128-Bit Static Shift Register

The MC14562B is a 128-bit static shift register constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Data is clocked in and out of the shift register on the positive edge of the clock input. Data outputs are available every 16 bits, from 16 through bit 128. This complementary MOS shift register is primarily used where low power dissipation and/or high noise immunity is desired.

- Diode Protection on All Inputs
- Fully Static Operation
- Cascadable to Provide Longer Shift Register Lengths
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

PDIP-14 P SUFFIX CASE 646

4 MC14562BCP 6 AWLYYWW

14

1

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 1.)

Symbol	Parameter	Value	Unit	
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V	
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V	
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA	
P _D	Power Dissipation, per Package (Note 2.)	500	mW	
T _A	Ambient Temperature Range	-55 to +125	°C	
T _{stg}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature (8-Second Soldering)	260	°C	

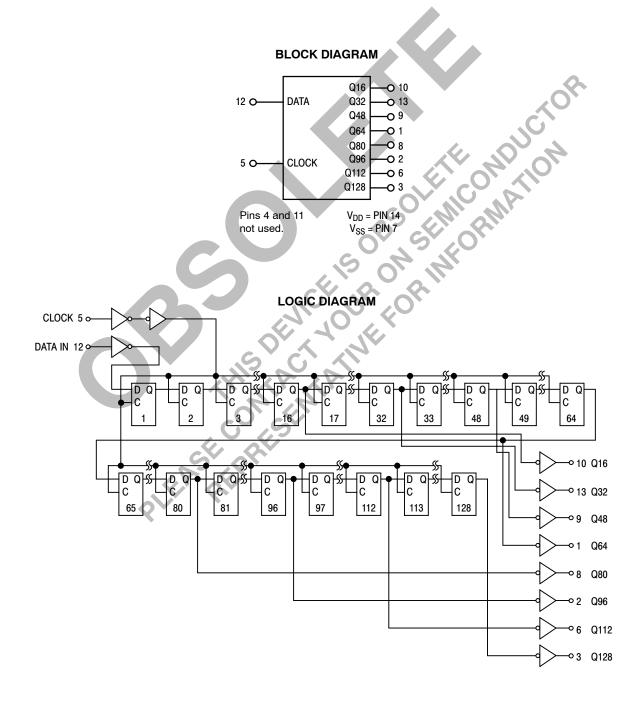
 Maximum Ratings are those values beyond which damage to the device may occur.

2. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.


ORDERING INFORMATION

Device	Package	Shipping			
MC14562BCP	PDIP-14	25/Rail			

PIN ASSIGNMENT

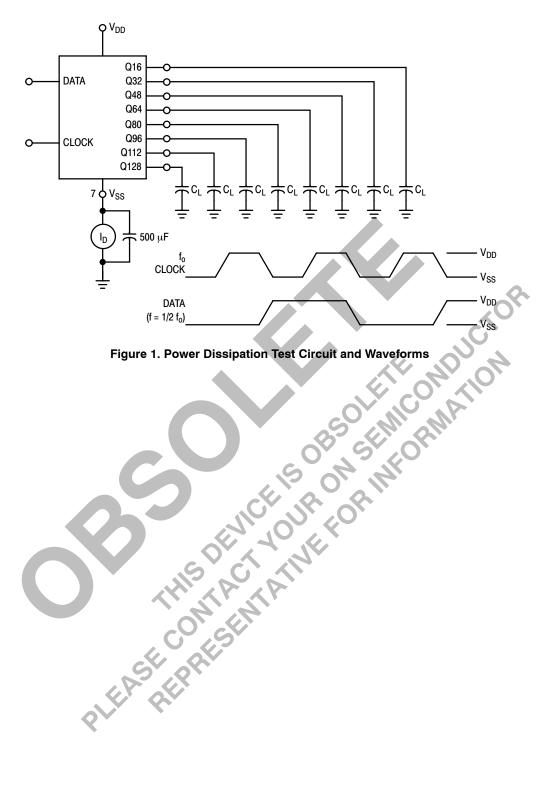
Q64 [1•	14] v _{dd}
Q96 [2	13] Q32
Q128 [3	12] data
NC [4	11] NC
CLOCK [5	10] Q16
Q112 [6	9] Q48
v _{ss} E	7	8] Q80

NC = NO CONNECTION

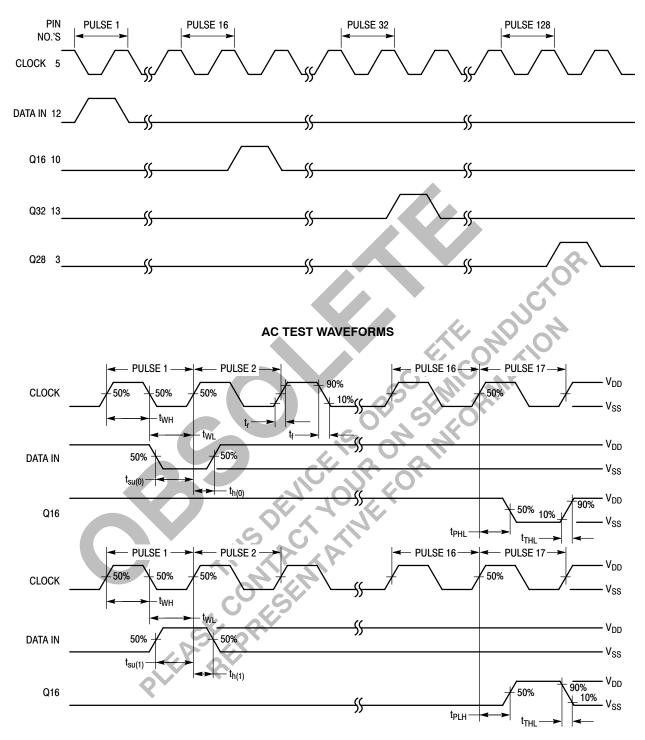
ELECTRICAL CHARACTERISTICS	3 (Voltages Referenced to V _{SS})
----------------------------	--

			V _{DD}	– 55°C		25°C			125°C		
Characteristic		Symbol	Vdc	Min	Max	Min	Тур ^(3.)	Мах	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05	 	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	 	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95		Vdc
Input Voltage $(V_O = 4.5 \text{ or } 05 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
$\begin{array}{l} (V_{O} = 0.5 \text{ or } 4.5 \text{ Vdc}) \\ (V_{O} = 1.0 \text{ or } 9.0 \text{ Vdc}) \\ (V_{O} = 1.5 \text{ or } 13.5 \text{ Vdc}) \end{array}$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (V_{OH} = 2.5 \ \text{Vdc}) \\ (V_{OH} = 4.6 \ \text{Vdc}) \\ (V_{OH} = 9.5 \ \text{Vdc}) \\ (V_{OH} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2		- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8		-1.7 -0.36 -0.9 -2.4		mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	Ż	0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mAdc
Input Current		l _{in}	15	-	±0.1	5	±0.00001	±0.1		±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	- (5.0	7.5	_	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15		5.0 10 20	<u> </u>	0.010 0.020 0.030	5.0 10 20		150 300 600	μAdc
Total Supply Current ^(4.) (⁴ (Dynamic plus Quiesc Per Package) (C _L = 50 pF on all out buffers switching)	ent,	Ι _Τ	5.0 10 15	C .	101 ATIN	l _T = (3	.94 μΑ/kHz) .81 μΑ/kHz) .52 μΑ/kHz)	f + I _{DD}	<u>.</u>		μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

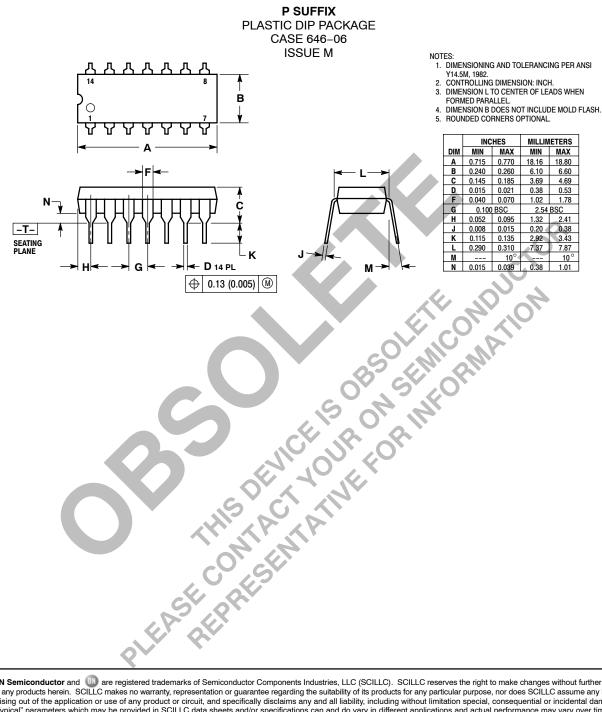

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.004.


SWITCHING CHARACTERISTICS ^(6.) (C_L = 50 pF, T_A = 25°C)

Characteristic	Symbol	V _{DD}	Min	Тур ^(7.)	Max	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15		100 50 40	200 100 80	ns
Propagation Delay Time Clock to Q t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 515 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 217 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 145 \text{ ns}$	t _{PLH} , t _{PHL}	5.0 10 15		600 250 170	1200 500 340	ns
Clock Pulse Width (50% Duty Cycle)	t _{WH}	5.0 10 15	600 220 150	300 110 75		ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	Ē	1.9 5.6 8.0	1.1 3.0 4.0	MHz
Data to Clock Setup Time	t _{su(1)}	5.0 10 15	- 20 - 10 0	- 170 - 64 - 60	0	ns
	t _{su(0)}	5.0 10 15	- 20 - 10 0	- 91 - 58 - 48	*	ns
Data to Clock Hold Time	t _{h(1)}	5.0 10 15	350 165 155	263 109 100		ns
	t _{h(0)}	5.0 10 15	350 200 140	267 140 93		ns
Clock Input Rise and Fall Times	t _p t _f	5.0 10 15			15 5 4	μs

-J-C. Juses but is intended 6. The formulas given are for the typical characteristics only at 25°C.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.



TIMING DIAGRAM

NOTE: The remaining Data–Bit Outputs (Q32, Q48, Q64, Q80, Q96, Q112 and Q128) will occur at Clock Pulse 32, 48, 64, 80, 96, 112, 128 in the same relationship as Q16.

PACKAGE DIMENSIONS

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse and regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative