

Low-Noise LVDS Clock Generator

Features

■ Output: One low-voltage differential signal (LVDS) output pair

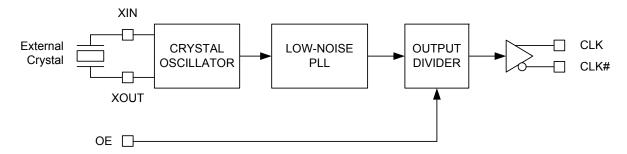
■ Output frequency: 125 MHz

■ Input: 25-MHz external crystal

■ RMS phase jitter:

☐ At 125 MHz (12 kHz to 20 MHz offset): 0.65 ps typical

■ Package: Pb-free 8-pin thin shrunk small outline package (TSSOP)


■ Supply voltage: 3.3 V or 2.5 V

■ Temperature range: Commercial or industrial

Functional Description

The CY2XL13 is a phase-locked loop (PLL)-based high-performance clock generator that uses Cypress's low-noise voltage control oscillator (VCO) technology to achieve less than 1-ps typical RMS phase jitter. The CY2XL13 uses an external crystal reference input to generate one LVDS output pair, which can be asynchronously enabled/disabled with an OE pin. The device operates at 3.3 V or 2.5 V.

Logic Block Diagram

Contents

Pinout	;
Pin Definitions	
Frequency Table	3
Absolute Maximum Conditions	
Operating Conditions	
DC Electrical Characteristics	
AC Electrical Characteristics	
Crystal Characteristics	
Switching Waveforms	
Termination Circuits	
Application Information	
Power Supply Filtering Techniques	
Board Layout and OE Pin	
Termination for LVDS Output	
Crystal Interface	

Ordering information	10
Ordering Code Definitions	10
Package Drawing and Dimensions	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC® Solutions	14
Cypress Developer Community	14
Technical Support	14

Pinout

Figure 1. 8-pin TSSOP pinout

VDD	1	8	VDD
VSS	2	7	CLK
XOUT	3	6	CLK#
XIN	4	5	OE

Pin Definitions

8-pin TSSOP

Pin Number	Pin Name	I/O Type	Description
1, 8	VDD	Power	3.3-V or 2.5-V power supply. All supply current flows through pin 1
2	VSS	Power	Ground
3, 4	XOUT, XIN	XTAL output and input	Parallel resonant crystal interface
5	OE	CMOS input	Output enable: When high, the output is enabled. When low, the output is high impedance.
6, 7	CLK#, CLK	LVDS output	Differential clock output

Frequency Table

Part Number	Crystal Fraguency	Output Frequency	Pin 5 Function	RMS Phase Jitter (Random	
rait Nullibei	Crystal Frequency	Output i requesicy	Fill 31 diletion	Offset Range	Jitter (Typical)
CY2XL13ZXC01	25 MHz	125 MHz	OE	12 kHz to 20 MHz	0.65 ps
CY2XL13ZXI01					

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	Supply voltage		-0.5	4.4	V
V _{IN} ^[1]	Input voltage, DC	Relative to V _{SS}	-0.5	V _{DD} + 0.5	V
T _S	Temperature, Storage	Non operating	-65	150	°C
T _J	Temperature, Junction		-	135	°C
ESD _{HBM}	Electrostatic discharge (ESD) protection (human body model)	JEDEC STD 22-A114-B	2000	-	V
UL-94	Flammability rating	At 1/8 in.	V-0		_
$\Theta_{JA}^{[2]}$	Thermal resistance, junction to	0 m/s airflow	10	00	°C/W
	ambient	1 m/s airflow	g)1	
		2.5 m/s airflow	8	37	

Operating Conditions

Parameter	Description	Min	Max	Unit
V_{DD}	3.3-V supply voltage	3.135	3.465	V
	2.5-V supply voltage	2.375	2.625	V
T _A	Ambient temperature, commercial	0	70	°C
	Ambient temperature, industrial	-40	85	°C
T _{PU}	Power-up time for all V_{DD} to reach minimum specified voltage (ensure power ramp is monotonic)	0.05	500	ms

Document Number: 001-63177 Rev. *A Page 4 of 14

The voltage on any input or I/O pin cannot exceed the V_{DD} pins during power-up.
 Simulated using Apache Sentinel TI software. The board is derived from the JEDEC multilayer standard. It measures 76 x 114 x 1.6 mm and has 4-layers of copper (2/1/1/2 oz.). The internal layers are 100% copper planes, while the top and bottom layers have 50% metallization. No vias are included in the model.

DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
I _{DD} ^[3]	Power supply current with output terminated	V _{DD} = 3.465 V, OE = V _{DD} , output terminated	_	_	120	mA
		V _{DD} = 2.625 V, OE = V _{DD} , output terminated	_	_	115	mA
V _{OD} ^[4]	LVDS differential output voltage	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 100 Ω between CLK and CLK#	247	-	454	mV
$\Delta V_{OD}^{[4]}$	Change in V _{OD} between complementary output states	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 100 Ω between CLK and CLK#	_	_	50	mV
V _{OS} ^[5]	LVDS offset output voltage	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 100 Ω between CLK and CLK#	1.125	-	1.375	V
ΔV _{OS}	Change in V _{OS} between complementary output states	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 100 Ω between CLK and CLK#	_	-	50	mV
loz	Output leakage current	Three-state output, unterminated, measured on one pin while floating the other pin, OE = V _{SS}	–35	_	35	μА
V _{IH}	Input high voltage, pin 5		0.7 × V _{DD}	_	_	V
V _{IL}	Input low voltage, pin 5		_	_	0.3 × V _{DD}	V
I _{IH}	Input high current, pin 5	Input = V _{DD}	_	_	115	μΑ
I _{IL}	Input low current, pin 5	Input = V _{SS}	-50	_	_	μA
C _{IN}	Input capacitance, pin 5		-	15	_	pF
C _{INX}	Pin capacitance, XIN and XOUT		-	4.5	_	pF

^{3.} I_{DD} includes ~4 mA of current that is dissipated externally in the output termination resistor.
4. Refer to Figure 2 on page 7.
5. Refer to Figure 3 on page 7.

AC Electrical Characteristics

Parameter [6, 7]	Description	Test Conditions	Min	Тур	Max	Unit
F _{OUT} ^[8]	Output frequency			See note 8		MHz
T _R , T _F ^[9]	Output rise or fall time	20% to 80% of full output swing	_	0.5	1.0	ns
$T_{\text{Jitter}(\phi)}^{[8, 10]}$	RMS phase jitter (random)	Offset = 12 kHz to 20 MHz	_	_	1.0	ps
T _{DC} ^[11]	Duty cycle	Measured at zero crossing point	45	_	55	%
T _{OHZ} ^[12]	Output disable time	Time from falling edge on OE to stopped outputs (asynchronous)	_	-	100	ns
T _{OE} ^[12]	Output enable time	Time from rising edge on OE to outputs at a valid frequency (asynchronous)	_	-	120	ns
T _{LOCK}	Startup time	Time for CLK to reach valid frequency measured from the time $V_{DD} = V_{DD(min)}$.	-	-	5	ms

Crystal Characteristics

Parameter	Description	Min	Max	Unit
MO	Mode of oscillation	Funda	mental	
F ^[8]	Frequency	See r	note 8	MHz
ESR	Equivalent series resistance – !		50	Ω
C _S	Shunt capacitance	_	7	pF

Notes

- Not 100% tested, guaranteed by design and characterization.
 Outputs are terminated with 100 Ω between CLK and CLK#. Refer to Figure 8 on page 8.
 Crystal frequency, output frequency, and typical phase jitter are listed in Frequency Table on page 3.
 Refer to Figure 4 on page 7.
- 10. Refer to Figure 7 on page 8.
 11. Refer to Figure 5 on page 7.
 12. Refer to Figure 6 on page 7.

Switching Waveforms

Figure 2. Output Voltage Swing

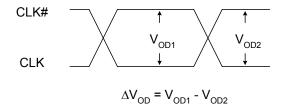


Figure 3. Output Offset Voltage



Figure 4. Output Rise or Fall Time

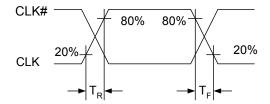
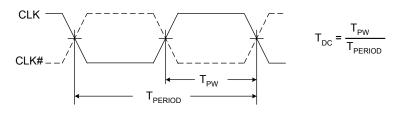
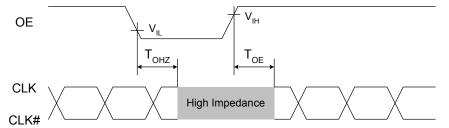
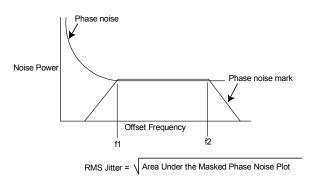


Figure 5. Duty Cycle Timing


Figure 6. Output Enable and Disable Timing

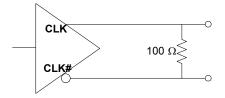
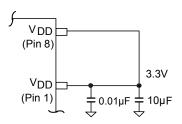

Switching Waveforms (continued)

Figure 7. RMS Phase Jitter

Termination Circuits

Figure 8. LVDS Termination



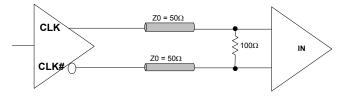
Application Information

Power Supply Filtering Techniques

As in any high-speed analog circuitry, noise at the power supply pins can degrade performance. To achieve optimum jitter performance, use good power-supply isolation practices. Figure 9 illustrates a typical filtering scheme. Because all the current flows through pin 1, the resistance and inductance between this pin and the supply is minimized. A 0.01 or 0.1 μF ceramic chip capacitor is also located close to this pin to provide a short and low-impedance AC path to ground. A 1 to 10 μF ceramic or tantalum capacitor is located in the general vicinity of this device and may be shared with other devices.

Figure 9. Power Supply Filtering

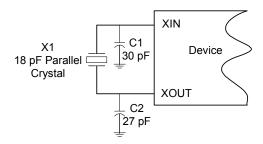
Board Layout and OE Pin


If the Output Enable (OE) function on pin 5 is not needed, it may be connected directly to the V_{DD} plane by a wide trace and multiple vias. This improves heat dissipation. A resistor between OE and V_{DD} is not necessary.

Termination for LVDS Output

The CY2XL13 is designed to drive a standard LVDS load with a $100-\Omega$ termination resistor. Figure 10 shows the standard termination scheme. The termination resistor should always be

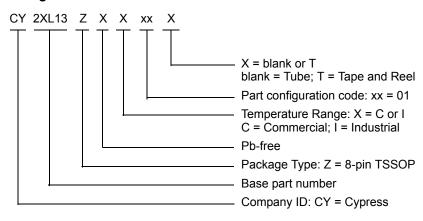
located very close to the receiver. To minimize signal reflections from the receiver, the differential impedance (Z_0) of the trace pair should be 100 Ω to match the termination resistor.


Figure 10. Output Termination

Crystal Interface

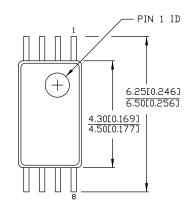
The CY2XL13 is characterized with 18 pF parallel resonant crystals. The capacitor values shown in Figure 11 are determined using an 18 pF parallel resonant crystal and are chosen to minimize the ppm error. Note that the optimal values for C1 and C2 depend on the parasitic trace capacitance and are, therefore, layout dependent.

Figure 11. Crystal Input Interface

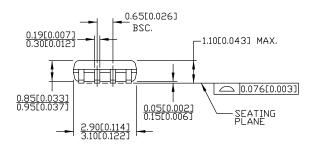


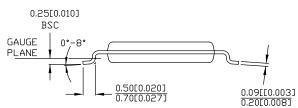
Ordering Information

Part Number	Package Description	Product Flow
CY2XL13ZXC01	8-pin TSSOP	Commercial, 0 °C to 70 °C
CY2XL13ZXC01T	8-pin TSSOP – Tape and Reel	Commercial, 0 °C to 70 °C
CY2XL13ZXI01	8-pin TSSOP	Industrial, –40 °C to 85 °C
CY2XL13ZXI01T	8-pin TSSOP – Tape and Reel	Industrial, –40 °C to 85 °C


Ordering Code Definitions

Package Drawing and Dimensions


Figure 12. 8-pin TSSOP (4.40 mm Body) Z08.173/ZZ08.173 Package Outline, 51-85093



DIMENSIONS IN MMEINCHESJ MIN. MAX.

REFERENCE JEDEC MO-153

	PART #
Z08.173	STANDARD PKG.
ZZ08.173	LEAD FREE PKG.

51-85093 *D

Acronyms

Acronym	Description		
ESD	Electrostatic Discharge		
FAE	Field Application Engineer		
HBM	Human Body Model		
JEDEC	EC Joint Electron Devices Engineering Council		
LCC	Leadless Chip Carrier		
LVDS	Low-Voltage Differential Signaling		
OE	Output Enable		
PCB	B Printed Circuit Board		
PLL	Phase-Locked Loop		
RMS	Root Mean Square		
TSSOP	SOP Thin Shrunk Small Outline Package		
VCO	Voltage Controlled Oscillator		
XO	Crystal Oscillator		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHz	megahertz		
μΑ	microampere		
μS	microsecond		
mA	milliampere		
mm	millimeter		
ns	nanosecond		
Ω	ohm		
%	percent		
pF	picofarad		
V	volt		
W	watt		

Document History Page

Document Title: CY2XL13, Low-Noise LVDS Clock Generator Document Number: 001-63177							
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change			
**	2991849	07/23/2010	KVM	New data sheet.			
*A	4118896	09/10/2013	CINM	Updated Package Drawing and Dimensions: spec 51-85093 – Changed revision from *C to *D. Updated in new template.			
				Completing Sunset Review.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2010-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.