^- \le V_{CM} \le V^+ - 1.5V$		72	90		dB	

LMH6640

16V Electrical Characteristics (Continued)

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 16V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 k\Omega$ to $V^+/2$. **Boldface** limits apply at temperature extremes. (Note 9)

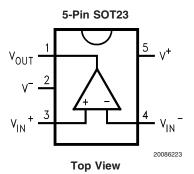
Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
A _{VOL}	Large Signal Voltage Gain	V_{O} = 15 V_{PP} , R_{L} = 2 k Ω to V ⁺ /2	86 82	95		dB
		V_{O} = 14 V_{PP} , R_{L} = 150 Ω to V ⁺ /2	74 70	78		uв
Vo	Output Swing High	$R_L = 2 k\Omega$ to V ⁺ /2	15.85	15.90		
		$R_L = 150\Omega$ to V ⁺ /2	15.45	15.78		V
	Output Swing Low	$R_L = 2 k\Omega$ to V ⁺ /2		0.10	0.15	V
		$R_L = 150\Omega$ to V ⁺ /2		0.21	0.55	
I _{SC}	Output Short Circuit Current (Note 3)	Sourcing to V ⁺ /2	60 30	95		
		Sinking from V ⁺ /2	50 15	75		mA
I _{OUT}	Output Current	$V_{O} = 0.5V$ from either Supply		±100		mA
PSRR	Power Supply Rejection Ratio	$15V \le V^+ \le 17V$	72	80		dB
I _S	Supply Current	No Load		4	6.5 7.8	mA
R _{IN}	Common Mode Input Resistance	$A_V = +1$, f = 1 kHz, $R_S = 1 M\Omega$		32		MΩ
C _{IN}	Common Mode Input Capacitance	$A_V = +1, R_S = 100 \text{ k}\Omega$		1.7		pF
R _{OUT}	Output Resistance Closed Loop	$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ kHz}, A_V = -1$		0.1		0
		$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ MHz}, A_V = -1$		0.3		Ω
DG	Differential Gain	NTSC, $A_V = +2$ $R_L = 150\Omega$ to V ⁺ /2		0.12		%
DP	Differential Phase	NTSC, $A_V = +2$ $R_L = 150\Omega$ to V ⁺ /2		0.12		deg

Note 1: Absolute maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. **Note 2:** Human body model, 1.5 k Ω in series with 100 pF. Machine Model, 0Ω in series with 200 pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150 °C Short circuit test is a momentary test. Output short circuit duration is infinite for $V_S < 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5 ms.

Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)}^T T_A) / \theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Typical Values represent the most likely parametric norm.

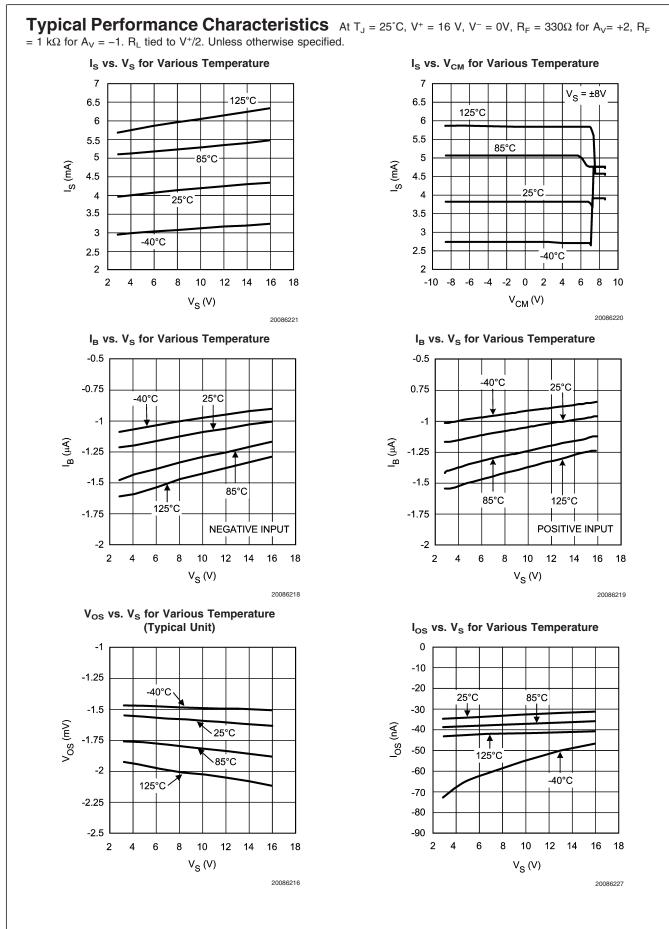

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Positive current corresponds to current flowing into the device.

Note 8: Slew rate is the average of the rising and falling slew rates

Note 9: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$.

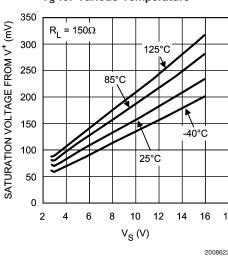
Connection Diagram

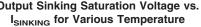


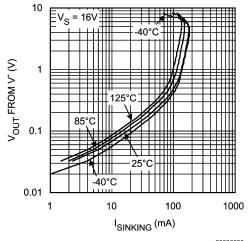
Ordering Information

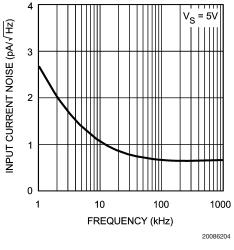
Package	Part Number	Package Marking	Package Marking Transport Media	
5-Pin SOT23	LMH6640MF	۸Ц1۸	1k Units Tape and Reel	MF05A
	LMH6640MFX	AH1A	3k Units Tape and Reel	MF03A

LMH6640

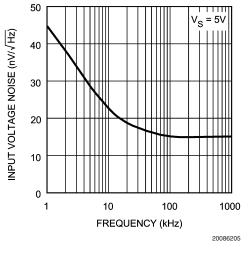



SATURATION VOLTAGE FROM V⁻ (mV) 250 85°C 85°C 200 150 -40°C 40°C 100 25°C 25°C 50 0 6 2 4 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 V_S (V) $V_{S}(V)$ 20086224 20086228 **Output Sinking Saturation Voltage vs. Output Sourcing Saturation Voltage vs.** ISOURCING for Various Temperature 10 16V 16V ٧s C V_{OUT} FROM V⁺ (V) 1 125°C 125 85 85°C °C 0.1 25°C 25°C -40°C -40°C 11111 0.01 10 100 10 100 1000 1000 1 1 ISINKING (mA) ISOURCING (mA) 20086230 20086231 Input Current Noise vs. Frequency Input Voltage Noise vs. Frequency 50 ٧_s = 5\ ٧q 40 30 20 10

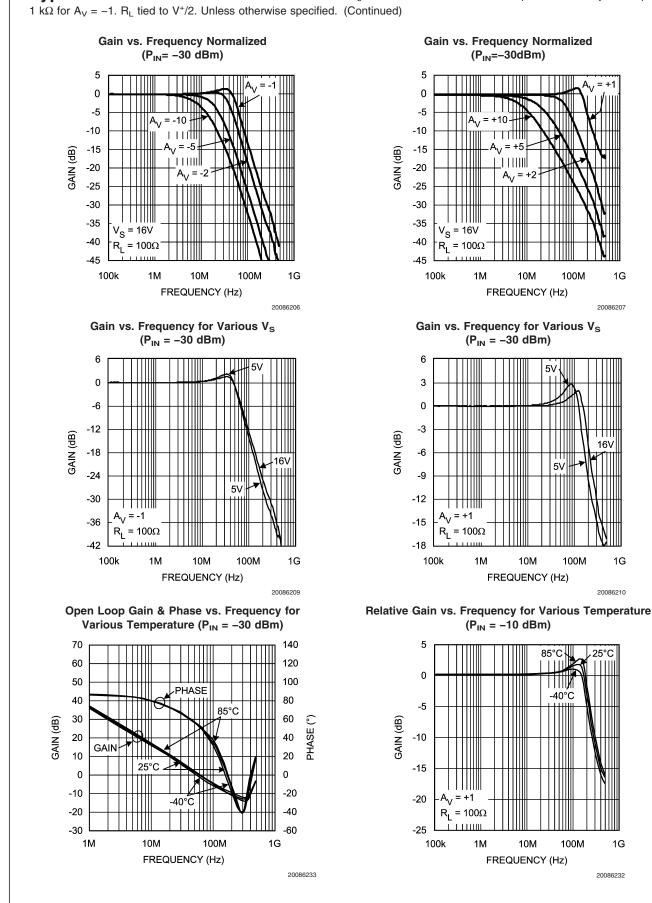

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0$ V, $R_F = 330\Omega$ for $A_{V}= +2$, $R_F = -25^{\circ}C$, $V^+ = 16$ V, $V^- = 0$ V, $R_F = -230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = 0$ V, $R_{F} = -230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = -0$ V, $R_{F}=-230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = -0$ V, $R_{F}=-230\Omega$ for $A_{V}=-20$ V, $R_{F}=-230\Omega$ for $A_{V}=-20$ V, $R_{F}=-230\Omega$ for $A_{V}=-20$ V, $R_{F}=-200$ V,


Positive Output Saturation Voltage vs. V_s for Various Temperature

1 k Ω for A_V = -1. R_L tied to V⁺/2. Unless otherwise specified. (Continued)

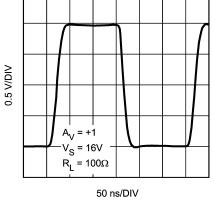


Negative Output Saturation Voltage vs. V_S for Various Temperature


125°C

300

R_L = 150Ω



Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0$ V, $R_F = 330\Omega$ for $A_{V}= +2$, $R_F = -25^{\circ}C$, $V^+ = 16$ V, $V^- = 0$ V, $R_F = -230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = 0$ V, $R_{F} = -230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = -0$ V, $R_{F}=-230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = -0$ V, $R_{F}=-230\Omega$ for $A_{V}=-20$ V, $R_{F}=-200$ V, R_{F}

Large Signal Pulse Response

A_V = -1

V_S = 5V

R_L = 2 kΩ

C₁ = 10 pF

50 ns/DIV

Large Signal Transition

1.5

50 mV/DIV

20086212

20086215

 $R_L = 2 k\Omega$ $R_L = 2 k\Omega$ 1 1 0.5 0.5 OUTPUT (V) OUTPUT (V) 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 TIME (10 ns/DIV) TIME (10 ns/DIV) 20086213 20086214 **Small Signal Pulse Response Small Signal Pulse Response**

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1$ k Ω for $A_V = -1$. R_L tied to V⁺/2. Unless otherwise specified. (Continued)

Large Signal Transition

A_V = +1

 $V_{S} = 5V$

 $R_L = 2 k\Omega$

C_L = 10 pF

50 ns/DIV

Large Signal Pulse Response

A_V = +1

V_S = +5V R_L = 100Ω

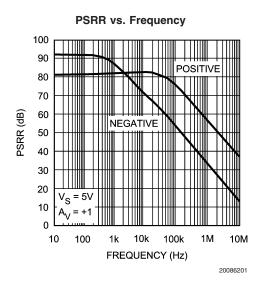
50 ns/DIV

20086208

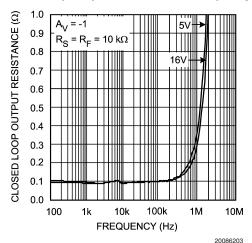
20086211

1.5

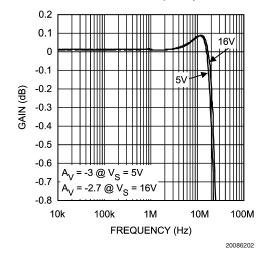
50 mV/DIV

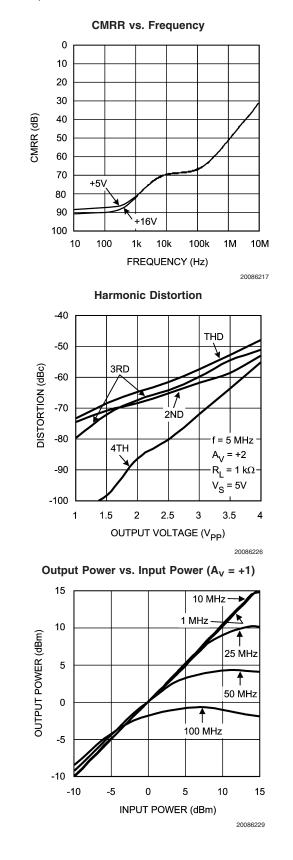

0.5 V/DIV

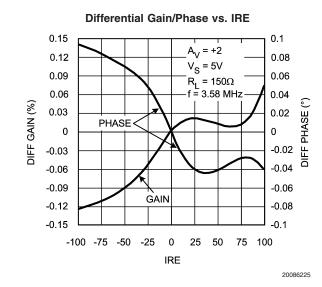
LMH6640


www.national.com

LMH6640


Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for A_{V} = +2, $R_F = 1$ k Ω for $A_{V} = -1$. R_L tied to V⁺/2. Unless otherwise specified. (Continued)





0.1 dB Gain Flatness vs. Frequency Normalized

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1 \ k\Omega$ for $A_V = -1$. R_L tied to $V^+/2$. Unless otherwise specified. (Continued)

Application Notes

With its high output current and speed, one of the major applications for the LMH6640 is the V_{COM} driver in a TFT panel. This application is a specially taxing one because of the demands it places on the operational amplifier's output to drive a large amount of bi-directional current into a heavy capacitive load while operating under unity gain condition, which is a difficult challenge due to loop stability reasons. For a more detailed explanation of what a TFT panel is and what its amplifier requirements are, please see the Application Notes section of the LM6584 found on the web at: http://www.national.com/ds.cgi/LM/LM6584.pdf

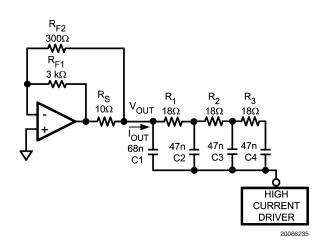

Because of the complexity of the TFT V_{COM} waveform and the wide variation in characteristics between different TFT panels, it is difficult to decipher the results of circuit testing in an actual panel. The ability to make simplifying assumptions about the load in order to test the amplifier on the bench allows testing using standard equipment and provides familiar results which could be interpreted using standard loop analysis techniques. This is what has been done in this application note with regard to the LMH6640's performance when subjected to the conditions found in a TFT $V_{\rm COM}$ application.

Figure 1, shows a typical simplified V_{COM} application with the LMH6640 buffering the V_{COM} potential (which is usually around 1/₂ of panel supply voltage) and looking into the simplified model of the load. The load represents the cumulative effect of all stray capacitances between the V_{COM} node and both row and column lines. Associated with the capacitances shown, is the distributed resistance of the lines to each individual transistor switch. The other end of this R-C ladder is driven by the column driver in an actual panel and here is driven with a low impedance MOSFET driver (labeled "High Current Driver") for the purposes of this bench test to simulate the effect that the column driver exerts on the V_{COM} load.

The modeled TFT V_{COM} load, shown in *Figure 1*, is based on the following simplifying assumptions in order to allow for easy bench testing and yet allow good matching results obtained in the actual application:

- The sum of all the capacitors and resistors in the R-C ladder is the total V_{COM} capacitance and resistance respectively. This total varies from panel to panel; capacitance could range from 50 nF-200 nF and the resistance could be anywhere from 20Ω - 100Ω .
- The number of ladder sections has been reduced to a number (4 sections in this case) which can easily be put together in the lab and which behaves reasonably close to the actual load.

In this example, the LMH6640 was tested under the simulated conditions of total 209 nF capacitance and 54Ω as shown in *Figure 1*.

FIGURE 1. LMH6640 in a $V_{\rm COM}$ Buffer Application with Simulated TFT Load

 $\rm R_S$ is sometimes used in the panel to provide additional isolation from the load while $\rm R_{F2}$ provides a more direct feedback from the V_{COM}. $\rm R_{F1}, \rm R_{F2},$ and $\rm R_S$ are trimmed in the actual circuit with settling time and stability trade-offs considered and evaluated. When tested under simulated load conditions of *Figure 1*, here are the resultant voltage and current waveforms at the LMH6640 output:

Application Notes (Continued)

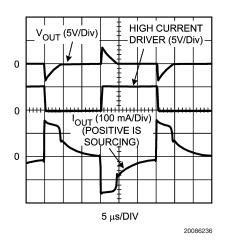


FIGURE 2. V_{COM} Output, High Current Drive Waveform, & LMH6640 Output Current Waveforms

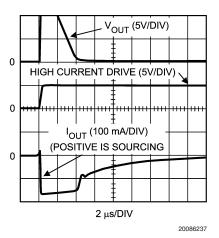
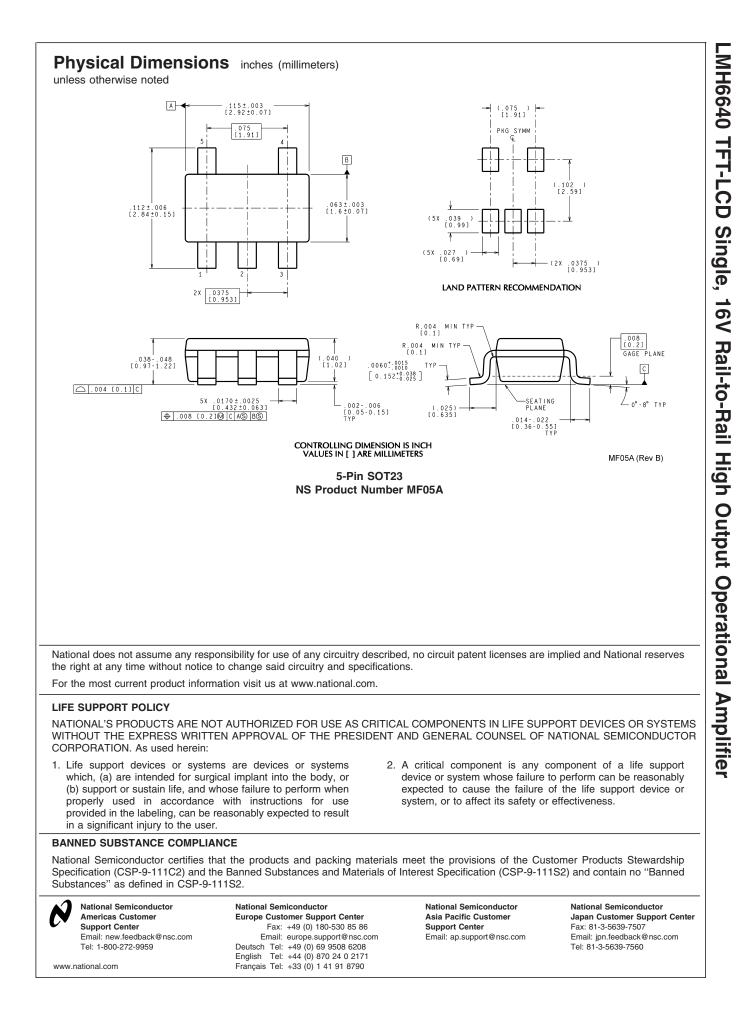



FIGURE 3. Expanded View of Figure 2 Waveforms showing LMH6640 Current Sinking 1/2 Cycle

As can be seen, the LMH6640 is capable of supplying up to 160 mA of output current and can settle the output in 4.4 $\mu s.$ The LMH6640 is a cost effective amplifier for use in the TFT V_{COM} application and is made even more attractive by its large supply voltage range and high output current. The

combination of all these features is not readily available in the market, especially in the space saving SOT23-5 package. All this performance is achieved at the low power consumption of 65 mW which is of utmost importance in today's battery driven TFT panels.

LMH6640

