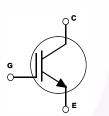
FAIRCHILD SEMICONDUCTOR"

FGAF40N60UF 600 V PT IGBT

General Description


Fairchild's UF series of IGBTs provide low conduction and switching losses. The UF series is designed for applications such as general inverters and PFC where high speed switching is a required feature.


Features

- · High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)}$ = 2.3 V @ I_C = 20 A
- High Input Impedance

Applications

General Inverter, PFC

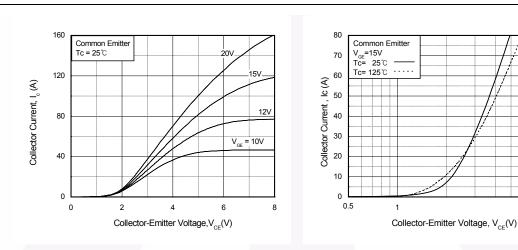
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

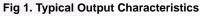
Symbol	Description		Ratings	Unit
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
Collector C	Collector Current	@ T _C = 25°C	40	A
	Collector Current	@ T _C = 100°C	20	A
I _{CM (1)}	Pulsed Collector Current		160	A
PD	Maximum Power Dissipation	@ T _C = 25°C	100	W
	Maximum Power Dissipation	@ T _C = 100°C	40	W
Tj	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

Notes : (1) Repetitive rating : Pulse width limited by max. junction temperature

GCE

Thermal Characteristics


Symbol	Parameter	Тур.	Max.	Unit
R _{0JC} (IGBT)	Thermal Resistance, Junction-to-Case		1.2	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W


_
Т
0
2
⋗
Ň
Ħ
$\underline{\mathbf{u}}$
Z
S
õ
ž
Ĭ
•
Š.
S
0
-
<
ס
-
_
5
L)
Ξ
<u> </u>

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Uni
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 250 uA	600			V
$\Delta B_{VCES}/\Delta T_{,l}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$			± 100	nA
On Chai	racteristics					
V _{GE(th)}	G-E Threshold Voltage	I_{C} = 20 mA, V_{CE} = V_{GE}	3.5	5.1	6.5	V
	Collector to Emitter	$I_{\rm C} = 20 \text{ A}, V_{\rm GE} = 15 \text{ V}$		2.3	3.0	V
V _{CE(sat)}	Saturation Voltage	I _C = 40 A, V _{GE} = 15 V		3.1		V
Dynami	c Characteristics					
C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz		1075		pF
C _{oes}	Output Capacitance			170		pF
C _{res}	Reverse Transfer Capacitance			50		pF
	ng Characteristics			15		ne
t _{d(on)}	Turn-On Delay Time	-		15		ns
t _{d(on)} t _r	Turn-On Delay Time Rise Time	-		30		ns
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 20 \text{ A},$		30 65	 130	ns ns
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	R _G = 10 Ω, V _{GE} = 15 V,		30 65 35	 130 100	ns ns ns
t _{d(on)} t _r t _{d(off)} t _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss			30 65 35 470	 130	ns ns ns uJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	R _G = 10 Ω, V _{GE} = 15 V,		30 65 35 470 130	 130 100 	ns ns ns uJ uJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{ts}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	R _G = 10 Ω, V _{GE} = 15 V,	 	30 65 35 470 130 600	 130 100 1000	ns ns ns uJ uJ uJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{ts} t _{d(on)}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	R _G = 10 Ω, V _{GE} = 15 V,	 	30 65 35 470 130	 130 100 	ns ns uJ uJ uJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{ts} t _{d(on)} t _r	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	 	30 65 35 470 130 600 30 37	 130 100 1000 	ns ns uJ uJ uJ ns ns
$\begin{array}{c} t_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_{f} \\ \hline E_{on} \\ \hline E_{off} \\ \hline E_{ts} \\ \hline t_{d(on)} \\ \hline t_{r} \\ \hline t_{d(off)} \\ \hline \end{array}$	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_G = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 V, I_C = 20 A,$	 	30 65 35 470 130 600 30	 130 100 1000 	ns ns uJ uJ uJ ns
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{ts} t _{d(on)} t _r t _f t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	 	30 65 35 470 130 600 30 37 110	 130 100 1000 200	ns ns uJ uJ uJ ns ns
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{ts} t _{d(on)} t _r t _{d(off)} E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time	$R_{G} = 10 \ \Omega, V_{GE} = 15 \ V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 \ V, I_{C} = 20 \ A,$ $R_{G} = 10 \ \Omega, V_{GE} = 15 \ V,$	 	30 65 35 470 130 600 30 37 110 80	 130 100 1000 200 250	ns ns uJ uJ uJ ns ns ns ns uJ
t _{d(on)} t _r t _d (off) E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{on} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_{G} = 10 \ \Omega, V_{GE} = 15 \ V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 \ V, I_{C} = 20 \ A,$ $R_{G} = 10 \ \Omega, V_{GE} = 15 \ V,$	 	30 65 35 470 130 600 30 37 110 80 500	 130 100 1000 200 250 	ns ns uJ uJ uJ ns ns ns ns
t _{d(on)} t _r t _{d(off)} E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{on} E _{off} E _{off}	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTotal Switching LossTotal Switching Loss	$R_{G} = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, T _C = 25°C $V_{CC} = 300 V, I_{C} = 20 A,$ $R_{G} = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, T _C = 125°C	 	30 65 35 470 130 600 30 37 110 80 500 310	 130 100 1000 200 250 	ns ns uJ uJ uJ uJ ns ns ns ns uJ uJ uJ
t _{d(on)} t _r t _{d(off)} E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{off} E _{off} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Switching Loss Turn-Off Switching Loss Turn-Off Switching Loss Total Gate Charge	$R_{G} = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 V, I_{C} = 20 A,$ $R_{G} = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 125^{\circ}C$ $V_{CE} = 300 V, I_{C} = 20 A,$	 	30 65 35 470 130 600 30 37 110 80 500 310 810	 130 100 1000 250 250 1200	ns ns uJ uJ uJ ns ns ns ns uJ uJ
t _{d(on)} t _r t _{d(off)} t _f E _{on}	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTotal Switching LossTotal Switching Loss	$R_{G} = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, T _C = 25°C $V_{CC} = 300 V, I_{C} = 20 A,$ $R_{G} = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, T _C = 125°C		30 65 35 470 130 600 30 37 110 80 500 310 810 77	 130 100 1000 250 250 1200 150	ns ns uJ uJ uJ uJ ns ns ns uJ uJ uJ nC

©2004 Fairchild Semiconductor Corporation FGAF40N60UF Rev. C1

10

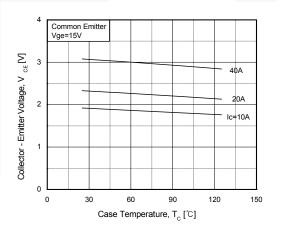


Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level

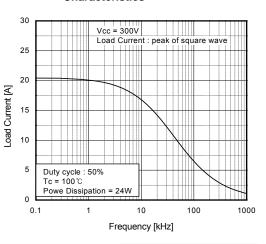
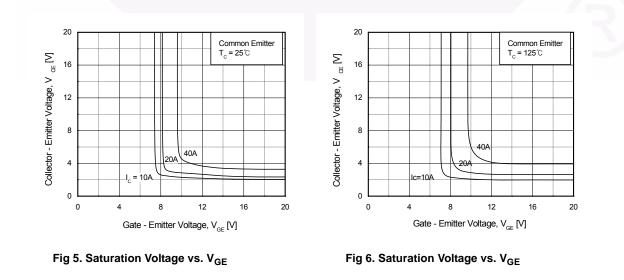
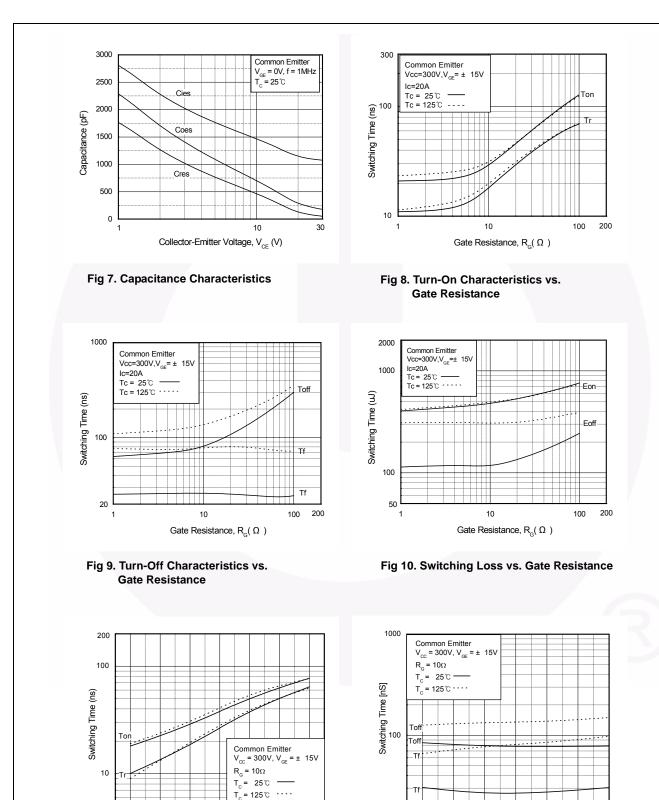




Fig 4. Load Current vs. Frequency

20

10

15

20

Fig 12. Turn-Off Characteristics vs.

Collector Current

25

Collector Current, I_{c} [A]

30

35

40

©2004 Fairchild Semiconductor Corporation FGAF40N60UF Rev. C1

20

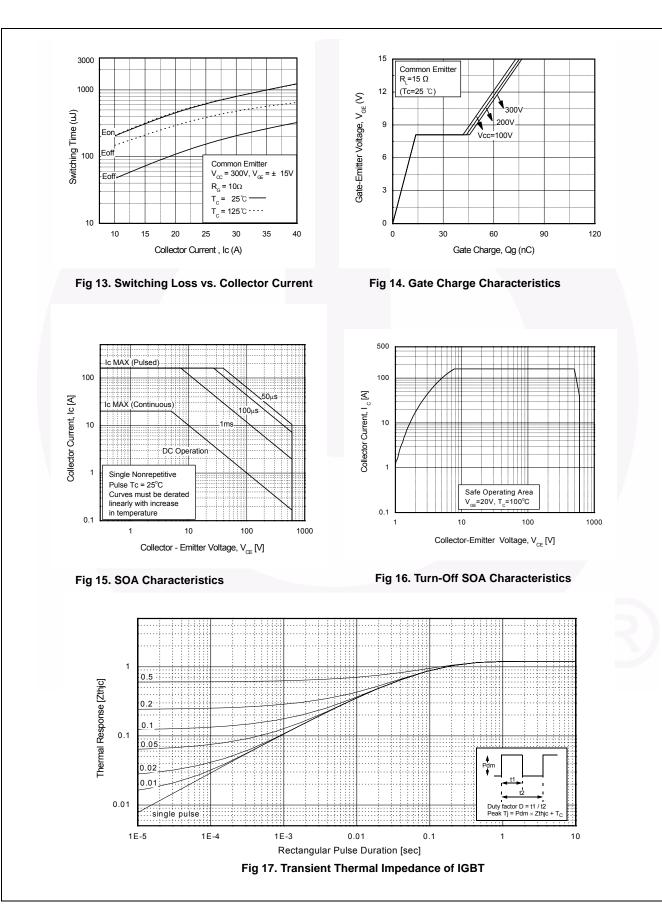
Fig 11. Turn-On Characteristics vs.

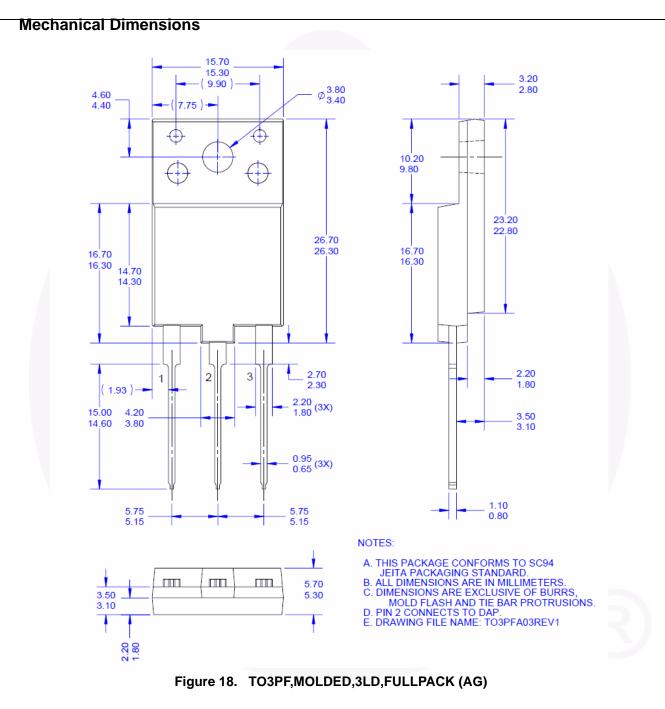
Collector Current

25

Collector Current, Ic (A)

30


35


40

10

15

www.fairchildsemi.com

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF3PF-003

FGAF40N60UF — 600 V PT IGBT

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

®

AccuPower™ AX-CAF BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED[®]** Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

R Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

F-PES™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver[®] OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFĔT[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ **GENERAL** ^{®'} TinyBoost TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ \mathcal{M}_{Ser} UHC®

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.