CLC5955 11-bit, 55MSPS Broadband Monolithic A/D Converter

General Description

The CLC5955 is a monolithic 11 -bit, 55MSPS analog-to-digital converter. The device has been optimized for use in IF-sampled digital receivers and other applications where high resolution, high sampling rate, wide dynamic range, low power dissipation, and compact size are required. The CLC5955 features differential analog inputs, low jitter differential universal clock inputs, a low distortion track-and-hold with $0-300 \mathrm{MHz}$ input bandwidth, a bandgap voltage reference, data valid clock output, TTL compatible CMOS (3.3 V or 2.5 V) programmable output logic, and a proprietary multistage quantizer. The CLC5955 is fabricated on the ABIC-V 0.8 micron BiCMOS process.

The CLC5955 features a 74 dBc spurious free dynamic range (SFDR) and a 64dB signal to noise ratio (SNR). The wideband track-and-hold allows sampling of IF signals to greater than 250 MHz . The part produces two-tone, dithered, SFDR of 83dBFS at 75 MHz input frequency. The differential analog input provides excellent common mode rejection, while the differential universal clock inputs minimize jitter. The 48 -pin TSSOP package provides an extremely small footprint for applications where space is a critical consideration. The CLC5955 operates from a single +5 V power supply. Operation over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is guaranteed. National Semiconductor tests each part to verify compliance with the guaranteed specifications.

Features

- 55MSPS
- Wide dynamic range

SFDR: 74dBc
SFDR w/dither: 85 dBFS
SNR: 64dB

- IF sampling capability
- Input bandwidth $=0-300 \mathrm{MHz}$
- Low power dissipation: 640 mW
- Very small package: 48-pin TSSOP
- Single +5 V supply
- Data valid clock output
- Programmable output levels: 3.3 V or 2.5 V

Applications

- Cellular base-stations
- Digital communications
- Infrared/CCD imaging
- IF sampling
- Electro-optics
- Instrumentation
- Medical imaging
- High definition video
N

CLC5955 Electrical Characteristics ($\mathrm{v}_{\mathrm{cc}}=+5 \mathrm{~V}$, 55 MSPS ; unless specified) $\left(\mathrm{T}_{\text {min }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\max }=+85^{\circ} \mathrm{C}\right)$

PARAMETERS CONDITIONS	TEMP	RATINGS			UNITS	NOTES
		MIN	TYP	MAX		2
RESOLUTION DIFF. INPUT VOLTAGE RANGE MAXIMUM CONVERSION RATE SNR $\mathrm{f}_{\text {in }}=25 \mathrm{MHz}, \mathrm{~A}_{\text {in }}=-1 \mathrm{dBFS}$ SFDR $\mathrm{f}_{\text {in }}=25 \mathrm{MHz}, \mathrm{A}_{\text {in }}=-1 \mathrm{dBFS}$	$\begin{gathered} \text { Full } \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 55 \\ & 60 \\ & 65 \end{aligned}$	$\begin{gathered} 11 \\ 2.048 \\ 75 \\ 64 \\ 74 \end{gathered}$		Bits V MSPS dBFS dBc	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
DYNAMIC PERFORMANCE large-signal bandwidth overvoltage recovery time $\begin{aligned} & \mathrm{A}_{\text {in }}=-3 \mathrm{dBFS} \\ & \mathrm{~A}_{\mathrm{in}}=1.5 \mathrm{FS}(0.01 \%) \end{aligned}$ effective aperture delay (Ta) aperture jitter	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 300 \\ 12 \\ -0.41 \\ 0.3 \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{ps}(\mathrm{rms}) \end{gathered}$	
NOISE AND DISTORTION signal-to-noise ratio (w/o 50 harmonics) $\begin{aligned} & f_{\text {in }}=5.0 \mathrm{MHzz} \\ & f_{\text {in }}=25 \mathrm{MHz} \\ & f_{\text {in }}=75 \mathrm{MHz} \\ & f_{\text {in }}=150 \mathrm{MHz} \\ & f_{\text {in }}=250 \mathrm{MHz} \end{aligned}$ $\mathrm{A}_{\mathrm{in}}=-1 \mathrm{dBFS}$ $A_{\text {in }}=-1 \mathrm{dBFS}$ $\mathrm{A}_{\mathrm{in}}=-3 \mathrm{dBFS}$ $\mathrm{A}_{\text {in }}=-15 \mathrm{dBFS}$ $A_{i n}=-15 \mathrm{dBFS}$ spurious-free dynamic range $\begin{aligned} & f_{\text {in }}=5.0 \mathrm{MHz} \\ & f_{\text {in }}=25 \mathrm{MHz} \\ & f_{\text {in }}=75 \mathrm{MHz} \\ & f_{\text {in }}=150 \mathrm{MHz} \\ & f_{\text {in }}=250 \mathrm{MHz} \end{aligned}$ $\mathrm{A}_{\mathrm{in}}=-1 \mathrm{dBFS}$ $\mathrm{A}_{\mathrm{in}}=-1 \mathrm{dBFS}$ $\mathrm{A}_{\mathrm{in}}=-3 \mathrm{dBFS}$ $A_{\text {in }}=-15 \mathrm{dBFS}$ $A_{i n}=-15 d B F S$ intermodulation distortion $\begin{aligned} & f_{\text {in } 1}=149.84 \mathrm{MHz}, \mathrm{f}_{\text {in }}=149.7 \mathrm{MHz} \quad \mathrm{~A}_{\text {in }}=-10 \mathrm{dBFS} \\ & \mathrm{f}_{\text {in } 1}=249.86 \mathrm{MHz}, \mathrm{f}_{\text {in } 2}=249.69 \mathrm{MHz} \mathrm{~A}_{\text {in }}=-10 \mathrm{dBFS} \end{aligned}$ dithered performance spurious-free dynamic range $\mathrm{f}_{\mathrm{in}}=19 \mathrm{MHz}$ $\mathrm{A}_{\mathrm{in}}=-6 \mathrm{dBFS}$ intermodulation distortion $\mathrm{f}_{\mathrm{in} 1}=74 \mathrm{MHz}, \mathrm{f}_{\mathrm{in} 2}=75 \mathrm{MHz}$ $\mathrm{A}_{\mathrm{in}}=-12 \mathrm{dBFS}$	Full Full $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	57 59	65 64 63 64 64 74 74 72 69 65 68 58 85 83		dBFS dBFS dBFS dBFS dBFS dBc dBc dBc dBc dBc dBFS dBFS dBFS dBFS	1 1
DC ACCURACY AND PERFORMANCE differential non-linearity integral non-linearity $\begin{aligned} & f_{\text {in }}=5 \mathrm{MHz}, A_{\text {in }}=-1 \mathrm{dBFS} \\ & \mathrm{f}_{\mathrm{in}}=5 \mathrm{MHz}, \mathrm{~A}_{\text {in }}=-1 \mathrm{dBFS} \end{aligned}$ offset error gain error $\mathrm{V}_{\text {ref }}$	$\begin{gathered} \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$	-30 2.2	$\begin{gathered} \pm 0.8 \\ \pm 2.0 \\ 0 \\ 1.2 \\ 2.37 \end{gathered}$	30 2.6	$\begin{gathered} \text { LSB } \\ \text { LSB } \\ \mathrm{mV} \\ \% \mathrm{FS} \\ \mathrm{~V} \end{gathered}$	1
ANALOG INPUTS analog differential input voltage range analog input resistance (single ended) analog input resistance (differential) analog input capacitance (single-ended)	Full Full Full Full		$\begin{gathered} 2.048 \\ 500 \\ 1000 \\ 2 \end{gathered}$		$\begin{gathered} \mathrm{Vpp} \\ \Omega \\ \Omega \\ \mathrm{pF} \end{gathered}$	
ENCODE INPUTS (Universal) VIH VIL differential input swing	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 0 \\ 0.2 \end{gathered}$		5	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & 3,4 \\ & 3,4 \\ & 3,4 \end{aligned}$
DIGITAL OUTPUTS output voltage OUTLEV $=1$ (open) logic LOW OUgic HIGH OUTLEV $=0$ (GND) logic HIGH	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.4 \end{aligned}$	$\begin{gathered} 0.01 \\ 3.5 \\ 2.7 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 3.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
POWER REQUIREMENTS +5 V supply current Power dissipation V_{CC} power supply rejection ratio	$\begin{gathered} \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 128 \\ & 640 \\ & 64 \end{aligned}$	$\begin{aligned} & 150 \\ & 750 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mW} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

$\mathrm{Min} / \mathrm{max}$ ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

CLC5955 Electrical Characteristics ($\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}, 55 \mathrm{MSPS}$; unless specified) $\left(\mathrm{T}_{\text {min }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\max }=+85^{\circ} \mathrm{C}\right)$

PARAMETERS CONDITIONS	SYMB	TEMP	RATINGS			UNITS	NOTES
			MIN	TYP	MAX		2
TIMING ($\mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}$ DATA; 10 pF DAV)							
max conversion rate (ENCODE)		Full	55	75		MSPS	1
min conversion rate (ENCODE)		$+25^{\circ} \mathrm{C}$		10		MSPS	
pulse width high (ENCODE) 50\% threshold	t_{p}	Full	9.1			ns	3
pulse width low (ENCODE) 50\% threshold	t_{M}	Full	9.1			ns	3
ENCODE falling edge to DATA not valid	$t_{\text {DNV }}$	Full	8.3			ns	3
ENCODE falling edge to DATA guaranteed valid	$t_{\text {DGV }}$	Full			17.8	ns	3
rising ENCODE to rising DAV delay 50\% threshold	$\mathrm{t}_{\text {DAV }}$	Full	8.3		12.6	ns	3
DATA setup time before rising DAV	t_{s}	Full	$\mathrm{t}_{\mathrm{M}-2.4}$			ns	3
DATA hold time after rising DAV	$t_{\text {H }}$	Full	$\mathrm{t}_{\mathrm{p}}-1.6$			ns ck cycle	3
pipeline latency		Full			3.0	Clk cycle	

$\mathrm{Min} / \mathrm{max}$ ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

Notes

1) These parameters guaranteed by test.
2) Typical specifications are based on the mean test values of deliverable converters from the first three diffusion lots.
3) Values guaranteed based on characterization and simulation.
4) See page 8, Figure 3 for ENCODE Inputs circuit.

Recommended Operating Conditions

positive supply voltage (V_{cc})
differential voltage between any two grounds
analog input voltage range
digital input voltage range
output short circuit duration (one-pin to ground)
junction temperature
storage temperature range
lead solder duration $\left(+300^{\circ} \mathrm{C}\right)$
ESD tolerance
human body model 2000V
machine model 200 V
-0.5 V to +6 V
$<100 \mathrm{mV}$
GND to V_{cc}
-0.5 V to $+\mathrm{V}_{\mathrm{cc}}$
infinite
$175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
10sec

Note: Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to maximum ratings for extended periods may affect device reliability.

Ordering Information

Model	Temperature Range	Description
CLC5955MTDX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$48-$ pin TSSOP (TNR 1000 pc reel)

CLC5955 ENCODE to Data Timing Diagram

CLC5955 DAV to Data Timing Diagram

SNR and SFDR vs. Input Frequency

SNR and SFDR vs.
Input Amplitude (w/o Dither)

SNR and SFDR vs.
Input Amplitude (w/o Dither)

Symbol	Min	Max	Notes
A	-	1.10	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.17	0.27	
b1	0.17	0.23	
c	0.09	0.20	
c1	0.09	0.16	
D	12.40	12.60	2
E	8.1 BSC		
E1	6.00	6.20	2
e	0.50 BSC		
L	0.50	0.75	
L1	1.00 REF		
R1	0.127		

Notes:

1. All dimensions are in millimeters.
2. Dimensions D and E1 do not include mold protrusion. Allowable protrusion is 0.20 mm per side.

CLC5955 Pin Definitions

AIN $\overline{A_{\text {IN }}}$
ENCODE,
ENCODE
DO-D10
DAV
OUTLEV
$V_{\text {CM }}$
GND
+AV
+DV
+DC
NC
OGND
(Pins 13, 14) Differential input with a common mode voltage of +2.4 V . The ADC full scale input is 1.024 V pp on each of the complimentary input signals.
(Pins 9, 10) Differential clock where ENCODE initiates a new data conversion cycle on each rising edge. Logic for these inputs are 50% duty cycle universal differential signal ($>200 \mathrm{mV}$). The clock input is internally biased to $\mathrm{V}_{\mathrm{CC}} / 2$ with a termination impedance of $2.5 \mathrm{k} \Omega$.
(Pins 31-34, 39-45) Digital data outputs are CMOS and TTL compatible. D0 is the LSB and D10 is the MSB. MSB is inverted. Output coding is two's complement. Current limited to source/sink 2.5 mA typical.
(Pin 27) Data Valid Clock. Data is valid on rising edge. Current limited to source/sink 5 mA typical.
(Pin 28) Output Logic 3.3 V or 2.5 V option.
Open = 3.3V, GND $=2.5 \mathrm{~V}$.
(Pin 21) Internal common mode voltage reference. Nominally +2.4 V . Can be used for the input common mode voltage. This voltage is derived from an internal bandgap reference. VCM should be buffered when driving any external load. Failure to buffer this signal can cause errors in the internal bias currents.
(Pins 1-4, 8, 11, 12, 15, 19, 20, 23-26, 35, 36, 47, 48) circuit ground.
(Pins 5-7, 16-18, 22,) +5V power supply for the analog section. Bypass to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
(Pins 37, 38, 46) +5 V power supply for the digital section. Bypass to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
(Pin 29) No connect. May be left open or grounded.
(Pin 30) Option ground. May be tied to GND or left floating.

Analog Inputs and Bias

Figure 1 depicts the analog input and bias scheme. Each of the differential analog inputs are internally biased to a nominal voltage of 2.40 volts DC through a 500Ω resistor to a low impedance buffer. This enables a simple interface to a broadband RF transformer with a centertapped output winding that is decoupled to the analog ground. If the application requires the inputs to be DC coupled, the V_{cm} output can be used to establish the proper common -mode input voltage for the ADC. The V_{cm} voltage reference is generated from an internal bandgap source that is very accurate and stable.

Figure 1: CLC5955 Bias Scheme
The V_{cm} output may also be used to power down the $A D C$. When the V_{cm} pin is pulled above 3.5 V , the internal bias mirror is disabled and the total current is reduced to less than 10 mA . Figure 2 depicts how this function can be used. The diode is necessary to prevent the logic gate from altering the ADC bias value.

Figure 2: Power Shutdown Scheme

ENCODE Clock Inputs

The CLC5955's differential input clock scheme is compatible with all commonly used clock sources. Although small differential and single-ended signals are adequate, for best aperture jitter performance a low noise differential clock with a high slew rate is preferred. As depicted in Figure 3, both ENCODE clock inputs are internally biased to $\mathrm{V}_{\mathrm{CC}} / 2$ though a pair of $5 \mathrm{~K} \Omega$ resistors. The clock input buffer operates with any common-mode voltage between the supply and ground.

Figure 3: CLC5955 ENCODE Clock Inputs
The internal bias resistors simplify the clock interface to another center-tapped transformer as depicted in Figure 4. A low phase noise, RF synthesizer of moderate amplitude ($1-4 \mathrm{~V}_{\mathrm{pp}}$) can drive the ADC through this interface.

Figure 4: Transformer Coupled Clock Scheme

Figures 5 shows the clock interface scheme for square wave clock sources.

Figure 5: TTL, 3V or 5V CMOS Clock Scheme

Figure 6: CLC5955 Digital Outputs

Digital Outputs and Level Select

Figure 6 depicts the digital output buffer and bias used in the CLC5955. Although each of the eleven output bits uses a controlled current buffer to limit supply transients, it is recommended that parasitic loading of the outputs is minimized. Because these output transients are harmonically related to the analog input signal, excessive loading will degrade ADC performance at some frequencies.

The logic high level is slaved to the internal 2.4 voltage reference. The OUTLEV control pin selects either a 3.3 V or 2.5 V logic high level. An internal pullup resistor selects the 3.3 volt level as the default when the OUTLEV pin is left open. Grounding the OUTLEV pin selects the 2.5 V logic high level.

To ease user interface to subsequent digital circuitry, the CLC5955 has a data valid clock output (DAV). In order to match delays over IC processing variables, this digital output also uses the same output buffer as the data bits. The DAV clock output is simply a delayed version of the ENCODE input clock. Since the ADC output data change is slaved to the falling edge of the ENCODE clock, the rising DAV clock edge occurs near the center of the data valid window (or eye) regardless of the sampling frequency.

Minimum Conversion Rate

This ADC is optimized for high-speed operation. The internal bipolar track and hold circuits will cause droop errors at low sample rates. The point at which these errors cause a degradation of performance is listed on the specifications page as the minimum conversion rate. If a lower sample rate is desired, the ADC should be clocked at a higher rate, and the output data should be decimated. For example, to obtain a 10MSPS output, the ADC should be clocked at 20 MHz , and every other output sample should be used. No significant power savings occurs at lower sample rates, since most of the power is used in analog circuits rather than digital circuits.
11-bit, 55MSPS Broadband Monolithic A/D Converter

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]
[^0]: National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

