- High-Current 3-State Noninverting Outputs Drive Bus Lines Directly or up to 15 LSTTL Loads
- Bus-Structured Pinout
- Package Options Include Plastic Small-Outline (DW), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These octal edge-triggered D-type flip-flops feature 3 -state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight flip-flops enter data on the low-to-high transition of the clock (CLK) input.
A buffered output-enable ($\overline{\mathrm{OE}})$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN54HC574 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC574 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
$\overline{\text { OE }}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range \ddagger

Package thermal impedance, θ_{JA} (see Note 2): DW package $97^{\circ} \mathrm{C} / \mathrm{W}$
N package $67^{\circ} \mathrm{C} / \mathrm{W}$
PW package $128^{\circ} \mathrm{C} / \mathrm{W}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC574		SN74HC574		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{IOH}=-6 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{IOH}=-7.8 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{IOL}=6 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{IOL}=7.8 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
I	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
IOz	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.01	± 0.5		± 10		± 5	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or $0, \quad \mathrm{IO}=0$		6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		$V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC574	SN74HC574	UNIT
			MIN MAX	MIN MAX	MIN MAX	
${ }^{\text {f }}$ lock	Clock frequency	2 V	6	4	5	MHz
		4.5 V	30	20	24	
		6 V	38	24	28	
${ }^{\text {w }}$ w	Pulse duration, CLK high or low	2 V	80	120	100	ns
		4.5 V	16	24	20	
		6 V	14	20	17	
$t_{\text {su }}$	Setup time, data before CLK \uparrow	2 V	100	150	125	ns
		4.5 V	20	30	25	
		6 V	17	26	21	
th	Hold time, data after CLK \uparrow	2 V	5	5	5	ns
		4.5 V	5	5	5	
		6 V	5	5	5	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC574		SN74HC574		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{f}$ max			2 V	6	11		4		5		MHz
			4.5 V	30	36		20		24		
			6 V	36	40		24		28		
tpd	CLK	Any Q	2 V		90	180		270		225	ns
			4.5 V		28	36		54		45	
			6 V		24	31		46		38	
ten	$\overline{O E}$	Any Q	2 V		77	150		225		190	ns
			4.5 V		26	30		45		38	
			6 V		23	26		38		32	
${ }^{\text {dis }}$	$\overline{\mathrm{OE}}$	Any Q	2 V		52	150		225		190	ns
			4.5 V		24	30		45		38	
			6 V		22	26		38		32	
t_{t}		Any Q	2 V		28	60		90		75	ns
			4.5 V		8	12		18		15	
			6 V		6	10		15		13	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC574		SN74HC574		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\prime}$ max			2 V	6					5		MHz
			4.5 V	30					24		
			6 V	36					28		
$t_{\text {pd }}$	CLK	Any Q	2 V		105	265		400		330	ns
			4.5 V		36	53		80		66	
			6 V		31	46		68		57	
ten	$\overline{\mathrm{OE}}$	Any Q	2 V		95	235		355		295	ns
			4.5 V		32	47		71		59	
			6 V		28	41		60		51	
t_{t}		Any Q	2 V		60	210		315		265	ns
			4.5 V		17	42		63	53		
			6 V		14	36		53		45	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $C_{p d} \quad$ Power dissipation capacitance per flip-flop | No load | 100 | pF |

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS
PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

PARAMETER		R_{L}	C_{L}	S1	S2
$t_{\text {en }}$	tPZH	$1 \mathrm{k} \Omega$	50 pFor150 pF	Open	Closed
	tPZL			Closed	Open
$t_{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tPLZ			Closed	Open
$t_{\text {pd }}$ or t_{t}		-	50 pF or 150 pF	Open	Open

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. For clock inputs, $f_{\text {max }}$ is measured when the input duty cycle is 50%.
E. The outputs are measured one at a time with one input transition per measurement.
F. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
G. $t_{P Z L}$ and $t_{P Z H}$ are the same as ten.
H. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

Texas Instruments		Semiconductors			
Search	Tech Support	Comments	Site Map	TI\&ME	Home
Products		Development Tools		Applications	
${ }^{\text {Pr }}$ Products					

SN74HC574, OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
 Device Status: Active

$>$ Description
$>$ Features
$>$ Datasheets
> Pricing/Samples/Availability
> Application Notes
$>$ Related Documents
$>$ Training

Parameter Name	SN74HC574
Voltage Nodes (V)	6, 5, 2
Vcc range (V)	2.0 to 6.0
Input Level	CMOS
Output Level	CMOS
Output Drive (mA)	$-6 / 6$
No. of Outputs	8
Static Current	0.08
th (ns)	5
tpd(max) (ns)	38
tsu (ns)	21
Logic	True

Description

These octal edge-triggered D-type flip-flops feature 3-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops enter data on the low-to-high transition of the clock (CLK) input.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE\ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC574 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC574 is characterized for
operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Features

- High-Current 3-State Noninverting Outputs Drive Bus Lines Directly or up to 15 LSTTL Loads
- Bus-Structured Pinout
- Package Options Include Plastic Small-Outline (DW), Thin Shrink

Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip
Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs
To view the following documents, Acrobat Reader 3.X is required.
To download a document to your hard drive, right-click on the link and choose 'Save'.

Datasheets

Full datasheet in Acrobat PDF: scls148c.pdf (108 KB)
Full datasheet in Zipped PostScript: scls148c.psz (111 KB)
Pricing/Samples/Availability

Orderable Device	Package	Pins	$\frac{\text { Temp }}{\left({ }^{\circ} \mathrm{C}\right)}$	Status	$\begin{aligned} & \frac{\text { Price/unit }}{\text { USD }} \\ & (100-999) \end{aligned}$	$\frac{\text { Pack }}{\text { Oty }}$	$\frac{\text { Availability / }}{\text { Samples }}$
SN74HC574APWR	PW	20	$\begin{aligned} & \hline-40 \mathrm{TO} \\ & 85 \end{aligned}$	ACTIVE	0.82	2000	Check stock or order
SN74HC574DW	DW	20	$\begin{aligned} & -40 \mathrm{TO} \\ & 85 \\ & \hline \end{aligned}$	ACTIVE	0.76	25	Check stock or order
SN74HC574DWR	DW	20	$\begin{aligned} & -40 \mathrm{TO} \\ & 85 \end{aligned}$	ACTIVE	0.67	2000	Check stock or order
SN74HC574N	N	20	$\begin{aligned} & -40 \mathrm{TO} \\ & 85 \end{aligned}$	ACTIVE	0.74	20	Check stock or order
SN74HC574N3	N	20	$\begin{aligned} & -40 \mathrm{TO} \\ & 85 \\ & \hline \end{aligned}$	OBSOLETE			
SN74HC574PWR	PW	20	$\begin{aligned} & -40 \mathrm{TO} \\ & 85 \end{aligned}$	ACTIVE	0.82	2000	Check stock or order

Application Reports

View Application Reports for Digital Logic

- CMOS POWER CONSUMPTION AND CPD CALCULATION (SCAA035B - Updated: 02/05/1999)
- DESIGNING WITH LOGIC (SDYA009C - Updated: 02/05/1999)
- HCMOS DESIGN CONSIDERATIONS (SCLA007 - Updated: 02/05/1999)
- IMPLICATIONS OF SLOW OR FLOATING CMOS INPUTS (SCBA004C - Updated:

06/25/1999)

- INPUT AND OUTPUT CHARACTERISTICS OF DIGITAL INTEGRATED

CIRCUITS (SDYA010 - Updated: 02/05/1999)

- LIVE INSERTION (SDYA012 - Updated: 02/05/1999)
- SN54/74HCT CMOS LOGIC FAMILY APPLICATIONS AND RESTRICTIONS (SCLA011 - Updated: 02/05/1999)
- USING HIGH SPEED CMOS AND ADVANCED CMOS IN SYSTEMS WITH MULTIPLE VCC (SCLA008 - Updated: 02/05/1999)

Related Documents

- DOCUMENTATION RULES (SAP) AND ORDERING INFORMATION (SZZU001B, 4 KB - Updated: 05/09/1999)
- LOGIC SELECTION GUIDE FEBRUARY 2000 (SDYU001M, 13837 KB - Updated: 02/25/2000)
- MORE POWER IN LESS SPACE - TECHNICAL ARTICLE (SCAU001A, 850 KB - Updated: 02/05/1999)

Table Data Updated on: 6/18/2000

Search Tech Support Comments Site Map TI\&ME Home
(c) Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks, Important Notice!, Privacy Policy

