ANADIGICS

AWU6608

HELP3™ Band 8 / WCDMA 3.4 V / 28.5 dBm Linear PA Module Data Sheet - Rev 2.1

FEATURES

- HSPA Compliant
- · InGaP HBT Technology
- High Efficiency: (R99 waveform)
 - 40 % @ Pout = +28.5 dBm
 - 22 % @ Pout = +17 dBm
- Simpler Calibration with only 2 Bias Modes
- · Low Quiescent Current: 9 mA
- Low Leakage Current in Shutdown Mode: <1 μA
- Internal Voltage Regulator
- Integrated "daisy chainable" directional couplers with CPLin and CPLout Ports
- Optimized for a 50 Ω System
- · Low Profile Miniature Surface Mount Package
- RoHS Compliant Package, 260 °C MSL-3

M45 Package 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module

APPLICATIONS

 WCDMA/HSPA 900 MHz Band Wireless Handsets and Data Devices

PRODUCT DESCRIPTION

The AWU6608 HELP3™ PA is a 3rd generation WCDMA product for UMTS handsets. This PA incorporates ANADIGICS' HELP3™ technology to provide low power consumption without the need for an external voltage regulator. A "daisy chainable" directional coupler is integrated in the module thus eliminating the need of external couplers. The device is manufactured

on an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. There are two selectable bias modes that optimize efficiency for different output power levels, and a shutdown mode with low leakage current, which increases handset talk and standby time. The self-contained 3 mm x 3 mm x 1 mm surface mount package incorporates matching networks optimized for output power, efficiency, and linearity in a 50 Ω system.

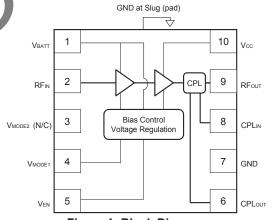


Figure 1: Block Diagram

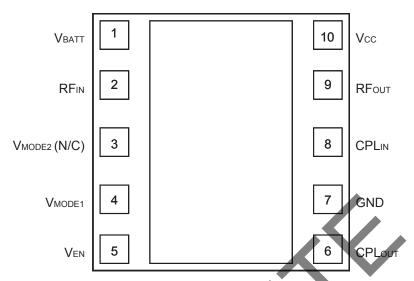


Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

	PIN NAME		DESCRIPTION							
	1	Vвап	Battery Voltage							
	2	RFℕ	RF Input							
	3	V _{MODE2} (N/C)	No Connection							
	4	V _{MODE1}	Mode Control Voltage 1							
	5	VEN	PA Enable Voltage							
	6	СРЬоит	Coupler Output							
	1	GND	Ground							
1	8	CPLℕ	Coupler Input							
	9	RFout	RF Output							
	10	Vcc	Supply Voltage							

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (Vcc)	0	+5	V
Battery Voltage (VBATT)	0	+6	V
Control Voltages (VMODE1, VENABLE)	0	+3.5	V
RF Input Power (Pℕ)	-	+10	dBm
Storage Temperature (Tstg)	-40	+150	°C

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Operating Ranges

rabio or operating transpor							
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
Operating Frequency (f)	880	-	915	MHz			
Supply Voltage (Vcc)	+3.2	+3.4	+4.2	V	Роит <u><</u> +28.5 dBm		
Enable Voltage (Venable)	+2.15	+2.4 0	+3.1 +0.5	٧	PA "on" PA "shut down"		
Mode Control Voltage (VMODE1)	+1.6 0	+2.4	+3.1 +0.5	٧	Low Bias Mode High Bias Mode		
RF Output Power (Pour) R99 WCDMA, HPM HSPA (MPR=0), HPM R99 WCDMA, LPM HSPA (MPR=0), LPM	28.0 ⁽¹⁾ 27.0 ⁽¹⁾ 16.5 ⁽¹⁾ 15.5 ⁽¹⁾	28.5 27.5 17 16	28.5 27.5 17 16	dBm	3GPP TS 34.121-1, Rel 8, Subtest 1,Table C.11.1.3		
Case Temperature (Tc)	-30	-	+90	°C			

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) For operation at Vcc = +3.2 V, Pout is derated by 0.5 dB.

Table 4: Electrical Specifications

(Tc = +25 °C, Vcc = +3.4 V, V_{BATT} = +3.4 V, V_{ENABLE} = +2.4 V, 50 Ω system, R99 waveform)

(1c = +25 °C, Vcc = +3.4					COMMENTS		
PARAMETER	MIN	TYP	MAX	UNIT	Роит	V _{MODE1}	
Gain	25 13	27.5 15.5	31 18	dB	+28.5 dBm +17 dBm	0 V 2.4 V	
ACLR1 at 5 MHz offset (1)	1 1	-41 -42	-38 -38	dBc	+28.5 dBm +17 dBm	0 V 2.4 V	
ACLR2 at 10 MHz offset	1 1	-57 -56	-48 -48	dBc	+28.5 dBm +17 dBm	0 V 2.4 V	
Power-Added Efficiency (1)	36 19	40 22	1 1	%	+28.5 dBm +17 dBm	0 V 2.4 V	
Quiescent Current (lcq) Low Bias Mode	ı	9	13	mA	V _{MODE1} = +2.4 V		
Mode Control Current	ı	0.1	0.25	mA	through V _{MODE} pin,	$V_{MODE1} = +2.4 \text{ V}$	
Enable Current	-	0.4	0.6	mA	through Venable	oin	
BATT Current	-	3.0	5	mA	through VBATT pin	I, V _{MODE1} = +2.4 V	
Leakage Current	ı	V 1	1	μА	V_{BATT} = +4.2 V, V_{CC} = +4.2 V, V_{ENABLE} = 0 V, V_{MODE1} = 0 V		
Noise in Receive Band ⁽²⁾	_	-135	-133	dBm/Hz	Роит <u><</u> +28.5 dВn	n, V _{MODE1} = 0V	
Noise in Neceive Danu	-	-143	-138	dBm/Hz	Роит <u><</u> 17 dBm, \	$I_{MODE1} = +2.4 \text{ V}$	
Harmonics 2fo 3fo, 4fo		-35 -45	-30 -35	dBc	Ро∪т <u><</u> +28.5 dВn	n	
Input Impedance	-	-	-	VSWR			
Coupling Factor	-	19	-	dB			
Directivity	-	20	-	dB			
Coupler IN-OUT Daisy Chain Insertion Loss	ı	0.25	ı	dB	698 MHz to 2620 Pin 8 to 6, Shutdo		
Spurious Output Level (all spurious outputs)	-	-	-70	dBc	Pout ≤ +28.5 dBn In-band load VSV Out-of-band load Applies over all c	VR < 5:1	
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Applies over full of	operating range	
Phase Delta	-	25	-	Deg			

Notes:

⁽¹⁾ ACLR and Efficiency measured at 897.5 MHz.

⁽²⁾ Noise measured at 925 MHz to 960 MHz.

APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the Venable and Vmode1 voltages.

Bias Modes

The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate

logic level (see Operating Ranges table) to V_{MODE1}. The Bias Control table lists the recommended modes of operation for various applications. V_{MODE2} is not necessary for this PA.

Two operating modes are available to optimize current consumption. High Bias/High Power operating mode is for Pout levels \geq 16 dBm. At around 17 dBm output power, the PA can be "Mode Switched" to Medium/ Low power mode for lowest quiescent current consumption.

Table 5: Bias Control (UMTS)

APPLICATION	Pout LEVELS	BIAS MODE	VENABLE	V _{MODE1}	Vcc	V BATT
UMTS - med/low power (Low Bias Mode)	<u><</u> +17 dBm	Low	+2.4 V	+2.4 V	3.2 - 4.2 V	≥ 3.2 V
UMTS - high power (High Bias Mode)	> +16 dBm	High	+2.4 V	0 V	3.2 - 4.2 V	≥ 3.2 V
Optional lower Vcc in low power mode	<u><</u> +7 dBm	Low	+2.4 V	+2.4 V	1.5 V	≥ 3.2 V
Shutdown	- (Shutdown	0 V	0 V	3.2 - 4.2 V	≥ 3.2 V

CHARACTERIZATION DATA (WCDMA Rel 99, V_{CC} = 3.4 V, V_{EN} = 2.4 V, T = 25 °C)

Figure 3: Gain vs Output Power

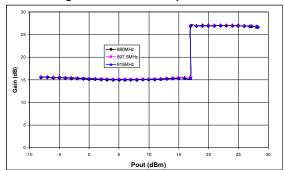


Figure 4: Current vs Output Power

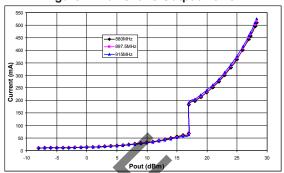


Figure 5: ACLR1 (5 MHz offset) vs Output Power

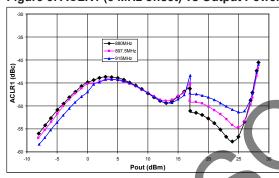


Figure 6: ACLR2 (10 MHz offset) vs Output

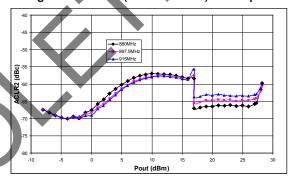
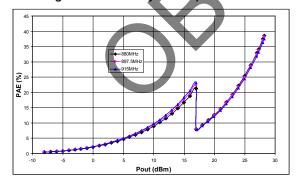



Figure 7: Efficiency vs Output Power

CHARACTERIZATION DATA (HSPA, Rel 8, V_{CC} = 3.4 V, V_{EN} = 2.4 V, T = 25 °C)

Figure 8: Gain vs Output Power

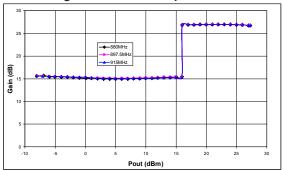


Figure 9: Current vs Output Power

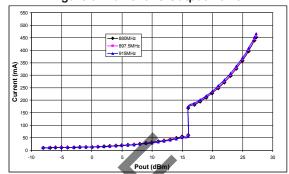


Figure 10: ACLR1 (5 MHz offset) vs Output

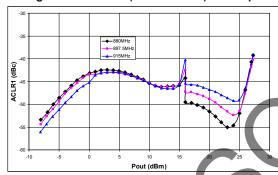


Figure 11: ACLR2 (10 MHz offset) vs Output

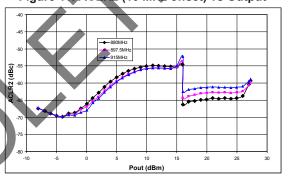
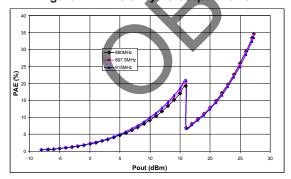



Figure 12: Efficiency vs Output Power

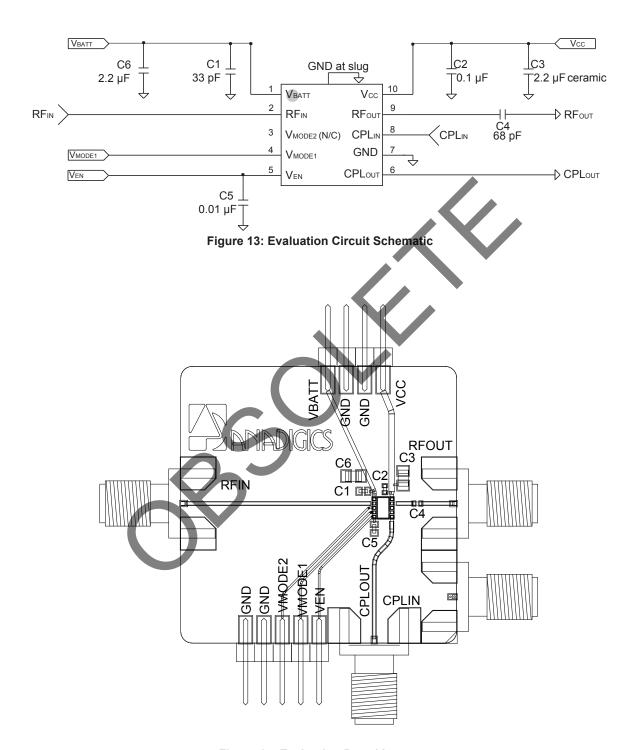
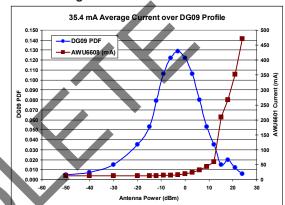


Figure 14: Evaluation Board Layout

HELP3

The AWU6608 power amplifier module is based on ANADIGICS proprietary HELP3™ technology. The PA is designed to operate up to 17 dBm in the low power mode, thus eliminating the need for three gain state, while still maintaining low quiescent current and high efficiency in low and medium power levels. The PA can still be operated as 3 gain state device if the customer chooses to. The directional "daisy chainable" coupler is integrated within the PA module, therefore there is no need for external couplers.


The AWU6608 has an integrated voltage regulator, which eliminates the need for an external constant voltage source. The PA is turn on/off is controlled by VEN pin. A single VMODE control logic (VMODE1) is needed to operate this device.

The DG09 power distribution (figure 15) highlights the need to improve the current consumption in low and medium power level. The AWU6608 is designed to operate up to 17 dBm in the low power mode with very low quiescent current. Current consumption for AWU6608 is also plotted in the figure 5.

AWU6608 requires only two calibration sweeps for system calibration, thus saving calibration time.

Figure 16 shows one application example on mobile board. C1 and C2 are RF bypass caps and should be placed nearby pin 1 and pin 10. Bypass caps C9 and C5 may not be needed. Also a "T" matching topology is recommended at PA RFIN and RFOUT ports to provide matching between input TX Filter and Duplexer / Isolator.

Figure 15: PDF and Current

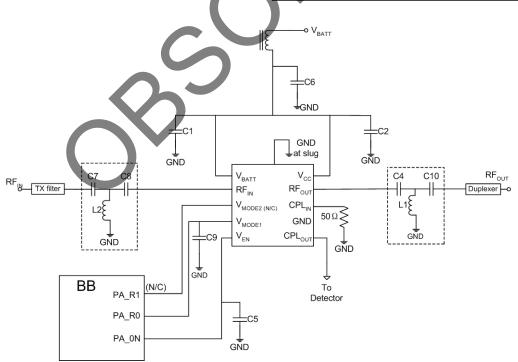
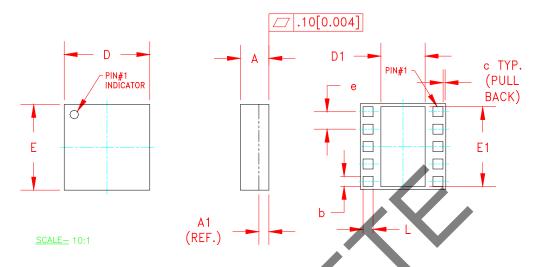



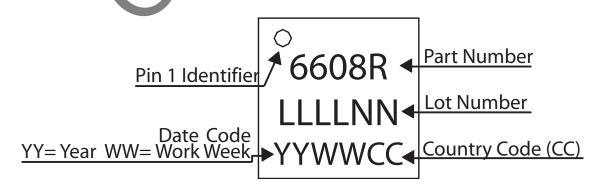
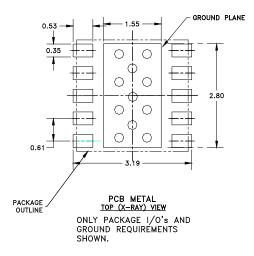
Figure 16: Typical Application Circuit

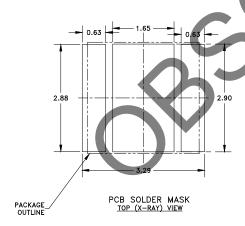
PACKAGE OUTLINE

S _{YM} BOL	MI	LLIMETE	RS		INCHES		NOTE
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.91	1.03	1.13	0.035	0.041	0.044	-
A1		PLI LAMINAT	EASE RE		WING		-
b	0.32	0.35	0.40	0.013	0.014	0.016	3
С	-	0.10	-	-	0.004	-	7
D	2.88	3.00	3.12	0.113	0.118	0.123	F
D1	1.45	1.50	1.57	0.057	0.059	0.062	3
Е	2.88	3.00	3.12	0.113	0.118	0.123	
E1	2.70	2.75	2.85	0.106	0.108	0.112	3
е		0.60			0.024		3
L	0.32	0.35	0.40	0.013	0.014	0.016	3

- CONTROLLING DIMENSIONS: MILLIMETERS
 UNLESS SPECIFIED TOLERANCE=±0.076[0.003].
 PADS (INCLUDING CENTER) SHOWN UNIFORM
 SIZE FOR REFERENCE ONLY.
 ACTUAL PAD SIZE AND LOCATION WILL
 VARY WITHIN MIN. AND MAX. DIMENSIONS
 ACCORDING TO SPECIFIC LAMINATE DESIGN.
 UNLESS SPECIFIED DIMENSIONS ARE
 SYMMETRICAL ABOUT CENTER LINES SHOWN.
- LAMINATE CONTROL DRAWING SPECIFIED BY PART NUMBER.

Figure 17: M45 Package Outline - 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module


Figure 18: Branding Specification - M45 Package

PCB AND STENCIL DESIGN GUIDELINE

NOTES:

- (1) OUTLINE DRAWING REFERENCE: P8002478_E
- (2) UNLESS SPECIFIED DIMENSIONS
 ARE SYMMETRICAL ABOUT CENTER
 LINES SHOWN.
- (3) DIMENSIONS IN MILLIMETERS.
- (4) VIAS SHOWN IN PCB METAL VIEW ARE FOR REFERENCE ONLY.
 NUMBER & SIZE OF THERMAL VIAS REQUIRED DEPENDENT ON HEAT DISSIPATION REQUIREMENT AND THE PCB PROCESS CAPABILITY.
- (5) RECOMMENDED STENCIL THICKNESS: APPROX. 0.150mm (6 Mils)

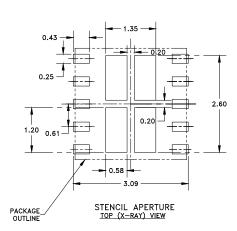
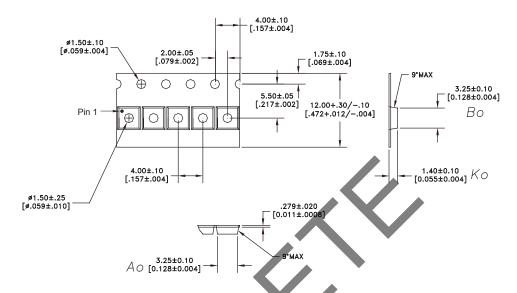



Figure 19: Recommended PCB Layout Information

COMPONENT PACKAGING

NOTES:

DIMENSIONS ARE IN MILLIMETERS [INCHES]

1. MATERIAL: 3000 (CARBON FILLED POLYCARBONATE) 100% RECYCLABLE.

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 6: Tape & Reel Packaging

Table 6: Tape & Reel Dimensions

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
3 mm x 3 mm x 1 mm	12 mm	4 mm	2500	7"

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING	
AWU6608RM45Q7	-30 °C to +90 °C	RoHS Compliant 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel	
AWU6608RM45P9	-30 °C to +90 °C	RoHS Compliant 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module	Partial Tape and Reel	

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

