

MOSFET Maximum Ratings T_J = 25°C unless otherwise noted.

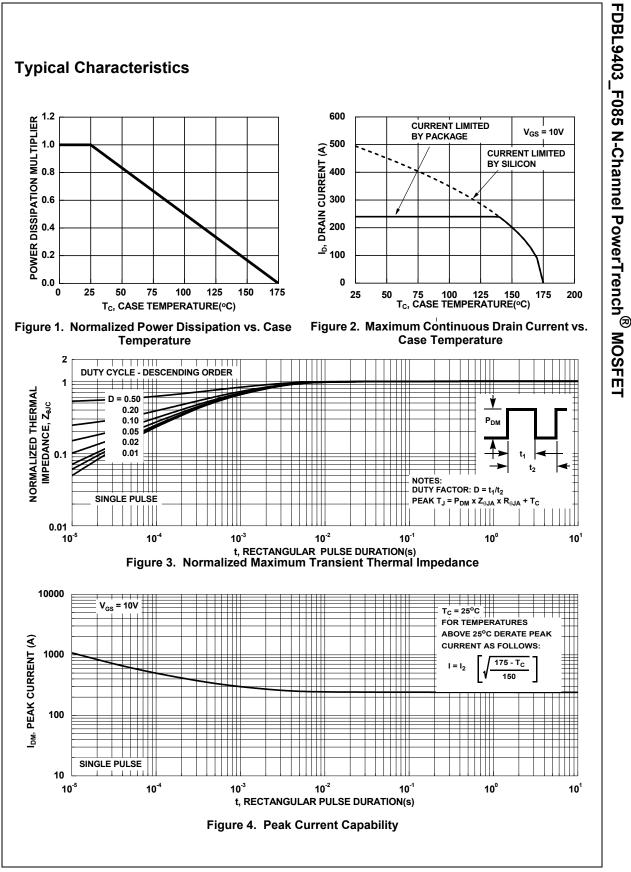
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-to-Source Voltage		40	V	
V _{GS}	Gate-to-Source Voltage		±20	V	
ID	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	240		
	Pulsed Drain Current	T _C = 25°C	See Figure 4	— A	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	737	mJ	
P _D	Power Dissipation		357	W	
	Derate Above 25°C		2.38	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C	
R _{0JC}	Thermal Resistance, Junction to Case		0.42	°C/W	
R _{0JA}	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	43	°C/W	

Notes:

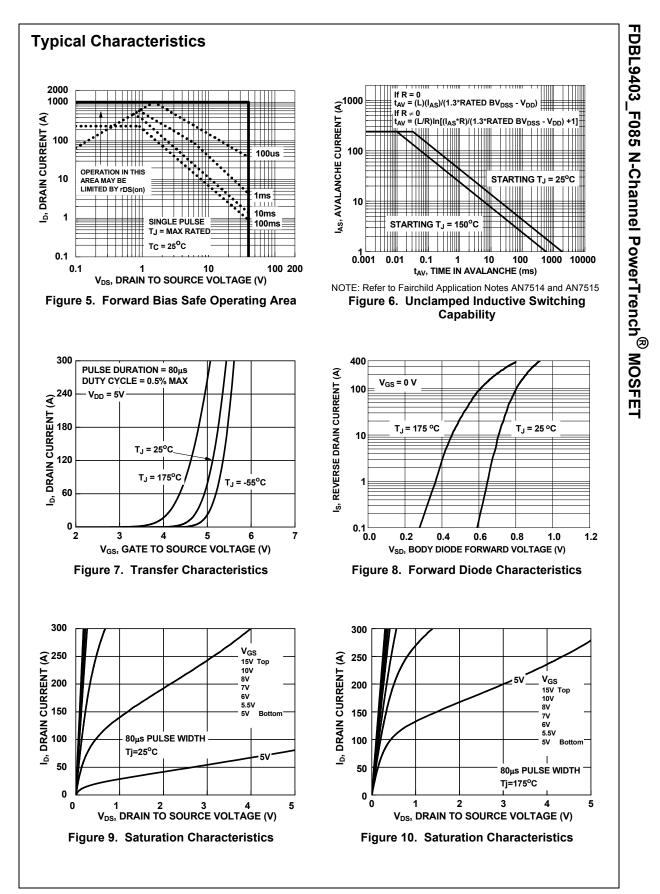
1: Current is limited by bondwire configuration.

2: Starting $T_J = 25^{\circ}C$, L = 0.36 mH, $I_{AS} = 64$ A, $V_{DD} = 40$ V during inductor charging and $V_{DD} = 0$ V during time in avalanche.

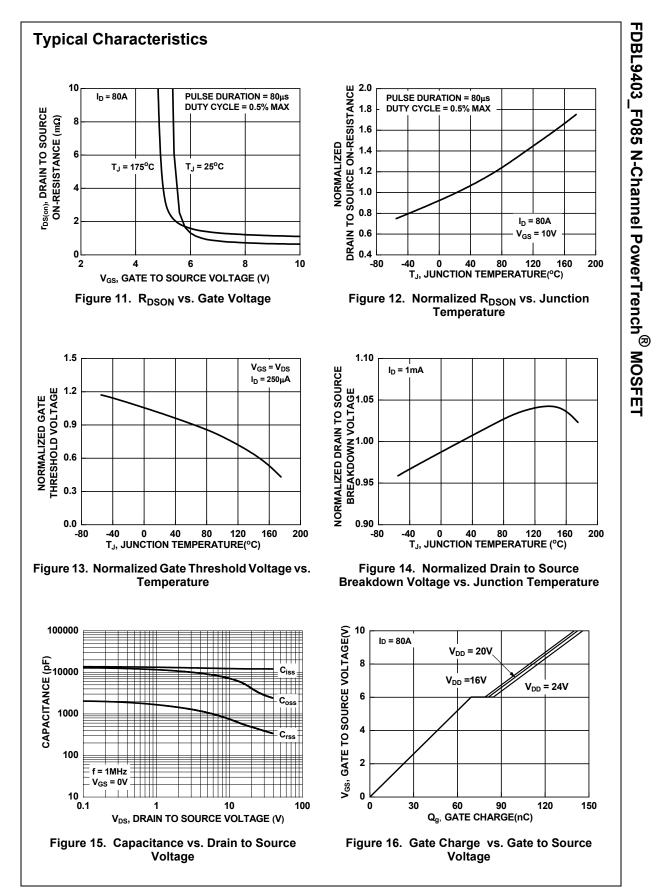
3: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design, while R_{0JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.


Package Marking and Ordering Information

Device Marking	Device	Package			
FDBL9403	FDBL9403_F085	MO-299A	-	-	-


Symbol	Parameter	Test Conditions		Тур.	Max.	Units	
				тур.	IVIAX.	Units	
Off Cha	racteristics						
B _{VDSS}	Drain-to-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	40	-	-	V	
	Drain to Source Lookage Current	V_{DS} =40V, T_J = 25°C	-	-	1	μA	
I _{DSS}	Drain-to-Source Leakage Current	$V_{GS} = 0V$ $T_{J} = 175^{\circ}C$ (Note 4)	-	-	1	mA	
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nA	
On Cha	racteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2.0	3.3	4.0	V	
R _{DS(on)}	Drain to Source On Presistance	$I_{\rm D} = 80$ A, $T_{\rm J} = 25^{\rm o}$ C	-	0.65	0.90	mΩ	
	Drain to Source On Resistance	V_{GS} = 10V T _J = 175°C (Note 4)	-	1.10	1.50	mΩ	
-	Input Capacitance - 12000 - pF						
C	Output Capacitance	V _{DS} = 25V, V _{GS} = 0V,	-	3260	-	pr pF	
C _{oss} C _{rss}	Reverse Transfer Capacitance	f = 1MHz	-	442	-	pr pF	
O _{rss} R _q	Gate Resistance	f = 1MHz		3.3	_	Ω	
Q _{g(ToT)}	Total Gate Charge at 10V		_	144	188	nC	
$Q_{g(th)}$	Threshold Gate Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 32V$ $V_{GS} = 0 \text{ to } 2V$ $I_D = 80A$	-	22	26	nC	
<u>∽g(m)</u> Q _{gs}	Gate-to-Source Gate Charge		-	66	-	nC	
Q _{gd}	Gate-to-Drain "Miller" Charge		-	16	-	nC	
Switchi	ng Characteristics			1			
t _{on}	Turn-On Time		-	-	162	ns	
t _{d(on)}	Turn-On Delay		-	42	-	ns	
t _r	Rise Time	$V_{DD} = 20V, I_D = 80A,$	-	73	-	ns	
t _{d(off)}	Turn-Off Delay	V _{GS} = 10V, R _{GEN} = 6Ω	-	83	-	ns	
f	Fall Time		-	50	-	ns	
t _{off}	Turn-Off Time		-	-	279	ns	

Note:


4: The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

FDBL9403_F085 Rev. C1

FDBL9403_F085 Rev. C1

FDBL9403_F085 Rev. C1

Not In Production

Obsolete

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.