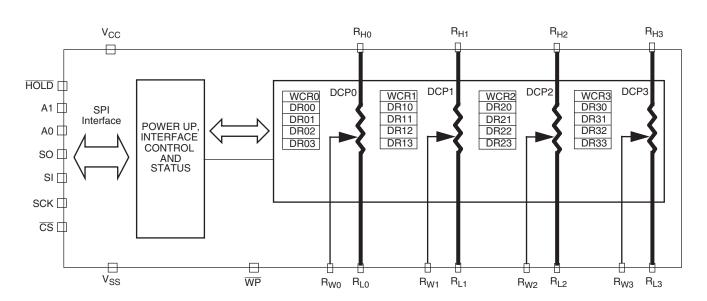
Application Notes and Development System A V A I L A B L E AN99 • AN115 • AN124 • AN133 • AN134 • AN135

Single Supply / Low Power / 256-tap / SPI bus

X9251

Quad Digitally-Controlled (XDCP[™]) Potentiometer

FEATURES


- · Four potentiometers in one package
- 256 resistor taps-0.4% resolution
- SPI Serial Interface for write, read, and transfer operations of the potentiometer
- Wiper resistance: 100Ω typical @ V_{CC} = 5V
- 4 Non-volatile data registers for each potentiometer
- Non-volatile storage of multiple wiper positions
- Standby current < 5µA max
- V_{CC}: 2.7V to 5.5V Operation
- 50K Ω , 100K Ω versions of total resistance
- 100 yr. data retention
- Single supply version of X9250
- Endurance: 100,000 data changes per bit per register
- 24-lead SOIC, 24-lead TSSOP, 24-lead CSP (Chip Scale Package)
- Low power CMOS

DESCRIPTION

The X9251 integrates four digitally controlled potentiometers (XDCP) on a monolithic CMOS integrated circuit.

The digitally controlled potentiometers are implemented with a combination of resistor elements and CMOS switches. The position of the wipers are controlled by the user through the SPI bus interface. Each potentiometer has associated with it a volatile Wiper Counter Register (WCR) and four non-volatile Data Registers that can be directly written to and read by the user. The content of the WCR controls the position of the wiper. At power-up, the device recalls the content of the default Data Registers of each DCP (DR00, DR10, DR20, and DR30) to the corresponding WCR.

The XDCP can be used as a three-terminal potentiometer or as a two terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing.

FUNCTIONAL DIAGRAM

ORDERING INFO

Ordering Number	Potentiomenter Organization	Package	Operating Temperature Range	V _{CC} Limits
X9251US24	50kΩ	24-lead SOIC	0°C to 70°C	5V±10%
X9251US24-2.7	50kΩ	24-lead SOIC	0°C to 70°C	2.7 to 5.5V
X9251US24I	50kΩ	24-lead SOIC	-40°C to +85°C	5V±10%
X9251US24I-2.7	50kΩ	24-lead SOIC	-40°C to +85°C	2.7 to 5.5V
X9251UV24	50kΩ	24-lead TSSOP	0°C to 70°C	5V±10%
X9251UV24-2.7	50kΩ	24-lead TSSOP	0°C to 70°C	2.7 to 5.5V
X9251UV24I	50kΩ	24-lead TSSOP	-40°C to +85°C	5V±10%
X9251UV24I-2.7	50kΩ	24-lead TSSOP	-40°C to +85°C	2.7 to 5.5V
X9251UB24	50kΩ	24-lead CSP	0°C to 70°C	5V±10%
X9251UB24-2.7	50kΩ	24-lead CSP	0°C to 70°C	2.7 to 5.5V
X9251UB24I	50kΩ	24-lead CSP	-40°C to +85°C	5V±10%
X9251UB24I-2.7	50kΩ	24-lead CSP	-40°C to +85°C	2.7 to 5.5V
X9251TS24	100kΩ	24-lead SOIC	0°C to 70°C	5V±10%
X9251TS24-2.7	100kΩ	24-lead SOIC	0°C to 70°C	2.7 to 5.5V
X9251TS24I	100kΩ	24-lead SOIC	-40°C to +85°C	5V±10%
X9251TS24I-2.7	100kΩ	24-lead SOIC	-40°C to +85°C	2.7 to 5.5V
X9251TV24	100kΩ	24-lead TSSOP	0°C to 70°C	5V±10%
X9251TV24-2.7	100kΩ	24-lead TSSOP	0°C to 70°C	2.7 to 5.5V
X9251TV24I	100kΩ	24-lead TSSOP	-40°C to +85°C	5V±10%
X9251TV24I-2.7	100kΩ	24-lead TSSOP	-40°C to +85°C	2.7 to 5.5V
X9251TB24	100kΩ	24-lead CSP	0°C to 70°C	5V±10%
X9251TB24-2.7	100kΩ	24-lead CSP	0°C to 70°C	2.7 to 5.5V
X9251TB24I	100kΩ	24-lead CSP	-40°C to +85°C	5V±10%
X9251TB24I-2.7	100kΩ	24-lead CSP	-40°C to +85°C	2.7 to 5.5V

CIRCUIT LEVEL APPLICATIONS

- Vary the gain of a voltage amplifier
- Provide programmable dc reference voltages for comparators and detectors
- · Control the volume in audio circuits
- Trim out the offset voltage error in a voltage amplifier circuit
- · Set the output voltage of a voltage regulator
- Trim the resistance in Wheatstone bridge circuits
- Control the gain, characteristic frequency and Q-factor in filter circuits
- Set the scale factor and zero point in sensor signal conditioning circuits
- Vary the frequency and duty cycle of timer ICs
- Vary the dc biasing of a pin diode attenuator in RF circuits
- Provide a control variable (I, V, or R) in feedback circuits

SYSTEM LEVEL APPLICATIONS

- · Adjust the contrast in LCD displays
- Control the power level of LED transmitters in communication systems
- Set and regulate the DC biasing point in an RF power amplifier in wireless systems
- Control the gain in audio and home entertainment systems
- Provide the variable DC bias for tuners in RF wireless systems
- Set the operating points in temperature control systems
- Control the operating point for sensors in industrial systems
- Trim offset and gain errors in artificial intelligent systems

PIN CONFIGURATION

				С	SP	
SOIC/TSS	OP		1	2	3	4
		A	R _{W0}	cs O	A ₁ 〇	R _{L1}
A0 2 Rw3 3	23 SCK 22 RL2	в	R _{L0}	WP O	si O	R _{W1}
R _{H3} 4 R _{L3} 5	21 R _{H2} 20 R _{W2}	с	V _{CC}	R _{H0}	R _{H1}	V _{SS}
$\begin{array}{c c} NC & \frown & 6 \\ V_{CC} & \frown & 7 \end{array} $ X9251	19 NC 18 V _{SS}	D	NC	R _{H3}	R _{H2}	NC O
R _{L0}	17 🔲 R _{W1} 16 🔲 R _{H1}		○ R _{L3} ○	O SO	HOLD	R _{W2}
R _{W0}	15 🔲 R _{L1} 14 🔄 A1	E	R _{W3}	○ A ₀	О SCK	⊖ R _{L2}
WP [12	13 🔲 SI	F	0		O Bumps Dow	0

PIN ASSIGNMENTS

Pin (SOIC)	Pin (CSP)	Symbol	Function
1	E2	SO	Serial Data Output for SPI bus
2	F2	A0	Device Address for SPI bus. (See Note 1)
3	F1	R _{W3}	Wiper Terminal of DCP3
4	D2	R _{H3}	High Terminal of DCP3
5	E1	R _{L3}	Low Terminal of DCP3
7	C1	V _{CC}	System Supply Voltage
8	B1	R _{L0}	Low Terminal of DCP0
9	C2	R _{H0}	High Terminal of DCP0
10	A1	R _{W0}	Wiper Terminal of DCP0
11	A2	CS	SPI bus. Chip Select active low input
12	B2	WP	Hardware Write Protect – active low
13	B3	SI	Serial Data Input for SPI bus
14	A3	A1	Device Address for SPI bus. (See Note 1)
15	A4	R _{L1}	Low Terminal of DCP1
16	C3	R _{H1}	High Terminal of DCP1
17	B4	R _{W1}	Wiper Terminal of DCP1
18	C4	V _{SS}	System Ground
20	E4	R _{W2}	Wiper Terminal of DCP2
21	D3	R _{H2}	High Terminal of DCP2
22	F4	R _{L2}	Low Terminal of DCP2
23	F3	SCK	Serial Clock for SPI bus
24	E3	HOLD	Device select. Pauses the SPI serial bus.
6, 19	D1, D4	NC	No Connect

Note 1: A0–A1 device address pins must be tied to a logic level.

PIN DESCRIPTIONS

Bus Interface Pins

SERIAL OUTPUT (SO)

SO is a serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out by the falling edge of the serial clock.

SERIAL INPUT (SI)

SI is the serial data input pin. All opcodes, byte addresses and data to be written to the device registers are input on this pin. Data is latched by the rising edge of the serial clock.

SERIAL CLOCK (SCK)

The SCK input is used to clock data into and out of the X9251.

HOLD (HOLD)

HOLD is used in conjunction with the CS pin to select the device. Once the part is selected and a serial sequence is underway, HOLD may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, HOLD must be brought LOW while SCK is LOW. To resume communication, HOLD is brought HIGH, again while SCK is LOW. If the pause feature is not used, HOLD should be held HIGH at all times.

DEVICE ADDRESS (A1-A0)

The address inputs are used to set the two least significant bits of the slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9251. Device pins A1-A0 must be tie to a logic level which specify the internal address of the device, see Figures 2, 3, 4, 5 and 6.

CHIP SELECT (CS)

When \overline{CS} is HIGH, the X9251 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device is in the standby state. \overline{CS} LOW enables the X9251, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on \overline{CS} is required prior to the start of any operation.

Potentiometer Pins

R_H, R_L

The R_H and R_L pins are equivalent to the terminal connections on a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_H and R_L such that R_{H0} and R_{L0} are the terminals of DCP0 and so on.

R_W

The wiper pin are equivalent to the wiper terminal of a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_W such that R_{W0} is the terminals of DCP0 and so on.

Supply Pins

SYSTEM SUPPLY VOLTAGE (V_{CC}) AND SUPPLY GROUND (V_{SS})

The V_{CC} pin is the system supply voltage. The V_{SS} pin is the system ground.

Other Pins

No CONNECT

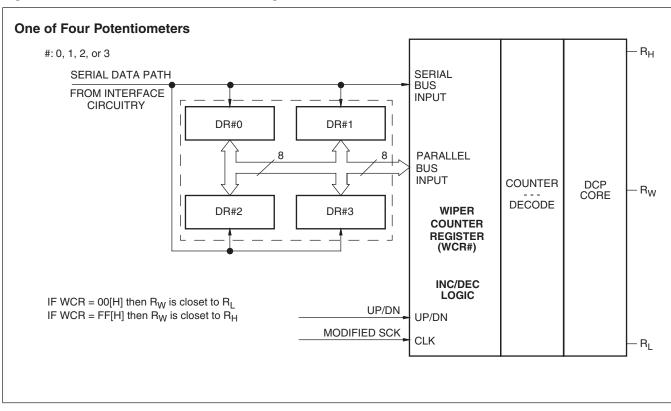
No connect pins should be left floating. This pins are used for Xicor manufacturing and testing purposes.

HARDWARE WRITE PROTECT INPUT (WP)

The \overline{WP} pin when LOW prevents non-volatile writes to the Data Registers.

PRINCIPLES OF OPERATION

The X9251 is an integrated circuit incorporating four DCPs and their associated registers and counters, and a serial interface providing direct communication between a host and the potentiometers.


DCP Description

Each DCP is implemented with a combination of resistor elements and CMOS switches. The physical ends of each DCP are equivalent to the fixed terminals of a mechanical potentiometer (R_H and R_L pins). The RW pin is an intermediate node, equivalent to the wiper terminal of a mechanical potentiometer.

The position of the wiper terminal within the DCP is controlled by an 8-bit volatile Wiper Counter Register (WCR).

Power Up and Down Recommendations.

There are no restrictions on the power-up or powerdown conditions of V_{CC} and the voltages applied to the potentiometer pins provided that V_{CC} is always more positive than or equal to V_H, V_L, and V_W, i.e., V_{CC} \ge V_H, V_L, V_W. The V_{CC} ramp rate specification is always in effect.

Figure 1. Detailed Potentiometer Block Diagram

Wiper Counter Register (WCR)

The X9251 contains four Wiper Counter Registers, one for each potentiometer. The Wiper Counter Register can be envisioned as a 8-bit parallel and serial load counter with its outputs decoded to select one of 256 wiper positions along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the Write Wiper Counter Register instruction (serial load); it may be written indirectly by transferring the contents of one of four associated data registers via the XFR Data Register instruction (parallel load); it can be modified one step at a time by the Increment/Decrement instruction (see Instruction section for more details). Finally, it is loaded with the contents of its Data Register zero (DR#0) upon power-up. (See Figure 1.)

The wiper counter register is a volatile register; that is, its contents are lost when the X9251 is powered-down. Although the register is automatically loaded with the value in DR#0 upon power-up, this may be different from the value present at power-down. Power-up guidelines are recommended to ensure proper loadings of the DR#0 value into the WCR#.

Data Registers (DR)

Each of the four DCPs has four 8-bit non-volatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four Data Registers and the associated Wiper Counter Register. All operations changing data in one of the Data Registers is a non-volatile operation and takes a maximum of 10ms.

If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data.

Bits [7:0] are used to store one of the 256 wiper positions or data (0~255).

Status Register (SR)

This 1-bit Status Register is used to store the system status.

WIP: Write In Progress status bit, read only.

- When WIP=1, indicates that high-voltage write cycle is in progress.
- When WIP=0, indicates that no high-voltage write cycle is in progress.

Table 1. Wiper counter Register, WCR (8-bit), WCR[7:0]: Used to store the current wiper position (Volatile).

WCR7	WCR6	WCR5	WCR4	WCR3	WCR2	WCR1	WCR0
(MSB)				-			(LSB)

Table 2. Data Register, DR (8-bit), DR[7:0]: Used to store wiper positions or data (Non-volatile).

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
(MSB)			-				(LSB)

SERIAL INTERFACE

The X9251 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked in, on the rising SCK. \overline{CS} must be LOW and the HOLD and \overline{WP} pins must be HIGH during the entire operation.

The SO and SI pins can be connected together, since they have three state outputs. This can help to reduce system pin count.

IDENTIFICATION BYTE

The first byte sent to the X9251 from the host, following a \overline{CS} going HIGH to LOW, is called the Identification Byte. The most significant four bits of the Identification Byte are a Device Type Identifier, ID[3:0]. For the X9251, this is fixed as 0101 (refer to Table 3).

Device Type Identifier

Table 3. Identification Byte Format

The least significant four bits of the Identification Byte are the Slave Address bits, AD[3:0]. For the X9251, A3 is 0, A2 is 0, A1 is the logic value at the input pin A1, and A0 is the logic value at the input pin A0. Only the device which Slave Address matches the incoming bits sent by the master executes the instruction. The A1 and A0 inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS} .

INSTRUCTION BYTE

The next byte sent to the X9251 contains the instruction and register pointer information. The four most significant bits are used provide the instruction opcode (I[3:0]). The RB and RA bits point to one of the four Data Registers of each associated XDCP. The least two significant bits point to one of four Wiper Counter Registers or DCPs. The format is shown below in Table 4.

Slave Address

ID3	ID2	ID1	ID0	A3	A2	A1	A0
0	1	0	1	0	0	Pin A1 Logic Value	Pin A0 Logic Value
(MSB)							(LSB)
Table 4. Instr	-	ormat		Reg	ister	DCP S	election
	Орсо				ction	(WCR S	
		~					
13	12	1	10	RB	RA	P1	P0

Data Register Selection

(MSB)

Register	RB	RA
DR#0	0	0
DR#1	0	1
DR#2	1	0
DR#3	1	1

#: 0, 1, 2, or 3

(LSB)

Table 5. Instruction Set

			In	struc	ction	Set			
Instruction	13	12	11	10	RB	RA	P1	P0	Operation
Read Wiper Counter Register	1	0	0	1	0	0	1/0	1/0	Read the contents of the Wiper Counter Register pointed to by P1-P0
Write Wiper Counter Register	1	0	1	0	0	0	1/0	1/0	Write new value to the Wiper Counter Register pointed to by P1-P0
Read Data Register	1	0	1	1	1/0	1/0	1/0	1/0	Read the contents of the Data Register pointed to by P1-P0 and RB-RA
Write Data Register	1	1	0	0	1/0	1/0	1/0	1/0	Write new value to the Data Register pointed to by P1-P0 and RB-RA
XFR Data Register to Wiper Counter Register	1	1	0	1	1/0	1/0	1/0	1/0	Transfer the contents of the Data Register pointed to by P1-P0 and RB-RA to its associated Wiper Counter Register
XFR Wiper Counter Register to Data Register	1	1	1	0	1/0	1/0	1/0	1/0	Transfer the contents of the Wiper Counter Register pointed to by P1-P0 to the Data Register pointed to by RB-RA
Global XFR Data Registers to Wiper Counter Registers	0	0	0	1	1/0	1/0	0	0	Transfer the contents of the Data Registers pointed to by RB-RA of all four pots to their respective Wiper Counter Registers
Global XFR Wiper Counter Registers to Data Register	1	0	0	0	1/0	1/0	0	0	Transfer the contents of both Wiper Counter Registers to their respective data Registers pointed to by RB-RA of all four pots
Increment/Decrement Wiper Counter Register	0	0	1	0	0	0	1/0	1/0	Enable Increment/decrement of the Control Latch pointed to by P1-P0

Note: 1/0 =data is one or zero

Instructions

Four of the nine instructions are three bytes in length. These instructions are:

- Read Wiper Counter Register read the current wiper position of the selected potentiometer,
- Write Wiper Counter Register change current wiper position of the selected potentiometer,
- Read Data Register read the contents of the selected Data Register,
- Write Data Register write a new value to the selected Data Register,
- Read Status this command returns the contents of the WIP bit which indicates if the internal write cycle is in progress.

The basic sequence of the three byte instructions is illustrated in Figure 3. These three-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action is delayed by t_{WRL} . A transfer from the WCR (current wiper position), to a Data Register is a write to non-volatile memory and takes a minimum of t_{WR} to complete. The transfer can occur between one of the four potentiometer's WCR, and one of its associated registers, DRs; or it may occur globally, where the transfer occurs between all potentiometers and one associated register. The Read Status Register instruction is the only unique format (see Figure 5).

Four instructions require a two-byte sequence to complete. These instructions transfer data between the host and the X9251; either between the host and one of the data registers or directly between the host and the Wiper Counter Register. These instructions are:

- XFR Data Register to Wiper Counter Register This transfers the contents of one specified Data Register to the associated Wiper Counter Register.
- XFR Wiper Counter Register to Data Register This transfers the contents of the specified Wiper Counter Register to the specified associated Data Register.
- Global XFR Data Register to Wiper Counter
 Register This transfers the contents of all specified
 Data Registers to the associated Wiper Counter
 Registers.
- Global XFR Wiper Counter Register to Data Register – This transfers the contents of all Wiper Counter Registers to the specified associated Data Registers.

INCREMENT/DECREMENT COMMAND

The final command is Increment/Decrement (see Figures 6 and 7). The Increment/Decrement command is different from the other commands. Once the command is issued and the X9251 has responded with an Acknowledge, the master can clock the selected wiper up and/or down in one segment steps; thereby, providing a fine tuning capability to the host. For each SCK clock pulse (t_{HIGH}) while SI is HIGH, the selected wiper moves one wiper position towards the R_H terminal. Similarly, for each SCK clock pulse while SI is LOW, the selected wiper moves one wiper position towards the R_L terminal. A detailed illustration of the sequence and timing for this operation are shown. See Instruction format for more details.

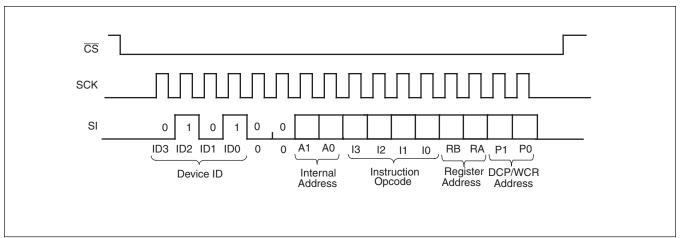


Figure 3. Three-Byte Instruction Sequence SPI Interface; Write Case

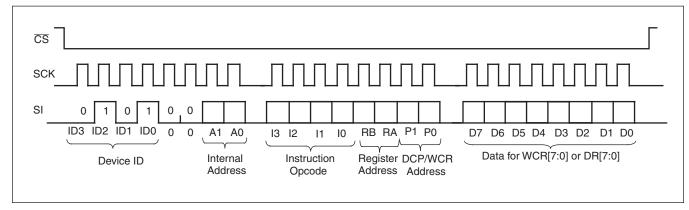
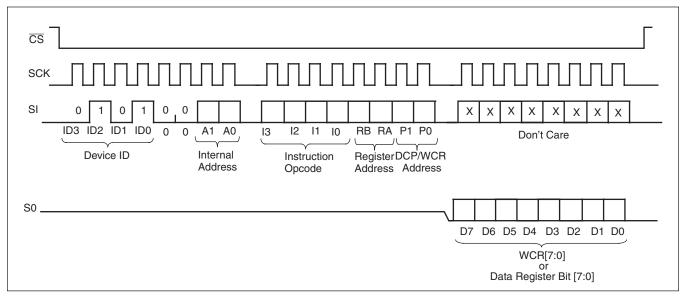
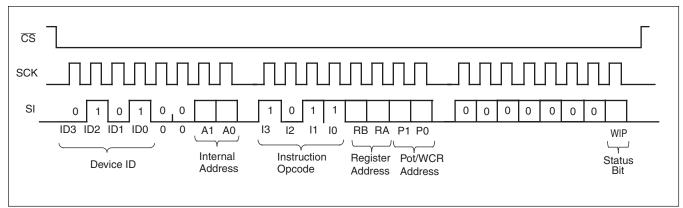




Figure 4. Three-Byte Instruction Sequence SPI Interface, Read Case

Figure 5. Three-Byte Instruction Sequence (Read Status Register)

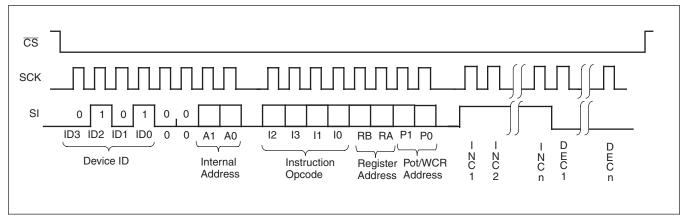
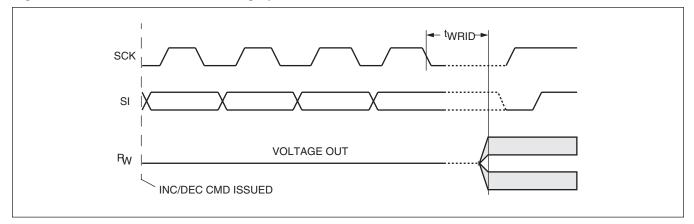



Figure 7. Increment/Decrement Timing Spec

INSTRUCTION FORMAT

Read Wiper Counter Register (WCR)

CS		evice Iden		•	A		evice ress			istru Opc			А		CR esse	es	(5		Nip t by					D)	CS
Falling Edge	0	1	0	1	0	0	A1	A0	1	0	0	1	0	0	0	0	W C R 7	W C R 6	WCR5	W C R 4	W C R 3	W C R 2	W C R 1	W C R 0	Rising Edge

Write Wiper Counter Register (WCR)

CS			e Ty Itifie	•	А		evice ress			nstru Opc			A		CR esse	es		(Se		ata ⊳y ⊢			SI)		CS
Falling Edge	0	1	0	1	0	0	A1	A0	1	0	1	0	0	0	0	0	W C R 7	W C R 6	W C R 5	W C R 4	W C R 3	W C R 2	W C R 1	W C R O	Rising Edge

Read Data Register (DR)

CS			e Ty tifie	· .	Д		vice			stru Opc					d WC		(5	Sent	Data Byte nt by X9271 on SC D D D D D 3 5 4 3 2 1						CS
Falling Edge	0	1	0	1	0	0	A1	A0	1	0	1	1	RB	RA	P1	P0	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	Rising Edge

Write Data Register (DR)

CS		evice den	-	•			evice ress			istri Opo					d WC		((Sei		ata ⊳y ⊢			SI))	CS	TAGE ′CLE
Falling Edge	0	1	0	1	0	0	A1	A0	1	1	0	0	RB	RA	P1	P0	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	Rising Edge	HIGH-VOL ⁻ WRITE CY

Global Transfer Data Register (DR) to Wiper Counter Register (WCR)

CS	De	vice	э Ту	ре		De	vice		In	stru	ictic	n		DR			CS
Falling		den	tifie	r	4	۱dd	resse	es	(Орс	ode	9	A	ddres	ses	;	Rising
Edge	0	1	0	1	0	0	A1	A0	0	0	0	1	RB	RA	0	0	Edge

Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master.

(2) WPx refers to wiper position data in the Counter Register

(2) "I": stands for the increment operation, SI held HIGH during active SCK phase (high).

(3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high).

X9251

Global Transfer Wiper Counter Register (WCR) to Data Register (DR)

00		vice den		vpe r			evice			stru Dpc		-	Δ.	DR ddres				HIGH-VOLTAGE
Falling Edge		uen	une	:r		Addresses			- I		-					Rising Edge	WRITE CYCLE	
Luge	0	1	0	1	0	0	A1	A0	1	0	0	0	RB	RA	0	0	Luge	

Transfer Wiper Counter Register (WCR) to Data Register (DR)

CS Falling		evice den	,	r r	А		evice ress			stru Opc				and ddres			CS Rising	HIGH-VOLTAGE WRITE CYCLE
Edge	0	1	0	1	0	0	A1	A0	1	1	1	0	RB	RA	0	0	Edge	

Transfer Data Register (DR) to Wiper Counter Register (WCR)

	Falling			e Ty tifie	•	4		evice ress			stru Opc				and ddres			CS Rising
L	Edge	0	1	0	1	0	0	A1	A0	1	1	0	1	RB	RA	0	0	Edge

Increment/Decrement Wiper Counter Register (WCR)

CS Falling			e Ty tifie	·	А		evice ress			_	ictic ode		A	W0 ddre		əs		Incre (Sen	 	 			CS Rising
Edge	0	1	0	1	0	0	A1	A0	0	0	1	0	Х	Х	0	0	I/D	I/D			I/D	I/D	Edge

Read Status Register (SR)

CS	De	evice	э Ту	ре		D	evice	;	In	stru	uctio	n		W	CR					Dat	a B	yte			CS
Falling		den	tifie	r		Add	ress	es	(Эрс	ode	e	A	ddre	esse	es		(Se	ent l	эу Х	(925	51 o	n S	O)	Rising
Edge	0	1	0	1	0	0	A1	A0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	WIP	Edge

Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master.

(2) WPx refers to wiper position data in the Counter Register

(2) "I": stands for the increment operation, SI held HIGH during active SCK phase (high).

(3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high).

ABSOLUTE MAXIMUM RATINGS

Temperature under bias65°C to +135°C
Storage temperature–65°C to +150°C
Voltage on SCK, any address input, V _{CC}
with respect to V _{SS} 1V to +7V
$\Delta V = (V_{H} - VL) $
Lead temperature (soldering, 10 seconds)300°C
I_W (10 seconds)±6mA

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; the functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Temp	Min.	Max.		Device	Supply Voltage (V _{CC}) ⁽⁴⁾ Limits
Commercial	0°C	+70°C		X9251	5V ±10%
Industrial	-40°C	+85°C]	X9251-2.7	2.7V to 5.5V

ANALOG CHARACTERISTICS	(Over recommended industrial operating conditions unless otherwise stated.)
------------------------	---

	Parameter		Lin	nits		
Symbol		Min.	Тур.	Max.	Units	Test Conditions
R _{TOTAL}	End to End Resistance		100		kΩ	T version
R _{TOTAL}	End to End Resistance		50		kΩ	U version
	End to End Resistance Tolerance			±20	%	
	Power Rating			50	mW	25°C, each pot
IW	Wiper Current			±3	mA	
R _W	Wiper Resistance			300	Ω	$I_{W} = \frac{V(V_{CC})}{R_{TOTAL}} @ V_{CC} = 3V$
				150	Ω	$I_W = \frac{V(V_{CC})}{R_{TOTAL}} @ V_{CC} = 5V$
V _{TERM}	Voltage on any R _H or R _L Pin	V _{SS}		V _{CC}	V	$V_{SS} = 0V$
	Noise		-120		dBV/√Hz	Ref: 1V
	Resolution		0.4		%	
	Absolute Linearity ⁽¹⁾	-1		+1	MI ⁽³⁾	$R_{w(n)(actual)} - R_{w(n)(expected)}^{(5)}$
	Relative Linearity ⁽²⁾	-0.6		+0.6	MI ⁽³⁾	$R_{w(n + 1)} - [R_{w(n) + MI}]^{(5)}$
	Temperature Coefficient of R _{TOTAL}		±300		ppm/°C	
	Ratiometric Temp. Coefficient	-20		+20	ppm/°C	
C _H /C _L /C _W	Potentiometer Capacitances		10/10/25		pF	See Macro model

Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer.

(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size.

(3) $MI = RTOT / 255 \text{ or } (R_H - R_L) / 255, \text{ single pot}$

(4) During power up $V_{CC} > V_H$, V_L , and V_W .

(5) n = 0, 1, 2, ..., 255; m = 0, 1, 2, ..., 254.

			Li	mits		
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
I _{CC1}	V _{CC} supply current (active)			400	μA	f_{SCK} = 2.5 MHz, SO = Open, V _{CC} =6V Other Inputs = V _{SS}
I _{CC2}	V _{CC} supply current (non-volatile write)		1	5	mA	f_{SCK} = 2.5MHz, SO = Open, V _{CC} =6V Other Inputs = V _{SS}
I _{SB}	V _{CC} current (standby)			3	μA	$\frac{SCK = SI = V_{SS}, \text{ Addr.} = V_{SS},}{\overline{CS} = V_{CC} = 6V}$
ILI	Input leakage current			10	μA	$V_{IN} = V_{SS}$ to V_{CC}
I _{LO}	Output leakage current			10	μA	$V_{OUT} = V_{SS}$ to V_{CC}
V _{IH}	Input HIGH voltage	V _{CC} x 0.7		V _{CC} + 1	V	
V _{IL}	Input LOW voltage	-1		V _{CC} x 0.3	V	
V _{OL}	Output LOW voltage			0.4	V	I _{OL} = 3mA
V _{OH}	Output HIGH voltage	V _{CC} - 0.8			V	$I_{OH} = -1 \text{mA}, V_{CC} \ge +3 \text{V}$
V _{OH}	Output HIGH voltage	V _{CC} - 0.4			V	$I_{OH} = -0.4$ mA, $V_{CC} \le +3V$

D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)

ENDURANCE AND DATA RETENTION

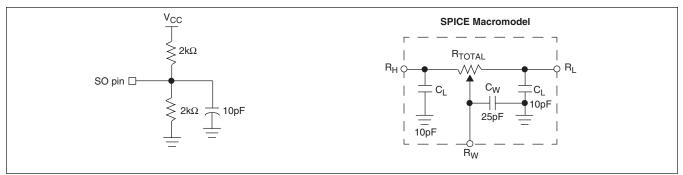
Parameter	Min.	Units
Minimum endurance	100,000	Data changes per bit per register
Data retention	100	years

CAPACITANCE

Symbol	Test	Max.	Units	Test Conditions
C _{IN/OUT} ⁽⁶⁾	Input / Output capacitance (SI)	8	pF	$V_{OUT} = 0V$
C _{OUT} ⁽⁶⁾	Output capacitance (SO)	8	pF	$V_{OUT} = 0V$
C _{IN} ⁽⁶⁾	Input capacitance (A0, A1, CS, WP, HOLD, and SCK)	6	pF	$V_{IN} = 0V$

POWER-UP TIMING

Symbol	Parameter	Min.	Max.	Units
t _r V _{CC} ⁽⁶⁾	V _{CC} Power-up rate	0.2	50	V/ms
t _{PUR} ⁽⁷⁾	Power-up to initiation of read operation		1	ms
t _{PUW} ⁽⁷⁾	Power-up to initiation of write operation		50	ms


A.C. TEST CONDITIONS

Input Pulse Levels	V_{CC} x 0.1 to V_{CC} x 0.9		
Input rise and fall times	10ns		
Input and output timing level	V _{CC} x 0.5		

Notes: (6) This parameter is not 100% tested

(7) t_{PUR} and t_{PUW} are the delays required from the time the (last) power supply (V_{CC}-) is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested.

EQUIVALENT A.C. LOAD CIRCUIT

AC TIMING

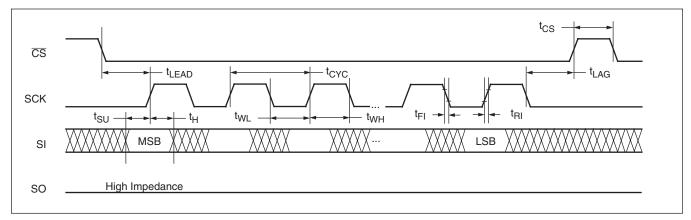
Symbol	Parameter	Min.	Max.	Units
f _{SCK}	SPI clock frequency		2	MHz
t _{CYC}	SPI clock cycle rime	500		ns
t _{WH}	SPI clock high rime	200		ns
t _{WL}	SPI clock low time	200		ns
t _{LEAD}	Lead time	250		ns
t _{LAG}	Lag time	250		ns
t _{SU}	SI, SCK, HOLD and CS input setup time	50		ns
t _H	SI, SCK, $\overline{\text{HOLD}}$ and $\overline{\text{CS}}$ input hold time	50		ns
t _{RI}	SI, SCK, $\overline{\text{HOLD}}$ and $\overline{\text{CS}}$ input rise time		2	μs
t _{FI}	SI, SCK, $\overline{\text{HOLD}}$ and $\overline{\text{CS}}$ input fall time		2	μs
t _{DIS}	SO output disable time	0	250	ns
t _V	SO output valid time		200	ns
t _{HO}	SO output hold time	0		ns
t _{RO}	SO output rise time		100	ns
t _{FO}	SO output fall time		100	ns
t _{HOLD}	HOLD time	400		ns
t _{HSU}	HOLD setup time	100		ns
t _{HH}	HOLD hold time	100		ns
t _{HZ}	HOLD low to output in high Z		100	ns
t _{LZ}	HOLD high to output in low Z		100	ns
Τ _Ι	Noise suppression time constant at SI, SCK, \overline{HOLD} and \overline{CS} inputs		10	ns
t _{CS}	CS deselect time	2		μs
tWPASU	WP, A0 setup time	0		ns
twpah	WP, A0 hold time	0		ns

HIGH-VOLTAGE WRITE CYCLE TIMING

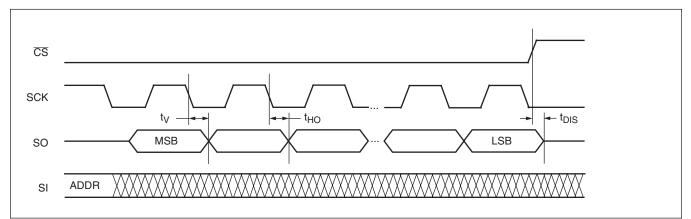
Symbol Parameter		Тур.	Max.	Units
t _{WR}	High-voltage write cycle time (store instructions)	5	10	ms

XDCP TIMING

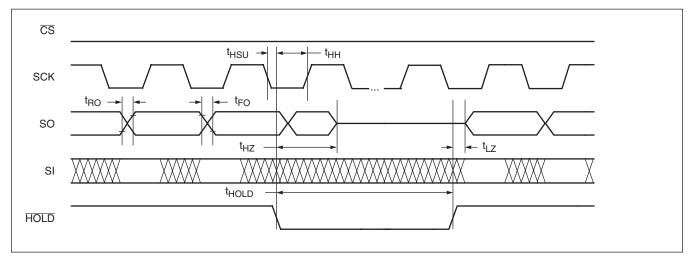
Symbol	Parameter	Min.	Max.	Units
t _{WRPO}	Wiper response time after the third (last) power supply is stable	5	10	μs
t _{WRL}	Wiper response time after instruction issued (all load instructions)	5	10	μs

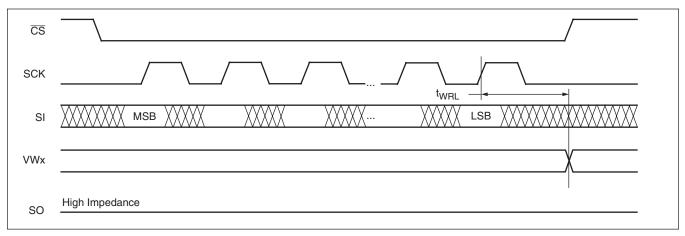

SYMBOL TABLE

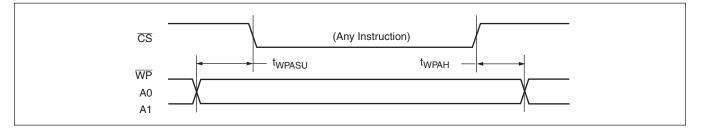
INPUTS	OUTPUTS
Must be steady	Will be steady
May change from Low to High	Will change from Low to High
May change from High to Low	Will change from High to Low
Don't Care: Changes Allowed	Changing: State Not Known
N/A	Center Line is High Impedance
	Must be steady May change from Low to High May change from High to Low Don't Care: Changes Allowed


X9251

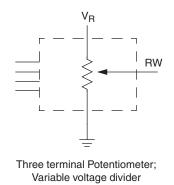
TIMING DIAGRAMS

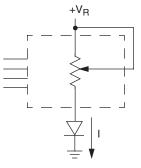

Input Timing


Output Timing


Hold Timing

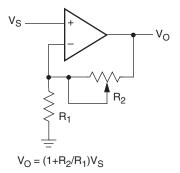
XDCP Timing (for All Load Instructions)

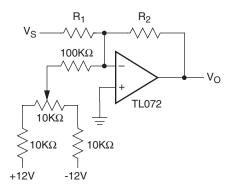



Write Protect and Device Address Pins Timing

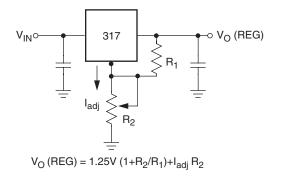
APPLICATIONS INFORMATION

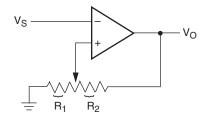
Basic Configurations of Electronic Potentiometers



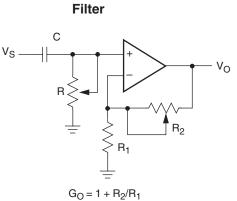

Two terminal Variable Resistor; Variable current

Application Circuits


Noninverting Amplifier

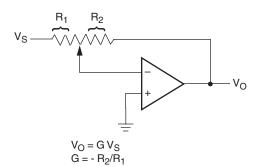

Offset Voltage Adjustment

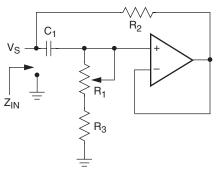

Voltage Regulator



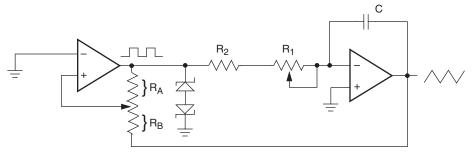
Comparator with Hysterisis

Application Circuits (continued)





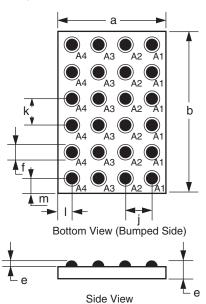
Inverting Amplifier

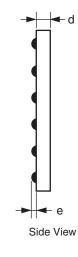


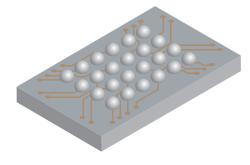
Equivalent L-R Circuit

$$\begin{split} Z_{IN} = R_2 + s \; R_2 \; (R_1 + R_3) \; C_1 = R_2 + s \; Leq \\ (R_1 + R_3) >> R_2 \end{split}$$

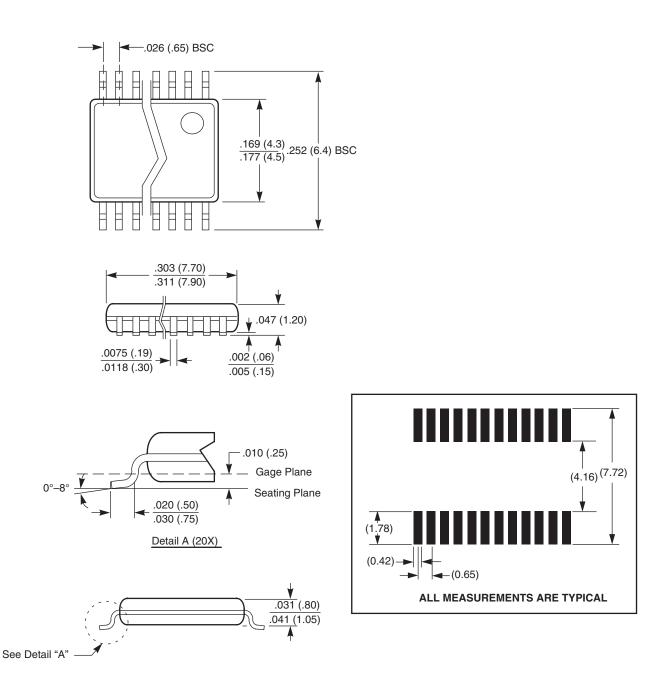
Function Generator


 $\begin{array}{l} \mbox{frequency} \propto R_1, \, R_2, \, C \\ \mbox{amplitude} \propto R_A, \, R_B \end{array}$


PACKAGING INFORMATION


24-Bump Chip Scale Package (CSP B24) Package Outline Drawing

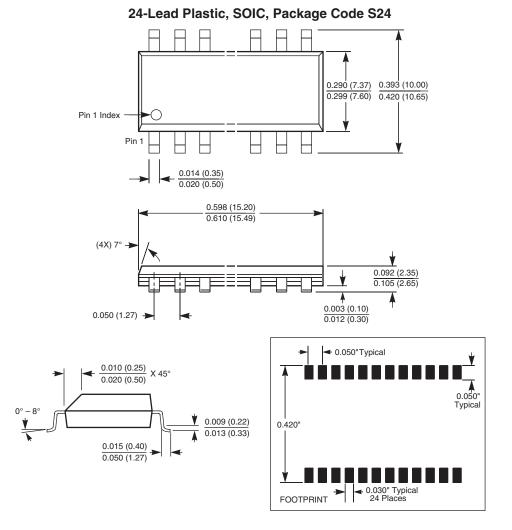
Top View (Marking Side)


Ball Matrix

	4	3	2	1
Α	R _{L1}	A1	CS	R _{W0}
В	R _{W1}	SI	WP	R _{L0}
С	VSS	R _{H1}	R _{H0}	VCC
D	NC	R _{H2}	R _{H3}	NC
E	R _{W2}	HOLD	SO	R _{L3}
F	R _{L2}	SCK	A0	R _{W3}

		Millimeters		Inches			
	Symbol	Min	Nom.	Max	Min	Nom.	Max
Package Width	A	2.755	2.785	2.815			
Package Length	В	4.507	4.537	4.567			
Package Height	С	0.644	0.677	0.710			
Body Thickness	D	0.444	0.457	0.470			
Ball Height	E	0.220	0.240	0.260			
Ball Diameter	F	0.310	0.330	0.350			
Ball Pitch – Width	J		0.5				
Ball Pitch – Length	K		0.5				
Ball to Edge Spacing – Width	L	0.618	0.643	0.668			
Ball to Edge Spacing – Length	М	1.056	1.081	1.106			

PACKAGING INFORMATION


24-Lead Plastic, TSSOP, Package Code V24

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

X9251

PACKAGING INFORMATION

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

LIMITED WARRANTY

©Xicor, Inc. 2004 Patents Pending

Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and without notice.

Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.

TRADEMARK DISCLAIMER:

Xicor and the Xicor logo are registered trademarks of Xicor, Inc. AutoStore, Direct Write, Block Lock, SerialFlash, MPS, and XDCP are also trademarks of Xicor, Inc. All others belong to their respective owners.

U.S. PATENTS

Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,539,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691; 5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.

LIFE RELATED POLICY

In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence.

Xicor's products are not authorized for use in critical components in life support devices or systems.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.