National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

May 1999

Amplifier

_MC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operationa

National Semiconductor

LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier

General Description

The LMC6462/4 is a micropower version of the popular LMC6482/4, combining Rail-to-Rail Input and Output Range with very low power consumption.

The LMC6462/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier, guaranteed for loads down to 25 kΩ, assures maximum dynamic sigal range. This rail-to-rail performance of the amplifier, combined with its high voltage gain makes it unique among rail-to-rail amplifiers. The LMC6462/4 is an excellent upgrade for circuits using limited common-mode range amplifiers.

The LMC6462/4, with guaranteed specifications at 3V and 5V, is especially well-suited for low voltage applications. A quiescent power consumption of 60 μ W per amplifier (at V_S = 3V) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage of 0.25 mV, and 85 dB CMRR maintain accuracy in battery-powered systems.

Features

(Typical unless otherwise noted)

- Ultra Low Supply Current 20 µA/Amplifier
- Guaranteed Characteristics at 3V and 5V
- Rail-to-Rail Input Common-Mode Voltage Range
- Rail-to-Rail Output Swing
- (within 10 mV of rail, $V_S = 5V$ and $R_L = 25 \text{ k}\Omega$) • Low Input Current 150 fA
- Low Input Offset Voltage 0.25 mV

Applications

- Battery Operated Circuits
- Transducer Interface Circuits
- Portable Communication Devices
- Medical Applications
- Battery Monitoring

© 1999 National Semiconductor Corporation DS012051

Ordering Information									
Package	Temp	erature Range	NSC	Transport					
	Military	Industrial	Drawing	Media					
	–55°C to +125°C	–40°C to +85°C							
8-Pin Molded DIP	LMC6462AMN	LMC6462AIN, LMC6462BIN	N08E	Rails					
8-Pin SO-8		LMC6462AIM, LMC6462BIM	M08A	Rails					
		LMC6462AIMX, LMC6462BIMX	M08A	Tape and Reel					
14-Pin Molded DIP	LMC6464AMN	LMC6464AIN, LMC6464BIN	N14A	Rails					
14-Pin SO-14		LMC6464AIM, LMC6464BIM	M14A	Rails					
		LMC6464AIMX, LMC6464BIMX	M14A	Tape and Reel					
8-Pin Ceramic DIP	LMC6462AMJ-QML		J08A	Rails					
14-Pin Ceramic DIP	LMC6464AMJ-QML		J14A	Rails					
14-Pin Ceramic SOIC	LMC6464AMWG-QML		WG14A	Trays					

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2.0 kV
Differential Input Voltage	±Supply Voltage
Voltage at Input/Output Pin	(V ⁺) + 0.3V, (V ⁻) - 0.3V
Supply Voltage (V ⁺ – V ⁻)	16V
Current at Input Pin (Note 12)	±5 mA
Current at Output Pin	
(Notes 3, 8)	±30 mA
Current at Power Supply Pin	40 mA
Lead Temp. (Soldering, 10 sec.)	260°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature (Note 4)	150°C

Operating Ratings (Note 1)

$3.0 \text{V} \leq \text{V}^+ \leq 15.5 \text{V}$
$-55^{\circ}C \le T_{J} \le +125^{\circ}C$
$-40^{\circ}C \le T_{J} \le +85^{\circ}C$
$-40^{\circ}C \le T_{J} \le +85^{\circ}C$
115°C/W
193°C/W
81°C/W
126°C/W

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. Boldface limits apply at the temperature extremes.

				LMC6462AI	LMC6462BI	LMC6462AM	
Symbol	Parameter	Conditions	Тур	LMC6464AI	LMC6464BI	LMC6464AM	Units
			(Note 5)	Limit	Limit	Limit	
				(Note 6)	(Note 6)	(Note 6)	
Vos	Input Offset Voltage		0.25	0.5	3.0	0.5	mV
				1.2	3.7	1.5	max
TCV _{OS}	Input Offset Voltage		1.5				µV/°C
	Average Drift						
I _B	Input Current	(Note 13)	0.15	10	10	200	pA max
l _{os}	Input Offset Current	(Note 13)	0.075	5	5	100	pA max
CIN	Common-Mode		3				pF
	Input Capacitance						
R _{IN}	Input Resistance		>10				Tera Ω
CMRR	Common Mode	$0V \le V_{CM} \le 15.0V,$	85	70	65	70	dB
	Rejection Ratio	V ⁺ = 15V		67	62	65	min
		$0V \le V_{CM} \le 5.0V$	85	70	65	70	1
		V ⁺ = 5V		67	62	65	
+PSRR	Positive Power Supply	$5V \le V^+ \le 15V$,	85	70	65	70	dB
	Rejection Ratio	$V^{-} = 0V, V_{O} = 2.5V$		67	62	65	min
-PSRR	Negative Power Supply	$-5V \le V^- \le -15V$,	85	70	65	70	dB
	Rejection Ratio	$V^+ = 0V, V_0 = -2.5V$		67	62	65	min
V _{CM}	Input Common-Mode	V ⁺ = 5V	-0.2	-0.10	-0.10	-0.10	V
	Voltage Range	For CMRR \ge 50 dB		0.00	0.00	0.00	max
			5.30	5.25	5.25	5.25	V
				5.00	5.00	5.00	min
		V ⁺ = 15V	-0.2	-0.15	-0.15	-0.15	V
		For CMRR \ge 50 dB		0.00	0.00	0.00	max
			15.30	15.25	15.25	15.25	V
				15.00	15.00	15.00	min

Symbol	Parameter	Conditi	Conditions		LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
A _V	Large Signal	R _L = 100 kΩ	Sourcing	3000			Image: Bit is and iteration is a straight of the iteration is a straisen is a straisen is a straight of the iteration is a straight	V/m\
	Voltage Gain	(Note 7)						min
			Sinking	400				V/m\
								min
		$R_L = 25 \ k\Omega$	Sourcing	2500				۷/m۱
		(Note 7)						min
			Sinking	200				۷/m۱
								min
Vo	Output Swing	V ⁺ = 5V		4.995	4.990	4.950	4.990	V
		R _L = 100 kΩ t	o V+/2		4.980	4.925	4.970	min
					0.010	0.050	0.010	V
					0.020	0.075	0.030	max
		V ⁺ = 5V		4.990	4.975	4.950	4.975	V
		$R_L = 25 \ k\Omega$ to	V+/2		4.965	4.850	4.955	min
				0.010	0.020	0.050	0.020	V
					0.035	0.150	0.045	max
		V ⁺ = 15V		14.990	14.975	14.950	14.975	V
		R_L = 100 k Ω to V ⁺ /2			14.965	14.925	14.955	min
				0.010	0.025	0.050	0.025	V
					0.035	0.075	0.050	max
		V ⁺ = 15V		14.965	14.900	14.850	14.900	V
		$R_L = 25 \ k\Omega$ to	V+/2		14.850	14.800	14.800	min
				0.025	0.050	0.100	0.050	V
					0.150	0.200	0.200	max
I _{sc}	Output Short Circuit	Sourcing, V _O =	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mA				
	Current				15	15	15	min
	V+ = 5V	Sinking, V_{O} =	5V	27	22	22	22	mA
					17	17	17	min
I _{sc}	Output Short Circuit	Sourcing, V _O =	= 0V	38	24	24	4.950 4.990 4.955 4.970 0.050 0.010 0.075 0.030 4.950 4.975 4.850 4.955 0.050 0.020 0.150 0.045 4.950 14.975 4.950 14.975 4.950 14.975 4.950 14.975 4.950 0.025 0.075 0.050 0.050 0.025 0.075 0.050 0.100 0.050 0.200 0.200 19 19 15 15 22 22 17 17 24 24 17 17 55 55 70 75 110 110 140 150 60 60 70 75	mA
	Current				17	17	17	min
	V ⁺ = 15V	Sinking, V_{O} =	12V	75	55	55	55	mA
		(Note 8)			45	45	45	min
s	Supply Current	Dual, LMC646	2	40	55	55	55	μA
		$V^{+} = +5V, V_{O}$	= V+/2		70	70	75	max
		Quad, LMC640	64	80	110	110	110	μA
		$V^{+} = +5V, V_{O}$	= V+/2		140	140	150	max
		Dual, LMC646	2	50	60	60	60	μA
		$V^+ = +15V, V_c$	$_{\rm D} = V^{+}/2$		70	70	75	max
		Quad, LMC646	64	90	120	120	120	μA
		$V^+ = +15V, V_0$	$_{\rm D} = V^{+}/2$		140	140	150	max

· ·

Г

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V⁺ = 5V, V⁻ = 0V, V_{CM} = V_O = V⁺/2 and R_L > 1M. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
SR	Slew Rate	(Note 9)	28	15	15	15	V/ms
				8	8	8	min
GBW	Gain-Bandwidth Product	V ⁺ = 15V	50				kHz
φ _m	Phase Margin		50				Deg
G _m	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	130				dB
en	Input-Referred	f = 1 kHz	80				nV/√Hz
	Voltage Noise	$V_{CM} = 1V$					
i _n	Input-Referred	f = 1 kHz	0.03				pA/√Hz
	Current Noise						

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 3V, V⁻ = 0V, V_{CM} = V₀ = V⁺/2 and R_L > 1M. **Boldface** limits apply at the temperature extremes.

				LMC6462AI	LMC6462BI	LMC6462AM	
Symbol	Parameter	Conditions	Тур	LMC6464AI	LMC6464BI	LMC6464AM	Units
			(Note 5)	Limit	Limit	Limit	
				(Note 6)	(Note 6)	(Note 6)	
Vos	Input Offset Voltage		0.9	2.0	3.0	2.0	mV
				2.7	3.7	3.0	max
TCV _{os}	Input Offset Voltage		2.0				µV/°C
	Average Drift						
I _B	Input Current	(Note 13)	0.15	10	10	200	pА
los	Input Offset Current	(Note 13)	0.075	5	5	100	pА
CMRR	Common Mode	$0V \le V_{CM} \le 3V$	74	60	60	60	dB
	Rejection Ratio						min
PSRR	Power Supply	$3V \le V^+ \le 15V, V^- = 0V$	80	60	60	60	dB
	Rejection Ratio						min
V _{CM}	Input Common-Mode	For CMRR ≥ 50 dB	-0.10	0.0	0.0	0.0	V
	Voltage Range						max
			3.0	3.0	3.0	3.0	V
							min
Vo	Output Swing	$R_L = 25 \text{ k}\Omega \text{ to V}^+/2$	2.95	2.9	2.9	2.9	V
							min
			0.15	0.1	0.1	0.1	V
							max
ls	Supply Current	Dual, LMC6462	40	55	55	55	μA
		$V_{O} = V^{+}/2$		70	70	70	
		Quad, LMC6464	80	110	110	110	μA
		$V_{\rm O} = V^{+}/2$		140	140	140	max

3V AC Electrical Characteristics

Unless otherwise specified, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
SR	Slew Rate	(Note 11)	23				V/ms
GBW	Gain-Bandwidth Product		50				kHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human body model, 1.5 k Ω in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.

Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: V⁺ = 15V, V_{CM} = 7.5V and R_L connected to 7.5V. For Sourcing tests, 7.5V \leq V₀ \leq 11.5V. For Sinking tests, 3.5V \leq V₀ \leq 7.5V.

Note 8: Do not short circuit output to V⁺, when V⁺ is greater than 13V or reliability will be adversely affected.

Note 9: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of either the positive or negative slew rates.

Note 10: Input referred, V⁺ = 15V and R_L = 100 k Ω connected to 7.5V. Each amp excited in turn with 1 kHz to produce V_O = 12 V_{PP}.

Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of either the positive or negative slew rates.

Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.

Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.

Note 14: For guaranteed Military Temperature Range parameters see RETSMC6462/4X.

Typical Performance Characteristics V_s = +5V, Single Supply, T_A = 25°C unless otherwise specified

8

The LMC6462/4 has a rail-to-rail input common-mode voltage range. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

The absolute maximum input voltage at V⁺ = 3V is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in *Figure* 2, can cause excessive current to flow in or out of the input externally limited to ±5 mA, with an input resistor, as shown in Figure 3.

FIGURE 2. A ±7.5V Input Signal Greatly Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to R₁

FIGURE 3. Input Current Protection for Voltage Exceeding the Supply Voltage

2.0 Rail-to-Rail Output

The approximated output resistance of the LMC6462/4 is 180 Ω sourcing, and 130 Ω sinking at V_S = 3V, and 110 Ω sourcing and 83 Ω sinking at V_S = 5V. The maximum output swing can be estimated as a function of load using the calculated output resistance.

3.0 Capacitive Load Tolerance

The LMC6462/4 can typically drive a 200 pF load with $V_{\rm S}$ = 5V at unity gain without oscillating. The unity gain follower is the most sensitive configuration to capacitive load. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.

Capacitive load compensation can be accomplished using resistive isolation as shown in *Figure 4*. If there is a resistive component of the load in parallel to the capacitive component, the isolation resistor and the resistive load create a voltage divider at the output. This introduces a DC error at the output.

Another circuit, shown in *Figure 6*, is also used to indirectly drive capacitive loads. This circuit is an improvement to the circuit shown in *Figure 4* because it provides DC accuracy as well as AC stability. R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 should be experimentally determined by the system designer for the desired pulse response. Increased capacitive drive is possible by increasing the value of the capacitor in the feedback loop.

FIGURE 6. LMC6462 Non-Inverting Amplifier, Compensated to Handle a 300 pF Capacitive and 100 k Ω Resistive Load

LMC6462 Circuit in Figure 6

The pulse response of the circuit shown in *Figure 6* is shown in *Figure 7*.

4.0 Compensating for Input Capacitance

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6462/4. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins.

FIGURE 8. Canceling the Effect of Input Capacitance

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in *Figure 8*), C_{F} , is first estimated by:

$$\frac{1}{2\pi R_1 C_{\text{IN}}} \geq \frac{1}{2\pi R_2 C_{\text{I}}}$$

or

 $R_1 C_{IN} \le R_2 C_F$

which typically provides significant overcompensation.

Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for C_F may be different. The values of C_F should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

5.0 Offset Voltage Adjustment

Offset voltage adjustment circuits are illustrated in *Figure 9* and *Figure 10*. Large value resistances and potentiometers are used to reduce power consumption while providing typically ± 2.5 mV of adjustment range, referred to the input, for both configurations with V_S = ± 5 V.

6.0 Spice Macromodel

A Spice macromodel is available for the LMC6462/4. This model includes a simulation of:

- Input common-mode voltage range
- Frequency and transient response
- · GBW dependence on loading conditions
- Quiescent and dynamic supply current
- · Output swing dependence on loading conditions

and many more characteristics as listed on the macromodel disk.

Contact the National Semiconductor Customer Response Center to obtain an operational amplifier Spice model library disk.

7.0 Printed-Circuit-Board Layout for High-Impedance Work

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6462/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6462's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 11. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12}\Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 30 times degradation from the LMC6462/4's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11}\Omega$ would cause only 0.05 pA of leakage current. See Figure 12 for typical connections of guard rings for standard op-amp configurations.

Application Information (Continued)

8.0 Instrumentation Circuits

The LMC6464 has the high input impedance, large common-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6464 can reject a larger range of common-mode signals than most in-amps. This makes instrumentation circuits designed with the LMC6464 an excellent choice for noisy or industrial environments. Other appli

cations that benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and silicon-based transducers.

A small valued potentiometer is used in series with Rg to set the differential gain of the three op-amp instrumentation circuit in *Figure 14*. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

FIGURE 14. Low Power Three Op-Amp Instrumentation Amplifier

A two op-amp instrumentation amplifier designed for a gain of 100 is shown in *Figure 15*. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit. Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.

FIGURE 15. Low-Power Two-Op-Amp Instrumentation Amplifier

Typical Single-Supply Applications

FIGURE 16. Photo Detector Circuit

Photocells can be used in portable light measuring instruments. The LMC6462, which can be operated off a battery, is an excellent choice for this circuit because of its very low input current and offset voltage.

FIGURE 17. Comparator with Hysteresis

Figure 17 shows the application of the LMC6462 as a comparator. The hysteresis is determined by the ratio of the two resistors. The LMC6462 can thus be used as a micropower comparator, in applications where the quiescent current is an important parameter.

HALF-WAVE AND FULL-WAVE RECTIFIERS

FIGURE 18. Half-Wave Rectifier with Input Current Protection (R_I)

FIGURE 19. Full-Wave Rectifier with Input Current Protection (R₁)

In Figure 18 Figure 19, ${\sf R}_{\sf I}$ limits current into the amplifier since excess current can be caused by the input voltage exceeding the supply voltage.

PRECISION CURRENT SOURCE

FIGURE 20. Precision Current Source

The output current I_{OUT} is given by:

$$I_{OUT} = \left(\frac{V^+ - V_{IN}}{R}\right)$$

OSCILLATORS

FIGURE 21. 1 Hz Square-Wave Oscillator

For single supply 5V operation, the output of the circuit will swing from 0V to 5V. The voltage divider set up $R_2,\,R_3$ and R_4 will cause the non-inverting input of the LMC6462 to move from 1.67V (1/3 of 5V) to 3.33V (2/3 of 5V). This voltage behaves as the threshold voltage.

 R_1 and C_1 determine the time constant of the circuit. The frequency of oscillation, $f_{\rm OSC}$ is

LOW FREQUENCY NULL R₃ \sim 220 kΩ HIGH SPEED AMPLIFIER **o** v_{out} R₄ **≦** 10 MΩ C₂ 0.1 μF 1 LMC6462 C3 R_5 R₆ +5V ~~ \sim 25 kΩ 25 kΩ DS012051-28 FIGURE 22. High Gain Amplifier

with Low Frequency Null

Output offset voltage is the error introduced in the output voltage due to the inherent input offset voltage $V_{\rm OS},$ of an amplifier.

Output Offset Voltage = (Input Offset Voltage) (Gain)

In the above configuration, the resistors R_5 and R_6 determine the nominal voltage around which the input signal, $V_{\rm IN}$ should be symmetrical. The high frequency component of the input signal $V_{\rm IN}$ will be unaffected while the low frequency component will be nulled since the DC level of the output will be the input offset voltage of the LMC6462 plus the bias voltage. This implies that the output offset voltage due to the top amplifier will be eliminated.

www.national.com

	Notes
2	
•	
	LIFE SUPPORT POLICY
	NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
	 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
	National Semiconductor Corporation Americas Tel: 1-800-272-9959 National Semiconductor Europe National Semiconductor Fax: 449 (0) 1 80-530 85 86 National Semiconductor Asia Pacific Customer National Semiconductor Japan Ltd. Fax: 1-800-737-7018 Deutsch Tel: +49 (0) 1 80-530 85 85 Fax: 449 (0) 1 80-530 85 85 Fax: 81-3-5639-7560 Fax: 1-800-737-7018 Deutsch Tel: +49 (0) 1 80-532 78 32 Fax: 81-3-5639-7507 Fax: 1-800-737-7018 Deutsch Tel: +49 (0) 1 80-532 78 32 Email: sea.support@nsc.com www.national.com Italiano Tel: +49 (0) 1 80-532 78 32 Email: sea.support@nsc.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

L

Products > Analog - Amplifiers > Operational Amplifiers > Micropower > LMC6462

LMC6462 Dual Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier

Generic P/N 6462

×

Contents	Parametric Table			
General Description	Channels (Channels)	2		
 <u>General Description</u> <u>Features</u> Applications 	Input Output Type	R-R In and Out		
• Datasheet	Bandwidth, typ (MHz)	.05		
Package Availability, Models, Samples	Slew Rate, typ (Volts/usec)	.0150		
<u>& Pricing</u> • <u>Design Tools</u>	Supply Current per Channel, typ (mA)	.02		
	Minimum Supply Voltage (Volt)	3		
	Maximum Supply Voltage (Volt)	15		
	Offset Voltage, Max (mV)	.50,3		
	Input Bias Current, Temp Max (nA)	.0050		
	Output Current, typ (mA)	27		
	Voltage Noise, typ (nV/Hz)	80		
	Shut down	No		

General Description

The LMC6462/4 is a micropower version of the popular LMC6482/4, combining Rail-to-Rail Input and Output Range with very low power consumption.

The LMC6462/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier, guaranteed for loads down to 25 k Ohm, assures maximum dynamic sigal range. This rail-to-rail performance of the amplifier, combined with its high voltage gain makes it unique among rail-to-rail amplifiers. The LMC6462/4 is an excellent upgrade for circuits using limited common-mode range amplifiers.

The LMC6462/4, with guaranteed specifications at 3V and 5V, is especially well-suited for low voltage applications. A quiescent power consumption of 60 μ W per amplifier (at V_S =

3V) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage of 0.25 mV, and 85 dB CMRR maintain accuracy in battery-powered systems.

Features

(Typical unless otherwise noted)

- Ultra Low Supply Current 20 µA/Amplifier
- Guaranteed Characteristics at 3V and 5V
- Rail-to-Rail Input Common-Mode Voltage Range
- Rail-to-Rail Output Swing (within 10 mV of rail, $V_s = 5V$ and $R_1 = 25$ k Ohm)
- Low Input Current 150 fA
- Low Input Offset Voltage 0.25 mV

Applications

- Battery Operated Circuits
- Transducer Interface Circuits
- Portable Communication Devices
- Medical Applications
- Battery Monitoring

Datasheet

Title	Size (in Kbytes)	Date	View Online	X Download	Receive via Email
LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier	648 Kbytes	24- Jun-99	View Online	Download	<u>Receive via</u> <u>Email</u>
LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier (JAPANESE)	805 Kbytes				
LMC6462 Mil-Aero Datasheet MNLMC6462AM-X	61 Kbytes		View Online	Download	<u>Receive via</u> <u>Email</u>

Please use <u>Adobe Acrobat</u> to view PDF file(s).

If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Dont Number	Package		Status	Models	Models		.es Budgetary Pricing		Std	Package
	Туре	# pins	Status	SPICE	IBIS E	Electronic Orders	Quantity	\$US each	Size	Marking
LMC6462AIM	SOIC NARROW	8	Full production	LMC6462A.MOD	N/A	Samples	1K+	\$1.2700	tube of 95	[logo]¢2¢T LMC64 62AIM
LMC6462BIM	SOIC NARROW	8	Full production	LMC6462B.MOD	N/A	Samples	1K+	\$1.0100	tube of 95	[logo]¢2¢T LMC64 62BIM
LMC6462AIMX	SOIC NARROW	8	Full production	LMC6462A.MOD	N/A	X	1K+	\$1.3000	reel of 2500	[logo]¢2¢T LMC64 62AIM
LMC6462BIMX	SOIC NARROW	8	Full production	LMC6462B.MOD	N/A		1K+	\$1.0400	reel of 2500	[logo]¢2¢T LMC64 62BIM

LMC6462AIN	MDIP	8	Full production	LMC6462A.MOD	N/A	Samples	1K+	\$1.3000	tube of 40	[logo]¢U¢Z¢2¢T LMC6462 AIN
LMC6462BIN	MDIP	8	Full production	LMC6462B.MOD	N/A	Samples	1K+	\$1.0800	tube of 40	[logo]¢U¢Z¢2¢T LMC6462 BIN
5962-9560301QPA	Cerdip	8	Full production	LMC6462A.MOD	N/A		25+	\$10.4000	tube of 40	[logo]¢Z¢S¢4¢A\$E LMC6462AMJ- QML 5962- 9560301QPA
LMC6462B MWC	wafer		Full production	LMC6462B.MOD	N/A				N/A	-

Design Tools

Title	Size (in Kbytes)	Date	View Online	X Download	Receive via Email
Amplifiers Selection Guide software for Windows	8 Kbytes	21-Jul-2000		View	

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

[Information as of 29-Aug-2000]

Quick Search	<u>Parametric</u> <u>Search</u>	<u>System</u> Diagrams	Product Tree	Home
	A	bout Languages . Ab National is QS 90 <u>Copyright ©</u> Nation	out the Site . About 00 Certified . Priva al Semiconductor (Dreferences .	<u>t "Cookies"</u> icy/Security Corporation Feedback