FAIRCHILD

SEMICONDUCTOR

FQE10N20C 200V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

Features

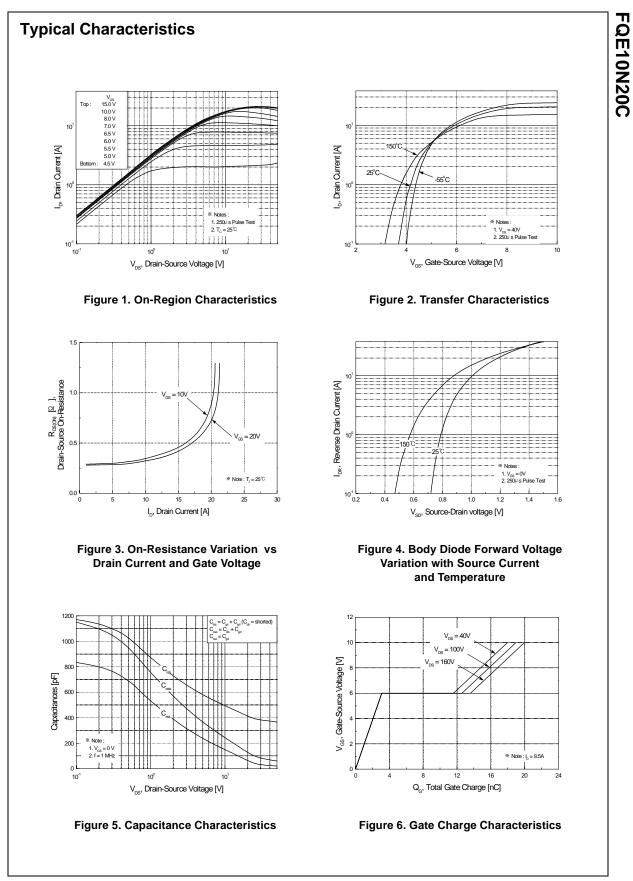
- + 4.0A, 200V, ${\sf R}_{DS(on)}$ = 0.36 Ω @V_{GS} = 10 V + Low gate charge (typical 20 nC)
- Low Crss (typical 40.5 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

D

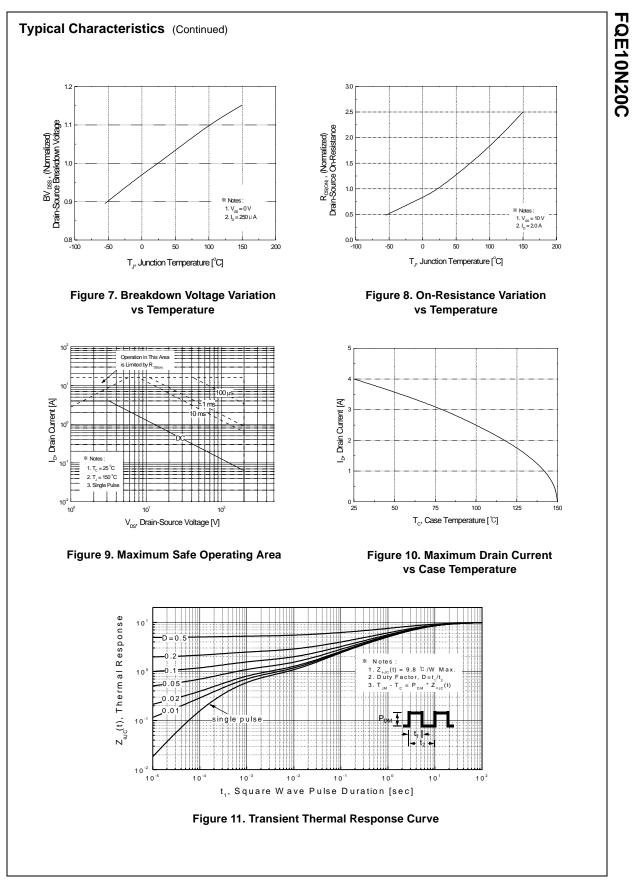
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

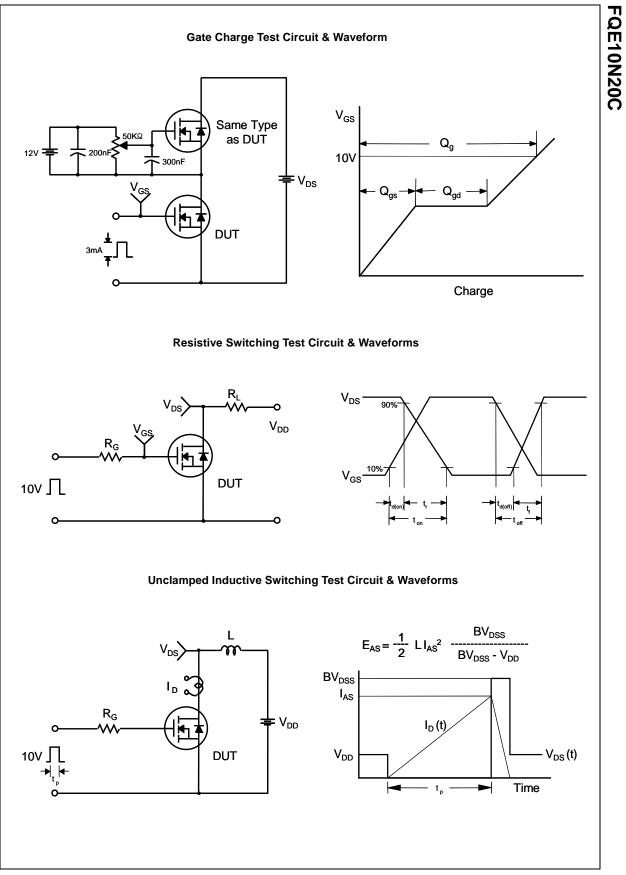
Symbol	Parameter		FQE10N20C	Units
V _{DSS}	Drain-Source Voltage		200	V
I _D	Drain Current - Continuous (T _C = 25°C	C)	4.0	А
	- Continuous (T _C = 100	°C)	2.5	А
I _{DM}	Drain Current - Pulsed	(Note 1)	16	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	320	mJ
I _{AR}	Avalanche Current	(Note 1)	4.0	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	1.28	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5	V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)		12.8	W
	- Derate above 25°C		0.10	W/°C
T _J , T _{STG}	Operating and Storage Temperature Ran	ge	-55 to +150	°C
Τ _L	Maximum lead temperature for soldering 1/8" from case for 5 seconds	purposes,	300	°C

Thermal Characteristics

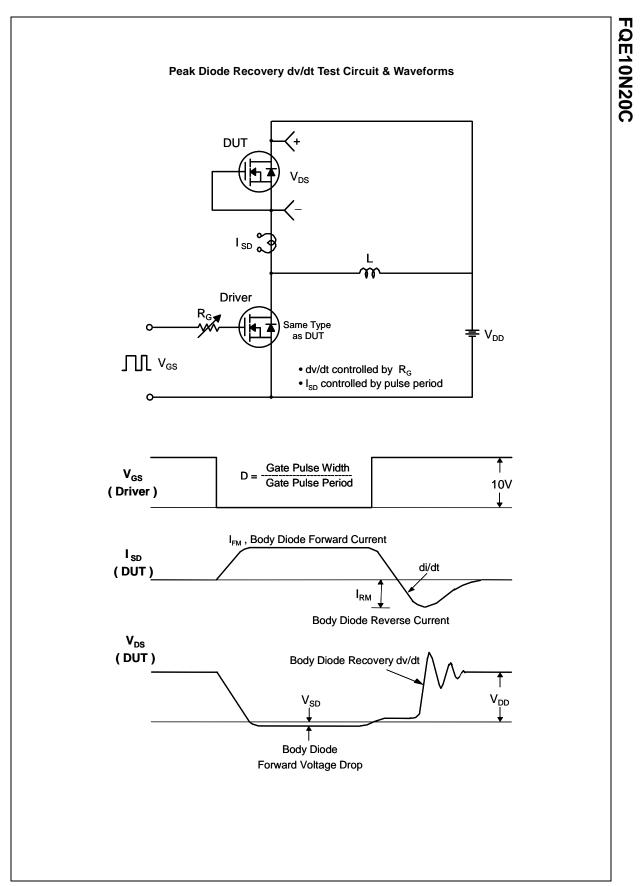

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		9.8	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

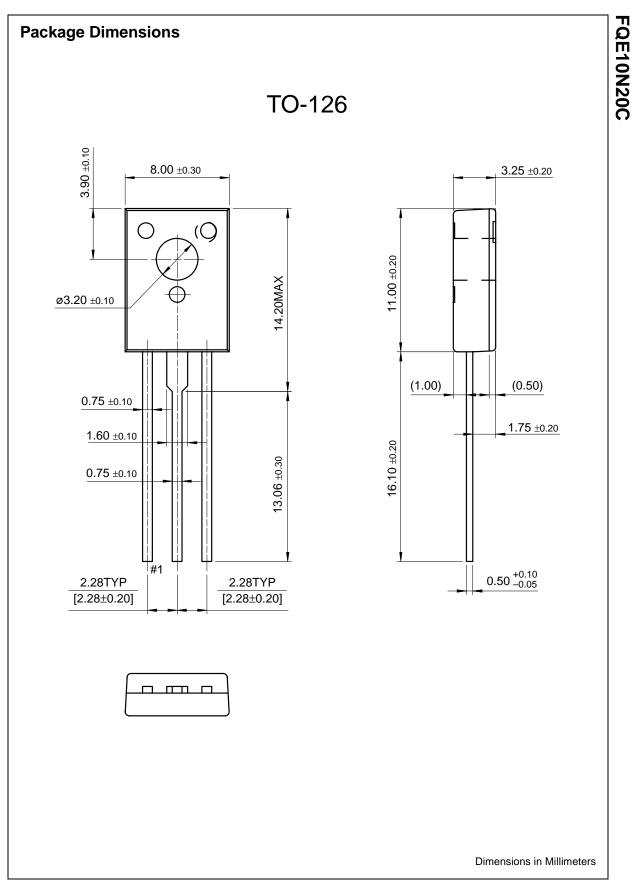
FQE10N20C


QFET[®]


Symbol	Parameter	Test Conditions	6	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		200			V
ΔBV _{DSS} ΔT _{.1}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced}$	to 25°C		0.28		V/°C
DSS		V _{DS} = 200 V, V _{GS} = 0 V			10	μA	
	Zero Gate Voltage Drain Current	V _{DS} = 160 V, T _C = 125°C)			100	μA
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
On Cha	racteristics						
/ _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.0 \text{ A}$			0.29	0.36	Ω
ĴFS	Forward Transconductance	V _{DS} = 40 V, I _D = 2.0 A	(Note 4)		4.5		S
Dynami C _{iss}	ic Characteristics	V			395	510	pF
Coss	Output Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$ f = 1.0 MHz			97	125	pF
- oss Crss	Reverse Transfer Capacitance	1 = 1.0 10112			40.5	53	pF
d(on) r	Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 100 \text{ V}, \text{ I}_{D} = 9.5 \text{ A},$ R _G = 25 Ω			11 92	30 190	ns ns
r	Turn-On Rise Time				92	190	ns
d(off)	Turn-Off Delay Time	-	(Note 4, 5)		70	150	ns
f	Turn-Off Fall Time		(1010 4, 0)		72	160	ns
ζ ^g	Total Gate Charge	$V_{DS} = 160 \text{ V}, \text{ I}_{D} = 9.5 \text{ A},$			20	26	nC
ג _{gs}	Gate-Source Charge	V _{GS} = 10 V	(Nata 4 E)		3.1		nC
2 _{gd}	Gate-Drain Charge		(Note 4, 5)		10.5		nC
Drain-S	ource Diode Characteristics ar	nd Maximum Rating	S				
S	Maximum Continuous Drain-Source Dic	ode Forward Current				4.0	А
SM	Maximum Pulsed Drain-Source Diode F					16	Α
/ _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 4.0 A$				1.5	V
rr	Reverse Recovery Time				158		ns
ל ^{ער}	Reverse Recovery Charge	dI _F / dt = 100 A/µs	(Note 4)		0.97		μC
Is I _{SM} V _{SD} t _{rr}	Maximum Continuous Drain-Source Dic Maximum Pulsed Drain-Source Diode F Drain-Source Diode Forward Voltage Reverse Recovery Time	ode Forward Current Forward Current				16 1.5 	

FQE10N20C




Rev.B, January 2004

Rev. B, January 2004

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] Across the board	FACT Quiet series [™] FAST [®] FASTr [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] I ² C [™] ImpliedDisconnect [™] ISOPLANAR [™] . Around the world. [™]	LittleFET [™] MICROCOUPLER [™] MicroFET [™] MiCROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™]	Power247 [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] SILENT SWITCHER [®] SMART START [™] SPM [™]	SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM
	. Around the world.™ hise™			VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

BUY

Datasheet

datasheet

PDF

<u></u>=- '

Download this

Home >> Find products >>

FQE10N20C

200V N-Channel Advance Q-FET C-Series

Contents

 General description Features Product status/pricing/packaging •Order Samples

Qualification Support

General description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

back to top

Features

- 4.0A, 200V, R_{DS(on)} = 0.36Ω@ V_{GS} = 10 V
- Low gate charge (typical 20 nC)
- Low Crss (typical 40.5 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

This page Print version

e-mail this datasheet

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FQE10N20CTU	Full Production	Full Production	\$0.496	<u>TO-126</u>	3	RAIL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 4 (4-Digit Date Code) Line 2: FQE10N20C

* Fairchild 1,000 piece Budgetary Pricing ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Ø Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FQE10N20C is available. <u>Click here for more information</u>.

back to top

Qualification Support

Click on a product for detailed gualification data

Product FQE10N20CTU

back to top

© 2007	Fairchild	Semiconductor
--------	-----------	---------------

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (