

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

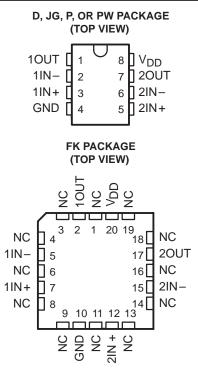
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

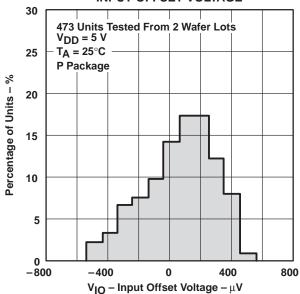
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994


- Trimmed Offset Voltage: TLC277 ... 500 μV Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C...3 V to 16 V -40°C to 85°C...4 V to 16 V -55°C to 125°C...4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise . . . Typically 25 nV/\Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance . . . $10^{12} \Omega$ Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

description

The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.


These devices use Texas instruments silicon-gate LinCMOS[™] technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

NC - No internal connection

DISTRIBUTION OF TLC277 INPUT OFFSET VOLTAGE

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

LinCMOS is a trademark of Texas Instruments Incorporated.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

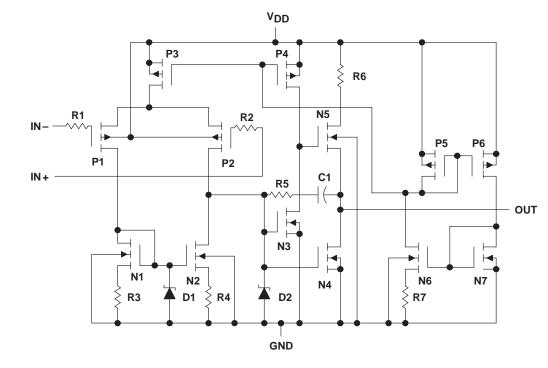
			AVAILABLI	E OPTIONS			
			PAC	KAGED DEVIC	ES		CHIP
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)	FORM (Y)
0°C to 70°c	500 μV 2 mV 5 mV 10mV	TLC277CD TLC272BCD TLC272ACD TLC272CD	 	 	TLC277CP TLC272BCP TLC272ACP TLC272CP	— — — TLC272CPW	— — — TLC272Y
-40°C to 85°C	500 μV 2 mV 5 mV 10 mV	TLC277ID TLC272BID TLC272AID TLC272ID	 	 	TLC277IP TLC272BIP TLC272AIP TLC272IP	 	
-55°C to 125°C	500 μV 10 mV	TLC277MD TLC272MD	TLC277MFK TLC272MFK	TLC277MJG TLC272MJG	TLC277MP TLC272MP	_	_

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

description (continued)

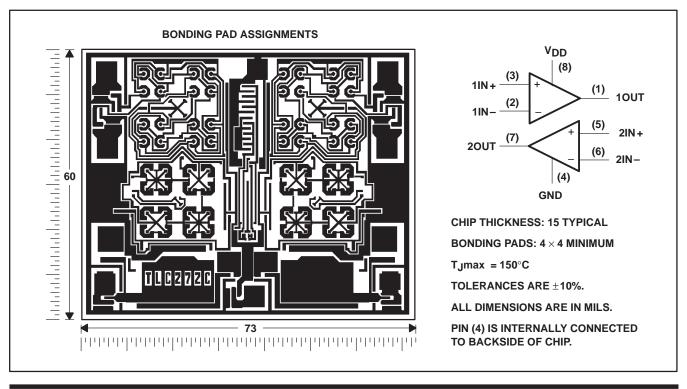
In general, many features associated with bipolar technology are available on LinCMOS[™] operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.


The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

equivalent schematic (each amplifier)

TLC272Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage $V_{}$ (see Note 1)	10.\/
Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input)	
Input current, I _I	±5 mA
output current, I _O (each output)	±30 mA
Total current into V _{DD}	
Total current out of GND	
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	e Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	
I suffix	40°C to 85°C
M suffix	–55°C to 125°C
Storage temperature range	–65°C to 150°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW packa	age 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN-.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

		DISSIPATION RA	ATING TABLE		
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A
PW	525 mW	4.2 mW/°C	336 mW	N/A	N/A

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, VDD		3	16	4	16	4	16	V
	$V_{DD} = 5 V$	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, VIC	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	v
Operating free-air temperature, T_A		0	70	-40	85	-55	125	°C

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	TAT	TLC272 TLC272	C, TLC2 BC, TLC		UNIT
						MIN	TYP	MAX	
		TLC272C	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		1102720	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			12	mV
		TLC272AC	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	IIIV
Vie	Input offect voltage	TLCZTZAC	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			6.5	
VIO	Input offset voltage	TLC272BC	V _O = 1.4 V,	VIC = 0,	25°C		230	2000	
			R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			3000	μV
		TLC277C	V _O = 1.4 V,	VIC = 0,	25°C		200	500	μv
		1102/70	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			1500	
α _{VIO}	Temperature coefficient of input	it offset voltage			25°C to		1.8		μV/∘C
~00		at one of tonage			70°C				μι, ο
10	Input offset current (see Note	4)	V _O = 2.5 V,	VIC = 2.5 V	25°C		0.1		pА
		,	U ,	10	70°C		7	300	'
IIB	Input bias current (see Note 4)	V _O = 2.5 V,	VIC = 2.5 V	25°C		0.6		pА
-ID		,	10 10 1,		70°C		40	600	P
					0500	-0.2	-0.3		N
	Common-mode input voltage	ando			25°C	to 4	to 4.2		V
VICR	(see Note 5)	ange				-0.2			
					Full range	to			V
						3.5			
					25°C	3.2	3.8		
VOH	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltag	e amplification	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 10 \ k\Omega$	0°C	4	27		V/mV
					70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		0°C	60	84		dB
					70°C	60	85		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
					70°C	60	96		
			N 0.51	N/ 5.1	25°C		1.4	3.2	
IDD	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 5 V,	0°C		1.6	3.6	mA
					70°C		1.2	2.6	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	τ _A †	TLC272 TLC272			UNIT
						MIN	TYP	MAX	
		TI 00700	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		TLC272C	R _S = 50 Ω,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
		TLC272AC	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mv
Vie	Input offect voltage	TLC272AC	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			6.5	
VIO	Input offset voltage	TLC272BC	V _O = 1.4 V,	VIC = 0,	25°C		290	2000	
		TLCZTZBC	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			3000	μV
		TLC277C	V _O = 1.4 V,	VIC = 0,	25°C		250	800	μν
		TLOZITO	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			1900	
α_{VIO}	Temperature coefficient of inpu	t offset voltage			25°C to 70°C		2		μV/°C
	Lengt affect annual (and Nation	\ \			25°C		0.1		
IIO	Input offset current (see Note 4)	V _O = 5 V,	VIC = 5 V	70°C		7	300	pА
1	lenut him summert (see Niste 4)				25°C		0.7		- 4
IВ	Input bias current (see Note 4)		V _O = 5 V,	V _{IC} = 5 V	70°C		50	600	pА
						-0.2	-0.3		
					25°C	to 9	to 9.2		V
VICR	Common-mode input voltage ra (see Note 5)	ange				-0.2	9.2		
					Full range	-0.2 to			V
					Ű	8.5			
					25°C	8	8.5		
VOH	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage	amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	0°C	7.5	42		V/mV
					70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		0°C	60	88		dB
				-	70°C	60	88		
	Supply-voltage rejection ratio				25°C	65	95		
k SVR	$(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
			ļ	-	70°C	60	96		
			V _O = 2.5 V,	V _{IC} = 5 V,	25°C		1.9	4	
IDD	Supply current (two amplifiers)		No load	чы <u>– с ч</u> ,	0°C	L	2.3	4.4	mA
					70°C		1.6	3.4	

[†]Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST COND	TIONS	τ _A †		2I, TLC2 2BI, TL(UNIT
						MIN	TYP	MAX	
		TLC272I	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		1102721	R _S = 50 Ω,	$R_L = 10 \text{ k}\Omega$	Full range			13	mV
		TLC272AI	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mv
Vie	Input offect voltage	TLC272AI	R _S = 50 Ω,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TLC272BI	V _O = 1.4 V,	VIC = 0,	25°C		230	2000	
		TLC272BI	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			3500	μV
		TLC2771	V _O = 1.4 V,	VIC = 0,	25°C		200	500	μv
		1602111	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			2000	
ανιο	Temperature coefficient of inpu	it offset voltage			25°C to		1.8		μV/°C
~vi0		it onset voltage			85°C				μνι Ο
10	Input offset current (see Note	4)	V _O = 2.5 V,	VIC = 2.5 V	25°C		0.1		pА
10		,	G - <i>i</i>	10	85°C		24	15	'
IВ	Input bias current (see Note 4)		V _O = 2.5 V,	VIC = 2.5 V	25°C		0.6		pА
-ID			10,		85°C		200	35	P
					0500	-0.2	-0.3		
	Common mode input voltage r	2220			25°C	to 4	to 4.2		V
VICR	Common-mode input voltage r (see Note 5)	ange				-0.2			
	()				Full range	to			V
						3.5			
					25°C	3.2	3.8		
VOH	High-level output voltage		V _{ID} = 100 mV,	R_L = 10 k Ω	-40°C	3	3.8		V
					85°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltag	e amplification	$V_{O} = 1 V \text{ to } 6 V,$	R_L = 10 k Ω	-40°C	3.5	32		V/mV
					85°C	3.5	19		
					25°C	65	80		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		-40°C	60	81		dB
					85°C	60	86		
					25°C	65	95		
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	-40°C	60	92		dB
					85°C	60	96		
					25°C		1.4	3.2	
IDD	Supply current (two amplifiers)		V _O = 5 V, No load	$V_{IC} = 5 V,$	-40°C		1.9	4.4	mA
					85°C		1.1	2.4	

[†] Full range is -40° C to 85° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST COND	TIONS	τ _A †		2I, TLC2 2BI, TL(UNIT
						MIN	TYP	MAX	-
		TI 00701	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		TLC272I	$R_{S} = 50 \Omega,$	$R_L = 10 k\Omega$	Full range			13	
		TL 007041	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mV
Vie	Input offerst veltage	TLC272AI	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			7	
VIO	Input offset voltage	TLC272BI	V _O = 1.4 V,	VIC = 0,	25°C		290	2000	
		TLO272DI	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			3500	μV
		TLC277I	V _O = 1.4 V,	VIC = 0,	25°C		250	800	μv
		1102/11	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			2900	
α _{VIO}	Temperature coefficient of input of	offset voltage			25°C to		2		μV/°C
~00					85°C				μ., ο
IIO	Input offset current (see Note 4)		V _O = 5 V,	VIC = 5 V	25°C		0.1		pА
10	· ,				85°C		26	1000	
IB	Input bias current (see Note 4)		$V_{O} = 5 V,$	VIC = 5 V	25°C		0.7		pА
			U	10	85°C		220	2000	
					2500	-0.2	-0.3		V
	Common-mode input voltage ran	00			25°C	to 9	to 9.2		V
VICR	(see Note 5)	Чe				-0.2			
	,				Full range	to			V
						8.5			
					25°C	8	8.5		
VOH	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	-40°C	7.8	8.5		V
					85°C	7.8	8.5		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage a	amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	−40°C	7	46		V/mV
					85°C	7	31		
					25°C	65	85		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		-40°C	60	87		dB
					85°C	60	88		
	O I III I II II				25°C	65	95		
ksvr	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	-40°C	60	92		dB
					85°C	60	96		
					25°C		1.4	4	
IDD	Supply current (two amplifiers)		V _O = 5 V, No load	$V_{IC} = 5 V,$	-40°C		2.8	5	mA
					85°C		1.5	3.2	

[†] Full range is -40° C to 85° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

	DADAMETED		TEST COND		TAT	TLC27	2M, TLC	277M	UNIT
	PARAMETER		TEST COND	TIONS	'A'	MIN	TYP	MAX	UNIT
		TLC272M	V _O = 1.4 V, R _S = 50 Ω,	V _{IC} = 0, R _L = 10 kΩ	25°C		1.1	10 12	mV
VIO	Input offset voltage		-	_	Full range		000		
		TLC277M	V _O = 1.4 V, R _S = 50 Ω,	V _{IC} = 0, R _L = 10 kΩ	25°C Full range		200	500 3750	μV
αγιο	Temperature coefficient of input of voltage	offset			25°C to 125°C		2.1		μV/°C
l. e	Input offect ourrent (can Note 4)		V _O = 2.5 V		25°C		0.1		pА
10	Input offset current (see Note 4)		VO = 2.5 V	V _{IC} = 2.5 V	125°C		1.4	15	nA
lun.	Input bias current (see Note 4)		V _O = 2.5 V		25°C		0.6		pА
IB	input bias current (see Note 4)		VO = 2.5 V	V _{IC} = 2.5 V	125°C		9	35	nA
Vice	Common-mode input voltage ran	ge			25°C	0 to 4	-0.3 to 4.2		V
VICR	(see Note 5)				Full range	0 to 3.5			V
					25°C	3.2	3.8		
VOH	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage a	mplification	$V_{O} = 0.25 V \text{ to } 2 V$	$R_L = 10 \ k\Omega$	−55°C	3.5	35		V/mV
					125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		−55°C	60	81		dB
					125°C	60	84		
	Our a have the second station of the				25°C	65	95		
^k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		V_{DD} = 5 V to 10 V,	V _O = 1.4 V	−55°C	60	90		dB
					125°C	60	97		
			V _O = 2.5 V,	Via - 2 5 V	25°C		1.4	3.2	
IDD	Supply current (two amplifiers)		VO = 2.5 V, No load	V _{IC} = 2.5 V,	−55°C		2	5	mA
					125°C		1	2.2	

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

[†] Full range is −55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

			TEAT AG		+ +	TLC27	2M, TLC	277M	
	PARAMETER		TEST COND	TIONS	TA	MIN	TYP	MAX	UNIT
		TI 0070M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
. ,		TLC272M	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			12	mV
VIO	Input offset voltage	TI 0077M	V _O = 1.4 V,	VIC = 0,	25°C		250	800	
		TLC277M	R _S = 50 Ω,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μV
αΛΙΟ	Temperature coefficient of input voltage	offset			25°C to 125°C		2.2		μV/°C
	leaved affect assume of (and black d)				25°C		0.1		pА
IIO	Input offset current (see Note 4)		V _O = 5 V,	$V_{IC} = 5 V$	125°C		1.8	15	nA
L -	leave him average (and Nate 4)				25°C		0.7		pА
IB	Input bias current (see Note 4)		V _O = 5 V,	$V_{IC} = 5 V$	125°C		10	35	nA
.,	Common-mode input voltage ra	nae			25°C	0 to 9	-0.3 to 9.2		V
VICR	(see Note 5)				Full range	0 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
Avd	Large-signal differential voltage amplification		$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	−55°C	7	50		V/m∖
	ampinication				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		−55°C	60	87		dB
					125°C	60	86		
	_				25°C	65	95		
ksvr	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	−55°C	60	90		dB
					125°C	60	97		
					25°C		1.9	4	
IDD	Supply current (two amplifiers)		$V_{O} = 5 V$, No load	V _{IC} = 5 V,	−55°C		3	6	mA
	Supply current (two ampliners)				125°C		1.3	2.8	

[†]Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

	DADAMETED	TEOT OON		Т	LC272Y		
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 1.4 V, R _S = 50 Ω,	V _{IC} = 0, R _L = 10 kΩ		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
IIO	Input offset current (see Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V		0.1		pА
I _{IB}	Input bias current (see Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V		0.6		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		V
VOH	High-level output voltage	V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$		0	50	mV
AVD	Large-signal differential voltage amplification	V_{O} = 0.25 V to 2 V	$R_L = 10 \ k\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD} / \Delta V_{IO}$)	V _{DD} = 5 V to 10 V,	V _O = 1.4 V	65	95		dB
IDD	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		1.4	3.2	mA

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually.

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	Т	LC272Y		UNIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 1.4 V, R _S = 50 Ω,	V _{IC} = 0, R _L = 10 kΩ		1.1	10	mV
α _{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
lio	Input offset current (see Note 4)	V _O = 5 V,	VIC = 5 V		0.1		pА
I _{IB}	Input bias current (see Note 4)	V _O = 5 V,	$V_{IC} = 5 V$		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
∨он	High-level output voltage	V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	8	8.5		V
VOL	Low-level output voltage	V _{ID} = -100 mV,	IOT = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	10	36		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	85		dB
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD} / \Delta V_{IO}$)	V _{DD} = 5 V to 10 V,	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		1.9	4	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	TA	TLC272C, TLC272AC, TLC272BC, TLC277C			UNIT					
					MIN	TYP	MAX						
				25°C		3.6							
			VIPP = 1 V	0°C		4							
SR	Slow rate at unity gain	R _L = 10 kΩ, C _L = 20 pF,		70°C		3		\//ue					
	Slew rate at unity gain	See Figure 1		25°C		2.9		V/μs					
			Ū	V _{IPP} = 2.5 V	0°C		3.1						
					70°C		2.5						
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√ Hz					
				25°C		320							
Вом	Maximum output-swing bandwidth	$V_{O} = V_{OH},$ C	$C_L = 20 \text{ pF},$	$C_L = 20 \text{ pF},$ See Figure 1	$O = V_{OH}$, $C_L = 20 \text{ pF}$, $L = 10 \text{ k}\Omega$, See Figure 1	0°C		340		kHz			
		$R_{L} = 10 \text{ ksz},$	See l'igure i	70°C		260							
				25°C		1.7							
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	0°C		2		MHz					
		occ rigare o		70°C		1.3							
		V/- 40 mV/	(D	25°C		46°							
∮m	Phase margin	$V_{I} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pE}$	$v_{l} = 10 \text{ mV},$ $C_{l} = 20 \text{ pF}$	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF}$	VI = 10 mV, CL = 20 pF,	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF}$	t = B ₁ , See Figure 3	0°C		47°		
		- <u> </u>	ecor iguio o	70°C		43°							

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER		NDITIONS	ТА	TLC272C, TLC272AC, TLC272BC, TLC277C			UNIT					
					MIN	TYP	MAX						
				25°C		5.3							
			VIPP = 1 V	0°C		5.9							
SR	Slew rate at unity gain	R _L = 10 kΩ, C _L = 20 pF,		70°C		4.3		V/µs					
SK	Siew rate at unity gain	See Figure 1		25°C		4.6		v/µS					
		0	VIPP = 5.5 V	0°C		5.1							
				70°C		3.8							
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz					
				25°C		200							
Вом	Maximum output-swing bandwidth	$V_{O} = V_{OH}$	VO = VOH	$V_O = V_{OH}$	VO = VOH	VO = VOH	$V_O = V_{OH}$	C _L = 20 pF, See Figure 1	0°C		220	C	kHz
		T(_ = 10 K32,	Occ rigure r	70°C		140							
				25°C		2.2							
B ₁	Unity-gain bandwidth	y-gain bandwidth $V_I = 10 \text{ mV}, C_L = 20 \text{ pF}, 0^{\circ}C$ See Figure 3 $70^{\circ}C$		2.5		MHz							
				70°C		1.8							
				£ D.	25°C		49°						
фт	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF}$	$v_{\rm I} = 10 {\rm mV},$ $C_{\rm I} = 20 {\rm nF}$	VI = 10 mV, CL = 20 pF,	r = B ₁ , See Figure 3	0°C		50°					
		oc _opr,	occ rigure o	70°C		46°							

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

	PARAMETER	TEST CO	TEST CONDITIONS			TLC272I, TLC272AI, TLC272BI, TLC277I			
						TYP	MAX		
				25°C		3.6			
			VIPP = 1 V	-40°C		4.5]	
SR	Slow rate at upity gain	$R_{L} = 10 k\Omega$,		85°C		2.8			
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs	
		3.1	VIPP = 2.5 V	-40°C		3.5		1	
				85°C		2.3			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz	
					25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_{O} = V_{OH},$ R _L = 10 k Ω ,	C _L = 20 pF, See Figure 1	-40°C		380		kHz	
		$R_{L} = 10 \text{ Ksz},$	See Figure 1	85°C		250		1	
				25°C		1.7			
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	-40°C		2.6		MHz	
		See Figure 5		85°C		1.2		1	
			(25°C		46°			
[¢] m	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	-40°C		49°]	
	-	0 ² - 20 pr,	occ rigule o	85°C		43°		1	

operating characteristics at specified free-air temperature, V_{DD} = 5 V

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	Тд	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT					
			_		MIN	TYP	MAX					
				25°C		5.3						
			V _{IPP} = 1 V	-40°C		6.8						
SR		R _L = 10 kΩ, C _L = 20 pF,		85°C		4		V/μs				
	Slew rate at unity gain	See Figure 1		25°C		4.6		v/µS				
		Jan	VIPP = 5.5 V	-40°C		5.8						
					85°C		3.5					
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√ Hz				
				25°C		200						
ВОМ	Maximum output-swing bandwidth	$V_{O} = V_{OH},$ R _I = 10 k Ω ,	C _L = 20 pF, See Figure 1	-40°C		260		kHz				
		TYL = 10 K32,	See ligure l	85°C		130						
				25°C		2.2						
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	-40°C		3.1		MHz				
		See Figure 5		85°C		1.7						
		10	()	25°C		49°						
φm	Phase margin	$V_{I} = 10 \text{ mV},$	VI = 10 mV, C _L = 20 pF,	$V_{I} = 10 \text{ mV},$	$V_{I} = 10 \text{ mV},$	$V_{\rm I} = 10 {\rm mV},$	f = B ₁ , See Figure 3	-40°C		52°		
	-		eser iguio o	85°C		46°						

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

		7507.00		-	TLC27	2M, TLC	277M						
	PARAMETER	TESTCO	NDITIONS	TA	MIN	TYP	MAX	UNIT					
				25°C		3.6							
			VIPP = 1 V	−55°C		4.7							
SR	Slew rate at unity gain	R _L = 10 kΩ, C _L = 20 pF,	125°C		2.3		V/µs						
SK	Siew rate at unity gain	See Figure 1		25°C		2.9		ν/μ5					
		Jere gree	V _{IPP} = 2.5 V	−55°C		3.7							
						125°C		2					
v _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz					
				25°C		320							
Вом	Maximum output-swing bandwidth	$V_{O} = V_{OH}$	C _L = 20 pF, See Figure 1	−55°C		400		kHz					
		$ \mathbf{x} = 10 \text{ ksz},$	Ksz, See Figure i	125°C		230							
				25°C		1.7							
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	−55°C		2.9		MHz					
		Gee rigure 5		125°C		1.1							
		10	()	25°C		46°							
[¢] m	Phase margin	$V_{l} = 10 \text{ mV},$	V _I = 10 mV, C _L = 20 pF,	$V_{I} = 10 \text{ mV},$	t = B ₁ , See Figure 3	−55°C		49°					
	-	0L - 20 pr,		125°C		41°							

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	DADAMETED	TEST CO	NDITIONS	-	TLC27	2M, TLC	277M	LINUT			
	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT			
				25°C		5.3					
			V _{IPP} = 1 V	−55°C		7.1					
SR	Slew rate at unity gain	R _L = 10 kΩ, C _L = 20 pF,		125°C		3.1		V/µs			
SK	Siew rate at unity gain	See Figure 1	25°C		4.6		v/µs				
		Ŭ	VIPP = 5.5 V	−55°C		6.1					
			125°C		2.7						
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz			
		$V_{O} = V_{OH}$	$V_{O} = V_{OH},$ R _L = 10 kΩ,		25°C		200				
ВОМ	Maximum output-swing bandwidth			$C_L = 20 \text{ pF},$	−55°C		280		kHz		
		TYL = 10 K32,	z, See Figure i	125°C		110					
				25°C		2.2					
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	CL = 20 pF,	−55°C		3.4		MHz			
		Occ right 3		125°C		1.6					
		10	(5	25°C		49°					
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,	$v_{I} = 10 \text{ mv},$ $C_{L} = 20 \text{ pF}$	$v_{\rm I} = 10 {\rm mV},$ $C_{\rm L} = 20 {\rm pF}$	$v_{l} = 10 \text{ mV},$ $C_{l} = 20 \text{ pF}$	f = B ₁ , See Figure 3	−55°C		52°		
			ecc riguro o	125°C		44°					

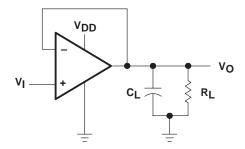
SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

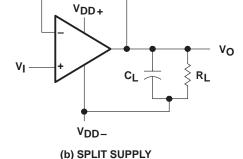
operating characteristics, V_{DD} = 5 V, T_A = 25°C

	PARAMETER		TEST CONDITIONS			TLC272Y		
	FARAMETER	''				TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 k\Omega$,	C _L = 20 pF,	VIPP = 1 V		3.6		V/µs
SK	Siew rate at unity gain	See Figure 1		VIPP = 2.5 V		2.9		v/µs
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2		25		nV/√Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 10 kΩ,		320		kHz
В ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		46°		

operating characteristics, V_{DD} = 10 V, T_A = 25°C

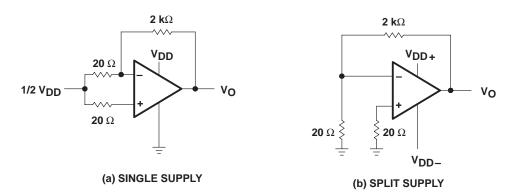
	PARAMETER	- т	TEST CONDITIONS			TLC272Y		
	FARAMETER					TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 k\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		5.3		V/µs
SK	Siew fate at unity gain	See Figure 1		V _{IPP} = 5.5 V		4.6		v/µs
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2		25		nV/√Hz
BOM	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 10 kΩ,		200		kHz
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3		2.2		MHz
[¢] m	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°		

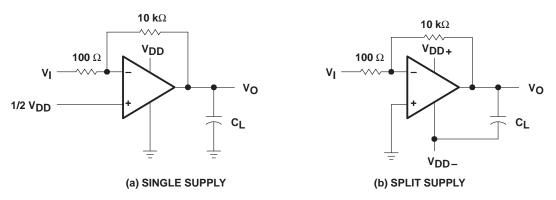



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits


Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

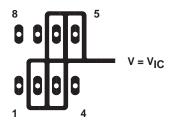


Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

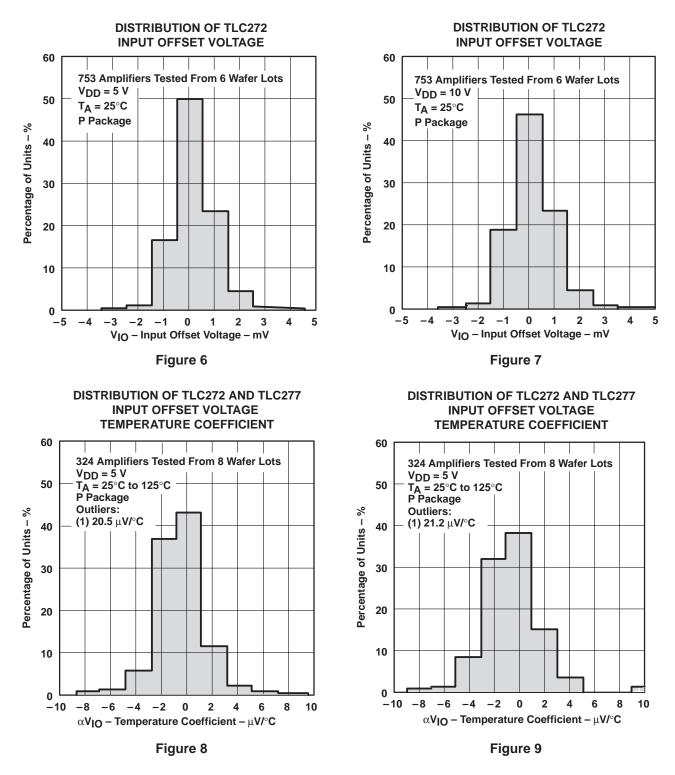
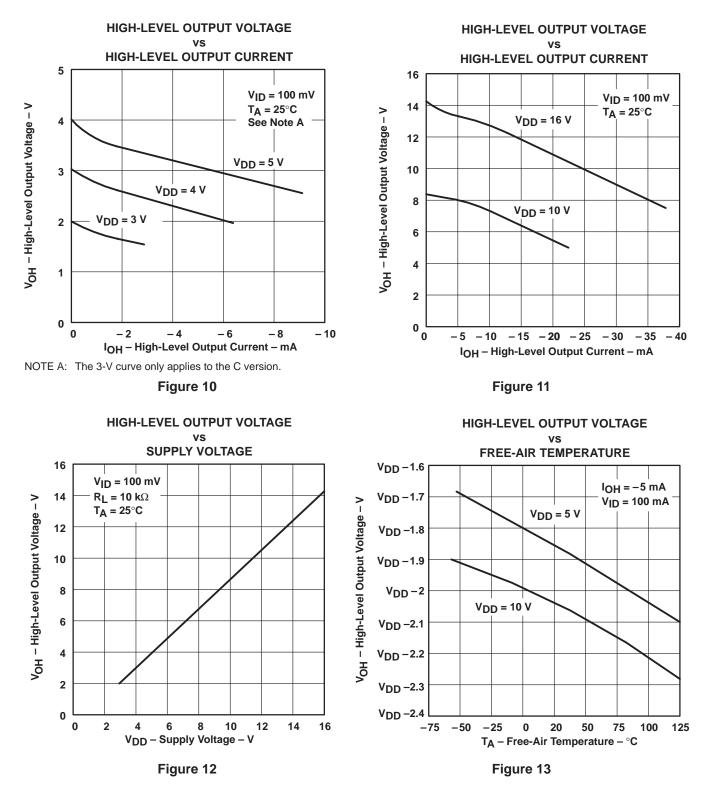
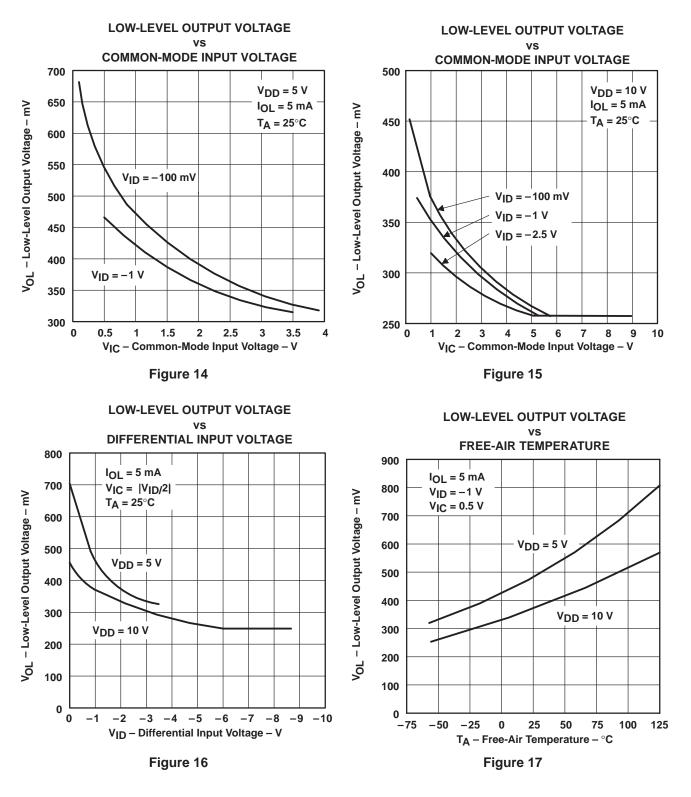

TYPICAL CHARACTERISTICS

Table of Graphs

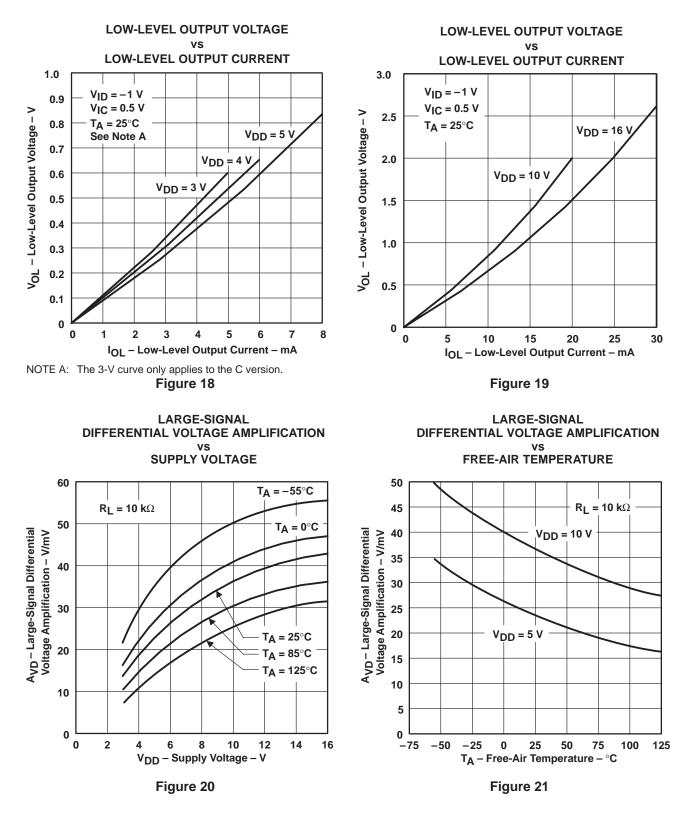
			FIGURE
VIO	Input offset voltage	Distribution	6, 7
αΛΙΟ	Temperature coefficient of input offset voltage	Distribution	8, 9
VOH	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
lio	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
IDD	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS[†]

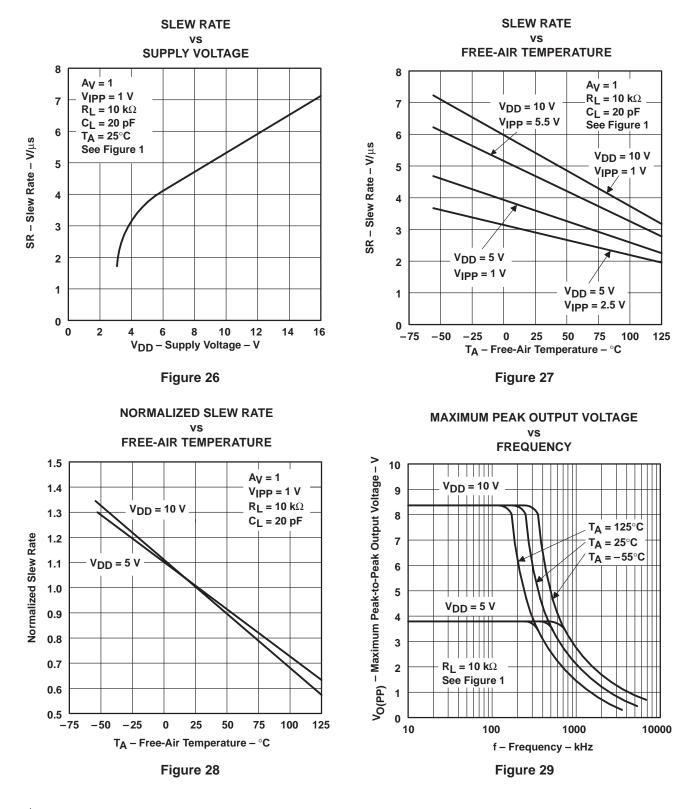

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS[†]

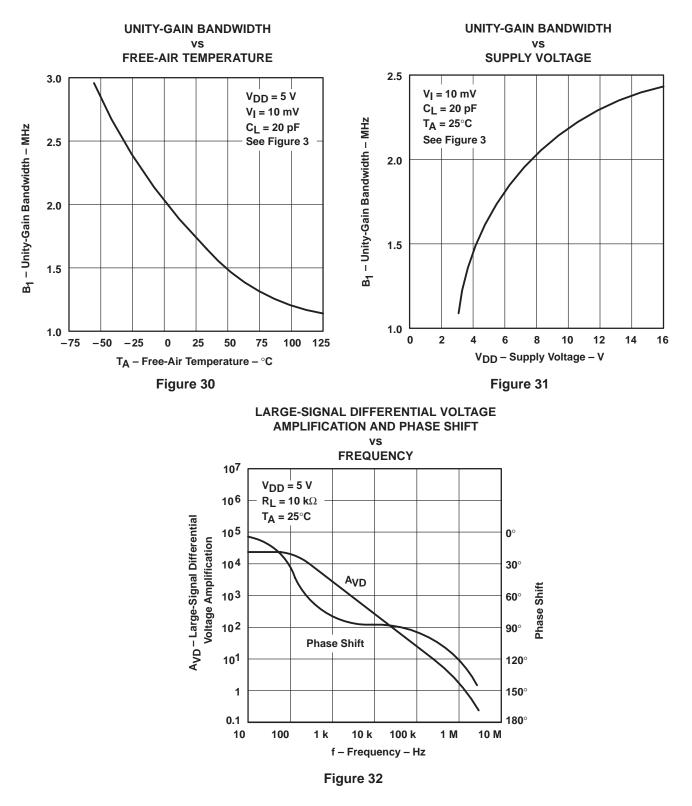

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS[†]

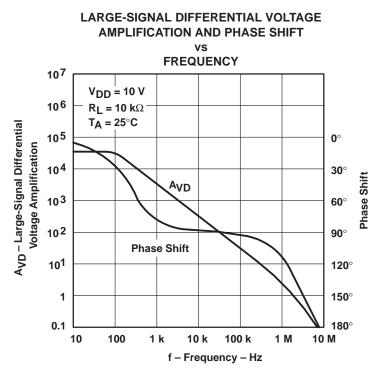
SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994



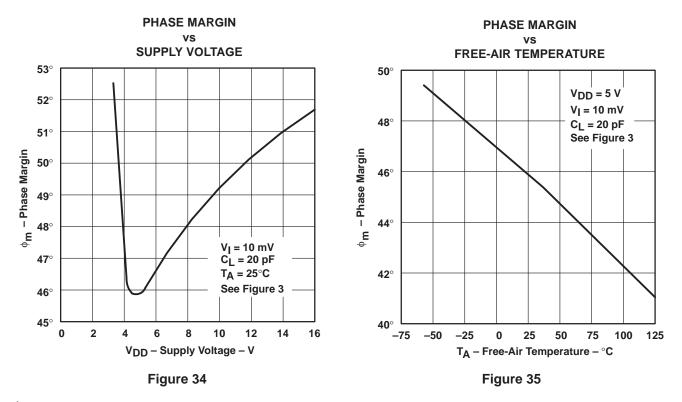
TYPICAL CHARACTERISTICS[†]


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

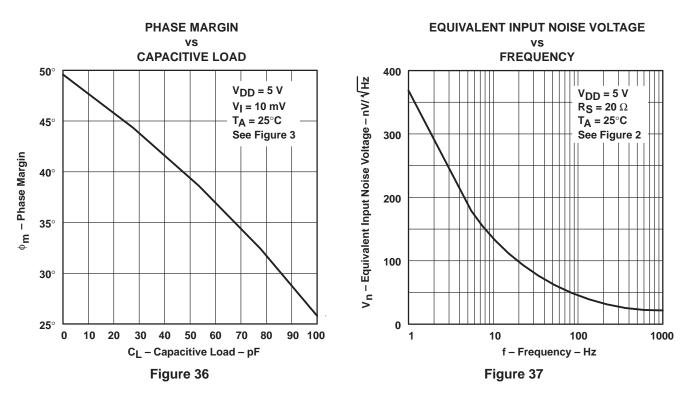
TYPICAL CHARACTERISTICS[†]


SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

TYPICAL CHARACTERISTICS[†]



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

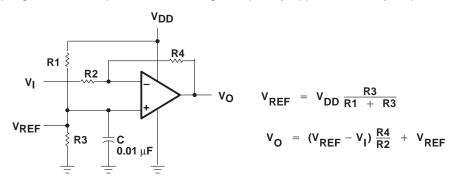

TYPICAL CHARACTERISTICS[†]

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

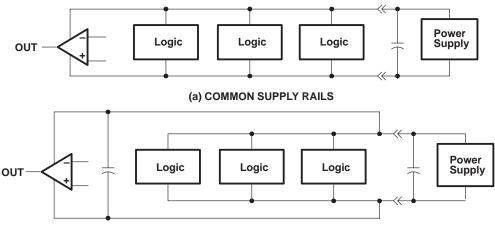
TYPICAL CHARACTERISTICS

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION


single-supply operation

While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.


Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

Figure 38. Inverting Amplifier With Voltage Reference

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

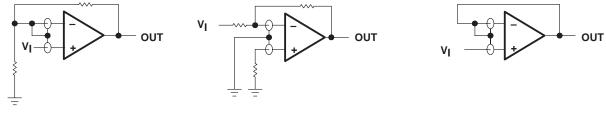
Figure 39. Common vs Separate Supply Rails

SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

input characteristics

The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25^{\circ}$ C and at $V_{DD} - 1.5$ V at all other temperatures.


The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

(a) NONINVERTING AMPLIFIER

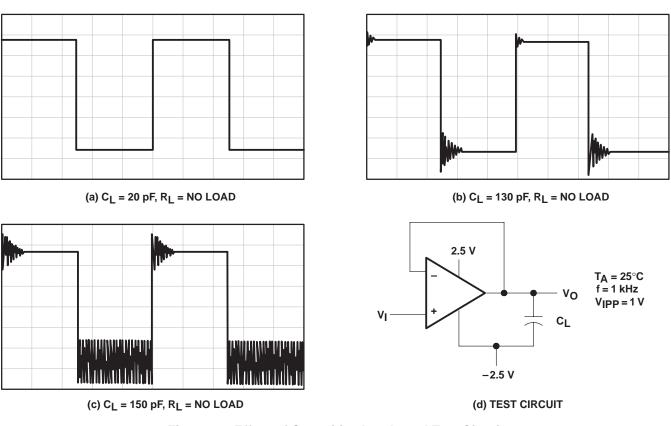
(b) INVERTING AMPLIFIER

(c) UNITY-GAIN AMPLIFIER

Figure 40. Guard-Ring Schemes

output characteristics

The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

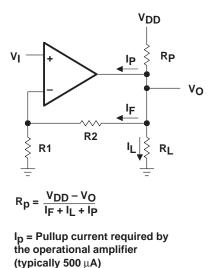

All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

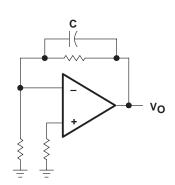
SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

output characteristics (continued)

Figure 41. Effect of Capacitive Loads and Test Circuit


Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of R_P , a voltage offset from 0 V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

output characteristics (continued)

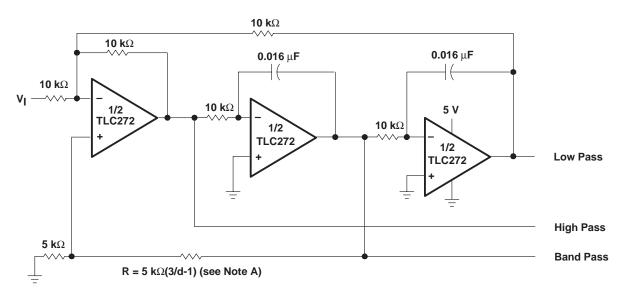
Figure 42. Resistive Pullup to Increase VOH

feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

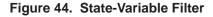
electrostatic discharge protection

The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.


latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

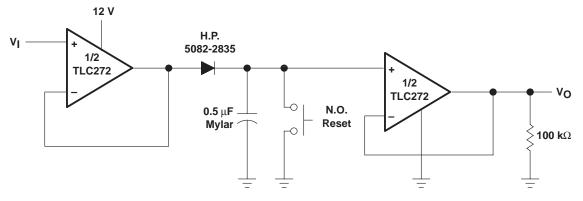
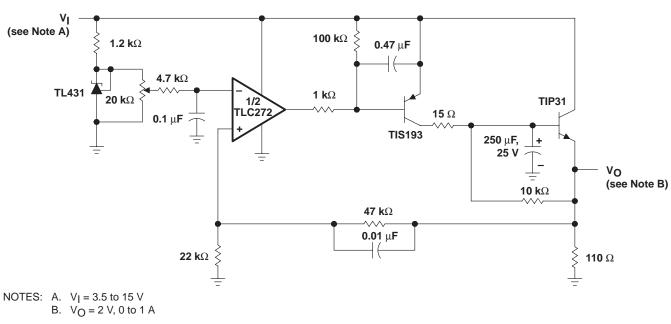
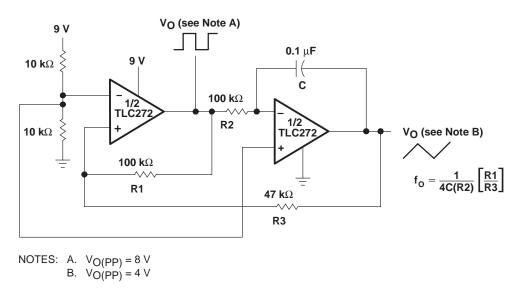
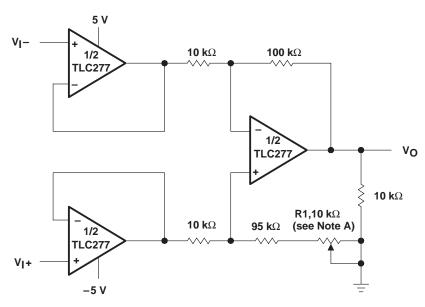



Figure 45. Positive-Peak Detector



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION



SLOS091B - OCTOBER 1987 - REVISED AUGUST 1994

APPLICATION INFORMATION

NOTE B: CMRR adjustment must be noninductive.

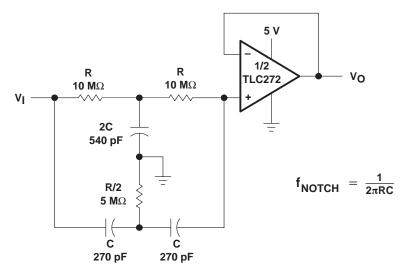


Figure 49. Single-Supply Twin-T Notch Filter

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

🐺 Texas Instruments	THE WORLD	D LEADER I	N DSP AND	ANALOG
Products 💌	Development	t Tools 📃 🐨	Applica	tions 💌
Search GO	■ Advanced Search ■ Tech Support	□ TI Home □ Comments	💷 TI&ME 💷 Site Map	🗆 Employment 🖿 Tl Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY | SAMPLES | APPLICATION NOTES | USER MANUALS | BLOCK DIAGRAMS

PRODUCT SUPPORT: DEVELOPMENT TOOLS | APPLICATIONS

TLC272, Dual Single Supply Operational Amplifier

DEVICE STATUS: ACTIVE

PARAMETER NAME	TLC272
Vs (max) (V)	16
Vs (min) (V)	3
IQ per channel (max) (mA)	1.6
IQ per channel (typ) (mA)	0.7
GBW (typ) (MHz)	1.7
Slew Rate (typ) (V/us)	3.6
VIO (Full Range) (max) (mV)	12
VIO (25 deg C) (max) (mV)	10
IIB (max) (pA)	600
CMRR (min) (dB)	65
Vn at 1kHz (typ) (nV/rtHz)	25
Number of Channels	2
Spec'd at Vs (V)	5
Open Loop Gain (min) (dB)	74
Offset Drift (typ) (uV/C)	1.8

FEATURES

- Trimmed Offset Voltage:
- TLC277...500 uV Max at 25°C,
- V_{DD} = 5 V
- Input Offset Voltage Drift...Typically
 0.1 uV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:
- 0°C to 70°C...3 V to 16 V

- -40°C to 85°C...4 V to 16 V
- -55°C to 125°C...4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise...Typically 25 nV/ √ Hz\ at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance...10¹² **Ω** Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

DESCRIPTION

Back to Top

The TLC272 and TLC277 precision dual

operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.

These devices use Texas instruments silicon-gate LinCMOSTM

LinCMOS is a trademark of Texas Instruments Incorporated. technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without

BLOCK DIAGRAMS Digital Cellphone

SAMPLES Back to Top ORDERABLE DEVICE PIN<u>S</u> TEMP (°C) DSCC NUMBER PACKAGE **STATUS** SAMPLES ACTIVE TLC272ID 8 Request Samples D ACTIVE TLC272IP Ρ 8 Request Samples

DDICINC / AVAILADULT

PRICING/AVAILABILIT	Y		<mark>_Ba</mark>	ack to Top		
ORDERABLE	PINS <u>TEMP</u>	<u>STATUS</u>	<u>BUDGETARY</u> <u>PRICE</u>	<u>PACK</u>	<u>DSCC</u>	PRICING/AVAILABILITY

sustaining latch-up.

3 of 4

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C. Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

TECHNICAL DOCUMENTS

To view the following documents, Acrobat Reader 3.x is required. To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET

Full datasheet in Acrobat PDF: slos091b.pdf (588 KB) (Updated: 08/01/1994) Full datasheet in Zipped PostScript: <u>slos091b.psz</u> (557 KB)

APPLICATION NOTES

View Application Reports for Signal Amplifiers (Less than equal to 100MHz)

- Analog Applications Journal May 2000 (SLYT015 Updated: 04/20/2000)
- Analog Applications Journal, September 1999 edition (SLYT005 Updated: 07/15/1999)
- Analysis Of The Sallen-Key Architecture (SLOA024A Updated: 07/27/1999)

USER MANUALS

- Universal Op Amp Single, Dual, Quad (SOIC) Evaluation Module With Shutdown (SLOU061, 1160 KB - Updated: 10/22/1999)
- Universal Operational Amplifier EVM (SLVU006A, 387 KB Updated: 03/22/1999)
- Universal Operational Amplifier Evaluation Module Selection Guide (SLOU060A, 16 KB -Updated: 09/28/2000)
- Universal Operational Amplifier Single, Dual, Quad (MSOP/TSSOP) (SLOU055, 1196 KB -Updated: 10/22/1999)
- Universal Operational Amplifier Single, Dual, Quad (PDIP) (SLOU062, 1211 KB Updated: 10/22/1999)

Back to Top

Back to Top

Back to Top

Back to Top

4 of 4	
--------	--

4 01 4								
<u>DEVICE</u>			<u>(°C)</u>		<u>US\$/UNIT</u> <u>QTY=1000+</u>	<u>QTY</u>	<u>NUMBER</u>	
TLC272CD	D	8	0 TO 70	ACTIVE	0.49	75		Check stock or order
TLC272CDR	<u>D</u>	8	0 TO 70	ACTIVE	0.49	2500		Check stock or order
TLC272CP	<u>P</u>	8	0 TO 70	ACTIVE	0.49	50		Check stock or order
TLC272CPS	<u>PS</u>	8	0 TO 70	ACTIVE	0.49	80		Check stock or order
TLC272CPSR	<u>PS</u>	8	0 TO 70	ACTIVE	0.49	2000		Check stock or order
TLC272CPW	<u>PW</u>	8	0 TO 70	ACTIVE	0.49	150		Check stock or order
TLC272CPWLE	<u>PW</u>	8	0 TO 70	OBSOLETE				Replaced by TLC272CPWR
TLC272CPWR	<u>PW</u>	8	0 TO 70	ACTIVE	0.49	2000		Check stock or order
TLC272ID	<u>D</u>	8		ACTIVE	0.52	75		Check stock or order
TLC272IDR	<u>D</u>	8		ACTIVE	0.52	2500		Check stock or order
TLC272IP	<u>P</u>	8		ACTIVE	0.52	50		Check stock or order
TLC272IPW	PW	8		PREVIEW				Check stock or order
TLC272MFKB	<u>FK</u>	20	-55 TO 125	OBSOLETE				
TLC272MJG	<u>JG</u>	8	-55 TO 125	OBSOLETE				
TLC272MJGB	<u>JG</u>	8	-55 TO 125	OBSOLETE				
TLC272P-M	<u>P</u>	8		PREVIEW				Check stock or order

DEVELOPMENT TOOLS

|--|

Tool Part Number	Tool Title	Tool Type
UNIV-OPAMP- 1B	Universal EVM for Single/Dual OpAmps without Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
UNIV-OPAMP- 2B	Universal EVM for Single/Dual OpAmps with Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
<u>UNIV-OPAMP-</u> <u>3B</u>	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in MSOP/TSSOP packages	Evaluation Modules (EVM)
<u>UNIV-OPAMP-</u> <u>4B</u>	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in SOIC packages	Evaluation Modules (EVM)
<u>UNIV-OPAMP-</u> 5B	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in PDIP packages	Evaluation Modules (EVM)

Table Data Updated on: 11/26/2000

🖓 Texas Instruments	THE WORLD	D LEADER I	N DSP AND	ANALOG
Products 💽	Development	t Tools 📃 🐨	Applicati	ions 💌
Search GO	■ Advanced Search ■ Tech Support	□ TI Home □ Comments	🖬 TI&ME 🖬 Site Map	🖬 Employment 🖬 Tl Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY | APPLICATION NOTES | USER MANUALS

PRODUCT SUPPORT: <u>DEVELOPMENT TOOLS</u> | <u>APPLICATIONS</u>

TLC272A, LinCMOS(TM) Precision Dual Operational Amplifier DEVICE STATUS: ACTIVE

PARAMETER NAME	TLC272A
Vs (max) (V)	16
Vs (min) (V)	3
IQ per channel (max) (mA)	1.6
IQ per channel (typ) (mA)	0.7
GBW (typ) (MHz)	1.7
Slew Rate (typ) (V/us)	3.6
VIO (Full Range) (max) (mV)	6.5
VIO (25 deg C) (max) (mV)	5
IIB (max) (pA)	600
CMRR (min) (dB)	65
Vn at 1kHz (typ) (nV/rtHz)	25
Number of Channels	2
Spec'd at Vs (V)	5
Open Loop Gain (min) (dB)	74
Offset Drift (typ) (uV/C)	1.8

FEATURES

- Trimmed Offset Voltage:
- TLC277...500 uV Max at 25°C,
- V_{DD} = 5 V
- Input Offset Voltage Drift...Typically
 0.1 uV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:
- 0°C to 70°C...3 V to 16 V
- -40°C to 85°C...4 V to 16 V

- -55°C to 125°C...4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise...Typically 25 nV/ √ Hz\ at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance...10¹²
 Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

DESCRIPTION

Back to Top

The TLC272 and TLC277 precision dual

operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.

These devices use Texas instruments silicon-gate LinCMOSTM

LinCMOS is a trademark of Texas Instruments Incorporated. technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

TECHNICAL DOCUMENTS

To view the following documents, <u>Acrobat Reader 3.x</u> is required. To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET

Full datasheet in Acrobat PDF: <u>slos091b.pdf</u> (588 KB) (Updated: 08/01/1994) Full datasheet in Zipped PostScript: <u>slos091b.psz</u> (557 KB)

APPLICATION NOTES

View Application Reports for Signal Amplifiers (Less than equal to 100MHz)

- Analog Applications Journal May 2000 (SLYT015 Updated: 04/20/2000)
- Analog Applications Journal, September 1999 edition (SLYT005 Updated: 07/15/1999)
- Analysis Of The Sallen-Key Architecture (SLOA024A Updated: 07/27/1999)

USER MANUALS

Back to Top

Back to Top

- <u>Universal Op Amp Single, Dual, Quad (SOIC) Evaluation Module With</u> <u>Shutdown</u> (SLOU061, 1160 KB - Updated: 10/22/1999)
- Universal Operational Amplifier EVM (SLVU006A, 387 KB Updated: 03/22/1999)
- <u>Universal Operational Amplifier Evaluation Module Selection Guide</u> (SLOU060A, 16 KB -Updated: 09/28/2000)
- <u>Universal Operational Amplifier Single, Dual, Quad (MSOP/TSSOP)</u> (SLOU055, 1196 KB -Updated: 10/22/1999)
- <u>Universal Operational Amplifier Single, Dual, Quad (PDIP)</u> (SLOU062, 1211 KB Updated: 10/22/1999)

PRICING/AVAILABILITY

ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	<u>TEMP</u> (°C)	<u>STATUS</u>	<u>BUDGETARY</u> <u>PRICE</u> <u>US\$/UNIT</u> <u>QTY=1000+</u>	<u>PACK</u> <u>QTY</u>	PRICING/AVAILABILITY
TLC272ACD	<u>D</u>	8		ACTIVE	0.52	75	Check stock or order
TLC272ACDR	<u>D</u>	8		ACTIVE	0.52	2500	Check stock or order
TLC272ACP	<u>P</u>	8		ACTIVE	0.52	50	Check stock or order
TLC272ACPS	<u>PS</u>	8		ACTIVE	0.52	80	Check stock or order
TLC272ACPSR	<u>PS</u>	8		ACTIVE	0.52	2000	Check stock or order
TLC272AID	D	8		ACTIVE	0.55	75	Check stock or order
TLC272AIDR	<u>D</u>	8		ACTIVE	0.55	2500	Check stock or order

<u>Back to Top</u>

Back to Top

Back to Top

- • • -

TLC272AIP	<u>P</u>	8	ACTIVE	0.55	50	Check stock or order
TLC272AIP10	<u>P</u>	8	PREVIEW			Check stock or order

DEVELOPME	INT TOOLS	ack to Top
Tool Part Number	Tool Title	ТооІ Туре
UNIV-OPAMP- 1B	Universal EVM for Single/Dual OpAmps without Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
UNIV-OPAMP- 2B	Universal EVM for Single/Dual OpAmps with Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
UNIV-OPAMP- <u>3B</u>	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in MSOP/TSSOP packages	Evaluation Modules (EVM)
UNIV-OPAMP- 4B	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in SOIC packages	Evaluation Modules (EVM)
UNIV-OPAMP- 5B	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in PDIP packages	Evaluation Modules (EVM)

Table Data Updated on: 11/26/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy</u> | <u>Important Notice</u>

🖓 Texas Instruments	THE WORLD	D LEADER I	N DSP AND	ANALOG
Products 💽	Development	t Tools 📃 🐨	Applicati	ions 💌
Search GO	■ Advanced Search ■ Tech Support	□ TI Home □ Comments	🖬 TI&ME 🖬 Site Map	🖬 Employment 🖬 Tl Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY | APPLICATION NOTES | USER MANUALS

PRODUCT SUPPORT: <u>DEVELOPMENT TOOLS</u> | <u>APPLICATIONS</u>

TLC272B, LinCMOS Precision Dual Operational Amplifier DEVICE STATUS: ACTIVE

PARAMETER NAME TLC272B Vs (max) (V) 16 Vs (min) (V) 3 IQ per channel (max) (mA) 1.6 IQ per channel (typ) (mA) 0.7 GBW (typ) (MHz) 1.7 Slew Rate (typ) (V/us) 3.6 3 VIO (Full Range) (max) (mV) VIO (25 deg C) (max) (mV) 2 IIB (max) (pA) 600 CMRR (min) (dB) 65 Vn at 1kHz (typ) (nV/rtHz) 25 Number of Channels 2 5 Spec'd at Vs (V) Open Loop Gain (min) (dB) 74 Offset Drift (typ) (uV/C) 1.8

FEATURES

- Trimmed Offset Voltage:
- TLC277...500 uV Max at 25°C,
- V_{DD} = 5 V
- Input Offset Voltage Drift...Typically
 0.1 uV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:
- $\bullet~0^\circ\text{C}$ to $70^\circ\text{C}...3$ V to 16 V
- -40°C to 85°C...4 V to 16 V

- -55°C to 125°C...4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise...Typically 25 nV/ √ Hz\ at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance...10¹²
 Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

DESCRIPTION

Back to Top

The TLC272 and TLC277 precision dual

operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.

These devices use Texas instruments silicon-gate LinCMOSTM

LinCMOS is a trademark of Texas Instruments Incorporated. technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

TECHNICAL DOCUMENTS

To view the following documents, <u>Acrobat Reader 3.x</u> is required. To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET

Full datasheet in Acrobat PDF: <u>slos091b.pdf</u> (588 KB) (Updated: 08/01/1994) Full datasheet in Zipped PostScript: <u>slos091b.psz</u> (557 KB)

APPLICATION NOTES

View Application Reports for Signal Amplifiers (Less than equal to 100MHz)

- Analog Applications Journal May 2000 (SLYT015 Updated: 04/20/2000)
- Analog Applications Journal, September 1999 edition (SLYT005 Updated: 07/15/1999)
- Analysis Of The Sallen-Key Architecture (SLOA024A Updated: 07/27/1999)

USER MANUALS

Back to Top

Back to Top

- <u>Universal Op Amp Single, Dual, Quad (SOIC) Evaluation Module With</u> <u>Shutdown</u> (SLOU061, 1160 KB - Updated: 10/22/1999)
- Universal Operational Amplifier EVM (SLVU006A, 387 KB Updated: 03/22/1999)
- <u>Universal Operational Amplifier Evaluation Module Selection Guide</u> (SLOU060A, 16 KB -Updated: 09/28/2000)
- Universal Operational Amplifier Single, Dual, Quad (MSOP/TSSOP) (SLOU055, 1196 KB -Updated: 10/22/1999)
- <u>Universal Operational Amplifier Single, Dual, Quad (PDIP)</u> (SLOU062, 1211 KB Updated: 10/22/1999)

PRICING/AVAILABILITY

ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	<u>TEMP</u> <u>(°C)</u>	<u>STATUS</u>	<u>BUDGETARY</u> <u>PRICE</u> <u>US\$/UNIT</u> <u>QTY=1000+</u>	<u>PACK</u> <u>QTY</u>	PRICING/AVAILABILITY
TLC272BCD	<u>D</u>	8		ACTIVE	0.55	75	Check stock or order
TLC272BCDR	<u>D</u>	8		ACTIVE	0.55	2500	Check stock or order
TLC272BCP	<u>P</u>	8		ACTIVE	0.55	50	Check stock or order
TLC272BCPS	<u>PS</u>	8		ACTIVE	0.55	80	Check stock or order
TLC272BCPSR	<u>PS</u>	8		ACTIVE	0.55	2000	Check stock or order
TLC272BID	D	8		ACTIVE	0.56	75	Check stock or order
TLC272BIDR	<u>D</u>	8		ACTIVE	0.56	2500	Check stock or order

<u>Back to Top</u> 994)

Back to Top

4 of	f 4
------	-----

TLC272BIP	<u>P</u>	8	ACTIVE	0.56	50	Check stock or order
		e			/	

DEVELOPMENT TOOLS

Back to Top

		<u>K to Top</u>
Tool Part Number	Tool Title	ТооІ Туре
UNIV-OPAMP- 1B	Universal EVM for Single/Dual OpAmps without Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
UNIV-OPAMP- 2B	Universal EVM for Single/Dual OpAmps with Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
<u>UNIV-OPAMP-</u> <u>3B</u>	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in MSOP/TSSOP packages	Evaluation Modules (EVM)
UNIV-OPAMP- 4B	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in SOIC packages	Evaluation Modules (EVM)
<u>UNIV-OPAMP-</u> 5B	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in PDIP packages	Evaluation Modules (EVM)

Table Data Updated on: 11/26/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy</u> | <u>Important Notice</u>

🐶 Texas Instruments	THE WORLI	D LEADER I	N DSP AND	A N A L O G
Products 💽	Developmen	t Tools 📃	Applicat	ions 💌
Search GO	■ Advanced Search ■ Tech Support	🖬 TI Home 🖬 Comments	🗆 TI&ME 🖿 Site Map	🗆 Employment 🖿 TI Global

PRODUCT FOLDER | PRODUCT INFO: <u>FEATURES</u> | <u>DESCRIPTION</u> | <u>DATASHEETS</u> | <u>PRICING/AVAILABILITY</u> | <u>SAMPLES</u> | <u>APPLICATION NOTES</u> | <u>USER MANUALS</u>

PRODUCT SUPPORT: <u>DEVELOPMENT TOOLS</u> | <u>APPLICATIONS</u>

TLC277, Dual Precision Single Supply Operational Amplifier DEVICE STATUS: ACTIVE

PARAMETER NAME	TLC277
Vs (max) (V)	16
Vs (min) (V)	3
IQ per channel (max) (mA)	1.6
IQ per channel (typ) (mA)	0.7
GBW (typ) (MHz)	1.7
Slew Rate (typ) (V/us)	3.6
VIO (Full Range) (max) (mV)	1.5
VIO (25 deg C) (max) (mV)	0.5
IIB (max) (pA)	600
CMRR (min) (dB)	65
Vn at 1kHz (typ) (nV/rtHz)	25
Number of Channels	2
Spec'd at Vs (V)	5
Open Loop Gain (min) (dB)	74
Offset Drift (typ) (uV/C)	1.8

FEATURES

- Trimmed Offset Voltage:
- TLC277...500 uV Max at 25°C,
- V_{DD} = 5 V
- Input Offset Voltage Drift...Typically
 0.1 uV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:
- $\bullet~0^\circ\text{C}$ to $70^\circ\text{C}...3$ V to 16 V
- -40°C to 85°C...4 V to 16 V

- -55°C to 125°C...4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise...Typically 25 nV/ √ Hz\ at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance...10¹²
 Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

DESCRIPTION

Back to Top

The TLC272 and TLC277 precision dual

operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.

These devices use Texas instruments silicon-gate LinCMOSTM

LinCMOS is a trademark of Texas Instruments Incorporated. technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

TECHNICAL DOCUMENTS

To view the following documents, Acrobat Reader 3.x is required. To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET

Full datasheet in Acrobat PDF: slos091b.pdf (588 KB) (Updated: 08/01/1994) Full datasheet in Zipped PostScript: slos091b.psz (557 KB)

APPLICATION NOTES

View Application Reports for Signal Amplifiers (Less than equal to 100MHz)

- Analog Applications Journal May 2000 (SLYT015 Updated: 04/20/2000)
- Analog Applications Journal, September 1999 edition (SLYT005 Updated: 07/15/1999)
- Analysis Of The Sallen-Key Architecture (SLOA024A Updated: 07/27/1999)

USER MANUALS

Back to Top

- Universal Op Amp Single, Dual, Quad (SOIC) Evaluation Module With Shutdown (SLOU061, 1160 KB - Updated: 10/22/1999)
- Universal Operational Amplifier EVM (SLVU006A, 387 KB Updated: 03/22/1999)
- Universal Operational Amplifier Evaluation Module Selection Guide (SLOU060A, 16 KB -Updated: 09/28/2000)
- Universal Operational Amplifier Single, Dual, Quad (MSOP/TSSOP) (SLOU055, 1196 KB -Updated: 10/22/1999)
- Universal Operational Amplifier Single, Dual, Quad (PDIP) (SLOU062, 1211 KB Updated: 10/22/1999)

SAMDI ES

SAIVIPLES						
ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	<u>TEMP (°C)</u>	<u>STATUS</u>	DSCC NUMBER	SAMPLES
TLC277ID	<u>D</u>	8		ACTIVE		Request Samples
TLC277IP	<u>P</u>	8		ACTIVE		Request Samples

PRICING/AVAILABILITY

BUDGETARY PRICE ORDERABLE TEMP PACK DSCC PACKAGE PINS STATUS PRICING/AVAILABILITY (°C) DEVICE US\$/UNIT QTY NUMBER QTY = 1000 +5962--55 TO OBSOLETE FK 20 89494022A 125 ACTIVE TLC277CD D 8 0.84 75 Check stock or order

Back to Top

Back to Top

Back to Top

Back to Ton

4 of 4	
----------	--

TLC277CDR	<u>D</u>	8		ACTIVE	0.84	2500	Check stock or order
TLC277CP	<u>P</u>	8		ACTIVE	0.84	50	Check stock or order
TLC277CPS	<u>PS</u>	8		ACTIVE	0.84	80	Check stock or order
TLC277CPSR	<u>PS</u>	8		ACTIVE	0.84	2000	Check stock or order
TLC277ID	D	8		ACTIVE	0.88	75	Check stock or order
TLC277IDR	D	8		ACTIVE	0.88	2500	Check stock or order
TLC277IP	<u>P</u>	8		ACTIVE	0.88	50	Check stock or order
TLC277MFKB	<u>FK</u>	20	-55 TO 125	OBSOLETE			
TLC277MJG	<u>JG</u>	8	-55 TO 125	OBSOLETE			
TLC277MJGB	<u>JG</u>	8	-55 TO 125	OBSOLETE			

DEVELOPMENT TOOLS

Tool Part Number	Tool Title	ТооІ Туре
UNIV-OPAMP- 1B	Universal EVM for Single/Dual OpAmps without Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
UNIV-OPAMP- 2B	Universal EVM for Single/Dual OpAmps with Shutdown in MSOP/SOIC/SOT-23 packages	Evaluation Modules (EVM)
UNIV-OPAMP- <u>3B</u>	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in MSOP/TSSOP packages	Evaluation Modules (EVM)
<u>UNIV-OPAMP-</u> <u>4B</u>	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in SOIC packages	Evaluation Modules (EVM)
UNIV-OPAMP- 5B	Universal EVM for Single/Dual/Quad OpAmps with/without Shutdown in PDIP packages	Evaluation Modules (EVM)

Back to Top

Table Data Updated on: 11/26/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy</u> | <u>Important Notice</u>