Rochester
Electronics ${ }^{\circ}$

Datasheet

74ABT373

Octal Transparent Latch with 3-STATE Outputs

The ABT373 consists of eight latches with 3-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{\mathrm{OE}})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

> The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical’ values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

74ABT373

Octal Transparent Latch with 3－STATE Outputs

Features

■ 3－STATE outputs for bus interfacing
■ Output sink capability of 64 mA ，source capability of 32 mA
■ Guaranteed output skew
■ Guaranteed multiple output switching specifications
■ Output switching specified for both 50 pF and 250 pF loads
－Guaranteed simultaneous switching，noise level and dynamic threshold performance
－Guaranteed latchup protection
－High－impedance，glitch－free bus loading during entire power up and power down
■ Nondestructive，hot－insertion capability

General Description

The ABT373 consists of eight latches with 3－STATE outputs for bus organized system applications．The flip－ flops appear transparent to the data when Latch Enable （LE）is HIGH．When LE is LOW，the data that meets the setup times is latched．Data appears on the bus when the Output Enable（ $\overline{\mathrm{OE}}$ ）is LOW．When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state．

Ordering Information

Order Number	Package Number	Package Description
74ABT373CSC	M20B	20－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide
74ABT373CSJ	M20D	20－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74ABT373CMSA	MSA20	20－Lead Shrink Small Outline Package（SSOP），JEDEC MO－150，5．3mm Wide
74ABT373CMTC	MTC20	20－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Device also available in Tape and Reel．Specify by appending suffix letter＂X＂to the ordering number． Pb－Free package per JEDEC J－STD－020B．

Connection Diagram

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
LE	Latch Enable Input（Active HIGH）
$\overline{\mathrm{OE}}$	Output Enable Input（Active LOW）
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3－STATE Latch Outputs

Functional Description

The ABT373 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs at setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Output
LE	$\overline{\mathbf{O E}}$	$\mathrm{D}_{\mathbf{n}}$	$\mathbf{O}_{\mathbf{n}}$
H	L	H	H
H	L	L	L
L	L	X	$\mathrm{O}_{\mathbf{n}}$ (no change)
X	H	X	Z

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { Voltage Level } \\
& \mathrm{L}=\text { LOW Voltage Level } \\
& \mathrm{X}=\text { Immaterial } \\
& \mathrm{Z}=\text { HIGH Impedance State }
\end{aligned}
$$

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating				
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
T_{A}	Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
T_{J}	Junction Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
V_{CC}	V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V				
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage ${ }^{(1)}$	-0.5 V to +7.0 V				
I_{IN}	Input Current ${ }^{(1)}$	-30 mA to +5.0 mA				
$\mathrm{~V}_{\mathrm{O}}$	Voltage Applied to Any Output Disabled or Power-Off State HIGH State	-0.5 V to +5.5 V				
	Current Applied to Output in LOW State (Max.)	-0.5 V to V_{CC}	$	$	twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$	
:---:	:---:					
	DC Latchup Source Current Across Common Operating Range OE Pin Other Pins					
	Over Voltage Latchup (I/O)					

Note:

1. Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
T_{A}	Free Air Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	+4.5 V to +5.5 V
$\Delta \mathrm{~V} / \Delta \mathrm{t}$	Minimum Input Edge Rate	
	Data Input	$50 \mathrm{mV} / \mathrm{ns}$
	Enable Input	$20 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter		V_{CC}	Conditions	Min.	Typ.	Max.	Units	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			Recognized HIGH Signal	2.0			V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			Recognized LOW Signal			0.8	V	
V_{CD}	Input Clamp Diode Voltage		Min.	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$			-1.2	V	
V_{OH}	Output HIGH Voltage		Min.	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.5			V	
			$\mathrm{IOH}=-32 \mathrm{~mA}$	2.0					
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			Min.	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$			0.55	V
I_{H}	Input HIGH Current		Max.	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}^{(3)}$			1	$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			1			
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			Max.	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			7	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	Input LOW Current		Max.	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}^{(3)}$			-1	$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$			-1			
$V_{\text {ID }}$	Input Leakage Test			0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$, All Other Pins Grounded	4.75			V
$\mathrm{I}_{\mathrm{OZH}}$	Output Leakage Current		0-5.5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}, \overline{\mathrm{OE}}=2.0 \mathrm{~V}$			10	$\mu \mathrm{A}$	
IOZL	Output Leakage Current		0-5.5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \overline{\mathrm{OE}}=2.0 \mathrm{~V}$			-10	$\mu \mathrm{A}$	
l OS	Output Short-Circuit Current		Max.	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$	-100		-275	mA	
$I_{\text {CEX }}$	Output HIGH Leakage Current		Max.	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {zZ }}$	Bus Drainage Test		0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$, All Others GND			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		Max.	All Outputs HIGH			50	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current		Max.	All Outputs LOW			30	mA	
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current		Max.	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$, All Others at V_{CC} or Ground			50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {CCT }}$	Additional $\mathrm{I}_{\mathrm{CC}} /$ Input	Outputs Enabled	Max.	$V_{1}=V_{C C}-2.1 \mathrm{~V}$			2.5	mA	
		Outputs 3-STATE		Enable Input $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$			2.5	mA	
		Outputs 3-STATE		Data Input $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$, All Others at V_{CC} or Ground			2.5	mA	
$\mathrm{I}_{\text {CCD }}$	Dynamic ICC ${ }^{\text {No Load }}{ }^{(3)}$		Max.	Outputs OPEN, LE $=\mathrm{V}_{\mathrm{CC}}$, $\overline{\mathrm{OE}}=\mathrm{GND}{ }^{(2)},$ One-Bit Toggling, 50\% Duty Cycle			0.12	$\begin{aligned} & \hline \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	

Notes:
2. For 8 -bit toggling, $\mathrm{I}_{\mathrm{CCD}}<0.8 \mathrm{~mA} / \mathrm{MHz}$.
3. Guaranteed, but not tested.

DC Electrical Characteristics

SOIC package.

Symbol	Parameter	V_{Cc}	Conditions $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(4)}$		0.4	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(4)}$	-1.2	-0.8		V
$\mathrm{V}_{\mathrm{OHV}}$	Minimum HIGH Level Dynamic Output Voltage	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(5)}$	2.5	3.0		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(6)}$	2.0	1.7		V
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(6)}$		0.9	0.6	V

Notes:

4. Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at Low. Guaranteed, but not tested.
5. Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested.
6. Max number of data inputs (n) switching. $\mathrm{n}-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold $\left(\mathrm{V}_{\text {ILD }}\right)$, 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right)$. Guaranteed, but not tested.

AC Electrical Characteristics

SOIC and SSOP package.

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PLH }}$	Propagation Delay D_{n} to O_{n}	1.9	2.7	4.5	1.0	6.8	1.9	4.5	ns
$\mathrm{t}_{\text {PHL }}$		1.9	2.8	4.5	1.0	7.0	1.9	4.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay LE to O_{n}	2.0	3.1	5.0	1.0	7.7	2.0	5.0	ns
$t_{\text {PHL }}$		2.0	3.0	5.0	1.5	7.7	2.0	5.0	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	1.5	3.1	5.3	1.0	6.7	1.5	5.3	ns
$\mathrm{t}_{\text {PZL }}$		1.5	3.1	5.3	1.5	7.2	1.5	5.3	
$t_{\text {PHZ }}$	Output Disable Time	2.0	3.6	5.4	1.7	8.0	2.0	5.4	ns
$t_{\text {PLZ }}$		2.0	3.4	5.4	1.0	7.0	2.0	5.4	

AC Operating Requirements

SOIC and SSOP packages.

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {TOGGLE }}$	Max Toggle Frequency		100		100				MHz
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or	1.5			2.5		1.5		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	LOW, D_{n} to LE	1.5			2.5		1.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or	1.0			2.5		1.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	LOW, D_{n} to LE	1.0			2.5		1.0		
$\mathrm{t}_{\mathrm{W}}(\mathrm{H})$	Pulse Width, LE HIGH	3.0			3.3		3.0		ns

Extended AC Electrical Characteristics
SOIC package.

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \text { 8 Outputs } \\ \text { Switching }{ }^{(7)} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}^{(8)} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}, \\ 8 \text { Outputs } \\ \text { Switching }^{(9)} \end{gathered}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PLH }}$	Propagation Delay, D_{n} to O_{n}	1.5	5.2	2.0	6.8	2.0	9.0	ns
$\mathrm{t}_{\text {PHL }}$		1.5	5.2	2.0	6.8	2.0	9.0	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, LE to O_{n}	1.5	5.5	2.0	7.5	2.0	9.5	ns
$\mathrm{t}_{\text {PHL }}$		1.5	5.5	2.0	7.5	2.0	9.5	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	1.5	6.2	2.0	8.0	2.0	10.5	ns
$t_{\text {PZL }}$		1.5	6.2	2.0	8.0	2.0	10.5	
$t_{\text {PHZ }}$	Output Disable Time	1.0	5.5	(10)		(10)		ns
$t_{\text {PZL }}$		1.0	5.5					

Notes:

7. This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).
8. This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
9. This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load.
10. The 3-STATE delay times are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet.

Skew

SOIC package.

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{Cc}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ 8 \text { Outputs Switching }{ }^{(11)} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}, \\ 8 \text { Outputs Switching }{ }^{(12)} \\ \hline \end{gathered}$	Units
		Max.	Max.	
$\mathrm{t}_{\text {OSHL }}{ }^{(13)}$	Pin to Pin Skew, HL Transitions	1.0	1.5	ns
$\mathrm{t}_{\mathrm{OSLH}}{ }^{(13)}$	Pin to Pin Skew, LH Transitions	1.0	1.5	ns
$\mathrm{t}_{\text {PS }}{ }^{(15)}$	Duty Cycle, LH-HL Skew	1.4	3.5	ns
$\mathrm{t}_{\text {OST }}{ }^{(13)}$	Pin to Pin Skew, LH/HL Transitions	1.5	3.9	ns
$t_{\text {PV }}{ }^{(14)}$	Device to Device Skew, LH/HL Transitions	2.0	4.0	ns

Notes:

11. This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.
12. This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).
13. Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (toshl), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OLLH}}$), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW ($\mathrm{t}_{\mathrm{OST}}$). This specification is guaranteed but not tested.
14. Propagation delay variation is for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.
15. This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$	Typ.	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	5	pF
$\mathrm{C}_{\mathrm{OUT}}{ }^{(16)}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	9	pF

Note:
16. $\mathrm{C}_{\text {Out }}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012 .

AC Loading

*Includes jig and probe capacitance
Figure 1. Standard AC Test Load

Figure 2. Test Input Signal Levels

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Figure 3. Test Input Signal Requirements

AC Waveforms

Figure 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

Figure 5. Propagation Delay, Pulse Width Waveforms

Figure 6. 3-STATE Output HIGH and LOW Enable and Disable Times

Figure 7. Setup Time, Hold Time and Recovery Time Waveforms

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

Figure 8. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

M20DREVC
Figure 9. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATIONS

MSA20REVB

. CONFORMS TO JEDEC REGISTRATION MO-150, VARIATION AE, DATE $1 / 94$.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M - 1994.

Figure 10. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package Number MSA20

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6. DATE 7/93.
b. DIMENSIONS ARE IN MILLIMETERS.
c. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TE BAR EXTRUSIONS.

DETAIL A
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC20REVD1

Figure 11. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	HiSeCtM	Programmable Active Droop ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$	$i-$ Lot $^{\text {TM }}$	QFET ${ }^{\circledR}$	TINYOPTO'M
ActiveArray ${ }^{\text {TM }}$	ImpliedDisconnect ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TinyPower ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {™ }}$
Build it Now $^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
CoolFET ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {™ }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
DOME ${ }^{\text {TM }}$	MSXProtm	SPM ${ }^{\text {® }}$	Wire ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	OCX ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProm	SuperFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	
${ }^{\text {FACT }}{ }^{\text {® }}$	PACMAN ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	
${ }^{\text {FAST }}{ }^{\text {® }}$	POP ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM ${ }^{\text {™ }}$	
FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\circledR}$	
FRFET ${ }^{\text {® }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerSavertM	TinyBoost ${ }^{\text {TM }}$	
GTOM	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

