

Absolute Maximum Ratings(Note 1)

Supply Voltage, $\mathrm{V}_{\text {CC }}$		7V				
Input Voltage		7 V Note 1:				
Voltage Applied to Disabled Output		5.5 V				
Operating Free Air Temperature Range			operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.			
Storage Temperature Range		$-65^{\circ} \mathrm{C}$	The "Recommended Operating Conditions" table will define the conditionsfor actual device operation.			
Typical $\theta_{\text {JA }}$ 隹 ${ }^{\text {ar actual device operation. }}$						
N Package		$75.0^{\circ} \mathrm{C} / \mathrm{W}$				
Recommended Operating Conditions						
Symbol	Param		Min	Nom	Max	Units
V_{CC}	Supply Voltage		4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Volta		2			V
V_{IL}	LOW Level Input Voltag				0.8	V
I_{OH}	HIGH Level Output Cur				-15	mA
$\mathrm{I}_{\text {OL }}$	LOW Level Output Cur				48	mA
T_{A}	Free Air Operating Tem	rature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V	
$\overline{\mathrm{VOH}}$	HIGH Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$		2.4	3.2		V	
			$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{V}_{\mathrm{CC}}-2$			V	
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.35	0.5	V	
I_{1}	Input Current @ Max Input Voltage		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=7 \mathrm{~V}$	A, B, $\overline{\mathrm{G}}$			0.1	mA	
			Select			0.2			
I_{H}	HIGH Level Input Current			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{HH}}=2.7 \mathrm{~V}$	A, B, $\overline{\mathrm{G}}$			20	$\mu \mathrm{A}$
			Select				40		
$\overline{I_{1 L}}$	LOW Level Input Current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	Select			-1	mA	
			All Others			-0.5			
Io (Note 2)	Output Drive Current			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current, HIGH Level Voltage Applied		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$				-50	$\mu \mathrm{A}$	
IozL	Off-State Output Current, LOW Level Voltage Applied		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-50	$\mu \mathrm{A}$	
$\overline{I_{\text {CCH }}}$	$\begin{array}{\|l\|l\|} \hline \text { Supply } \\ \text { Current } \end{array}$	DM74AS257	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Outputs Open	Outputs HIGH		12.9	19.7	mA	
		DM74AS258				8.8	13.5	mA	
${ }^{\text {CCL }}$	$\begin{array}{\|l\|} \hline \text { Supply } \\ \text { Current } \end{array}$	DM74AS257		Outputs LOW		19	30.6	mA	
		DM74AS258				15.8	24.6	mA	
$\overline{I_{C C Z}}$	$\begin{array}{\|l\|} \hline \text { Supply } \\ \text { Current } \end{array}$	DM74AS257		Outputs Disabled		19.7	31.9	mA	
		DM74AS258				15.5	25.2	mA	

Note 2: The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally and pin for pin compatible with Schottky, low power Schottky, and advanced low power Schottky TTL counterpart
- Improved AC performance over Schottky, low power Schottky, and advanced low power Schottky counterparts
- 3-STATE buffer-type output drive bus lines directly
- Expand any data input point
- Multiplex dual data buses
- General four functions of two variables (one variable is common)
- Source programmable counters
back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Package marking	Packing method
DM74AS257M	Full Production	$\$ 0.79$	$\underline{\text { SOIC }}$	16	\$Y\&Z\&2\&T DM74AS 257M	RAIL
DM74AS257N	Full Production	$\$ 0.79$	$\underline{\text { DIP }}$	16	\$Y\&Z\&4\&T\&P DM74AS257N	RAIL
DM74AS257SJ	Full Production	\$0.99	$\underline{\text { SOP }}$	16	\$Y\&Z\&2\&T AS257SJ	RAIL
DM74AS257MX	Full Production	\$0.79	$\underline{\text { SOIC }}$	16	\$Y\&Z\&2\&T DM74AS 257M	TAPE REEL
DM74AS257SJX	Full Production	\$0.99	SOP	16	\$Y\&Z\&2\&T AS257SJ	TAPE REEL

* 1,000 piece Budgetary Pricing
back to top

Home | Find products | Technical information | Buy products | Support \mid Company \mid Contact us \mid Site index \mid Privacy policy

