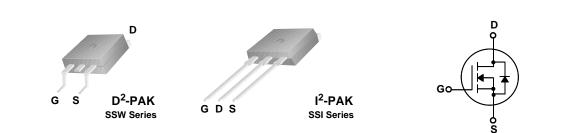
November 2001

SSW7N60B / SSI7N60B

FAIRCHILD

SEMICONDUCTOR

SSW7N60B / SSI7N60B 600V N-Channel MOSFET


General Description

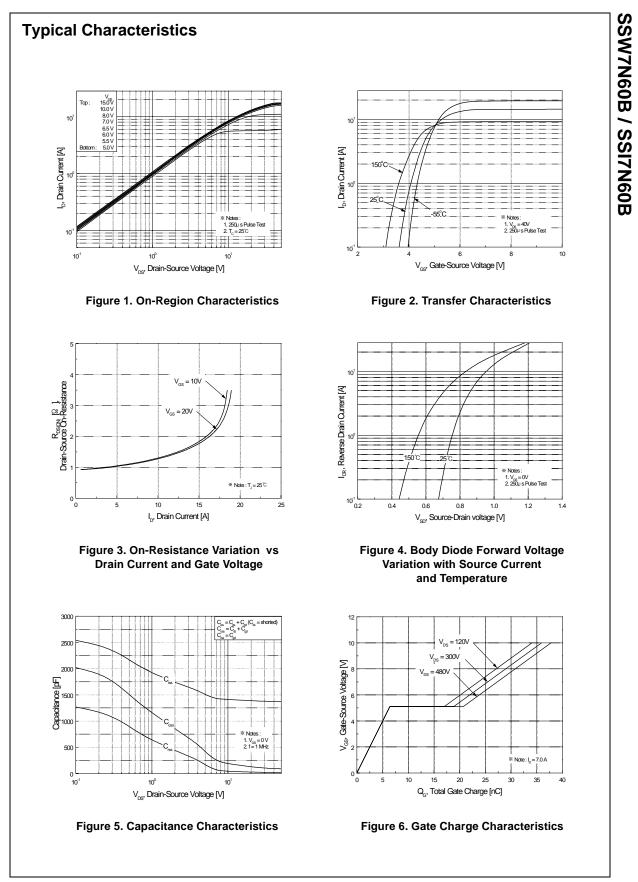
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies.

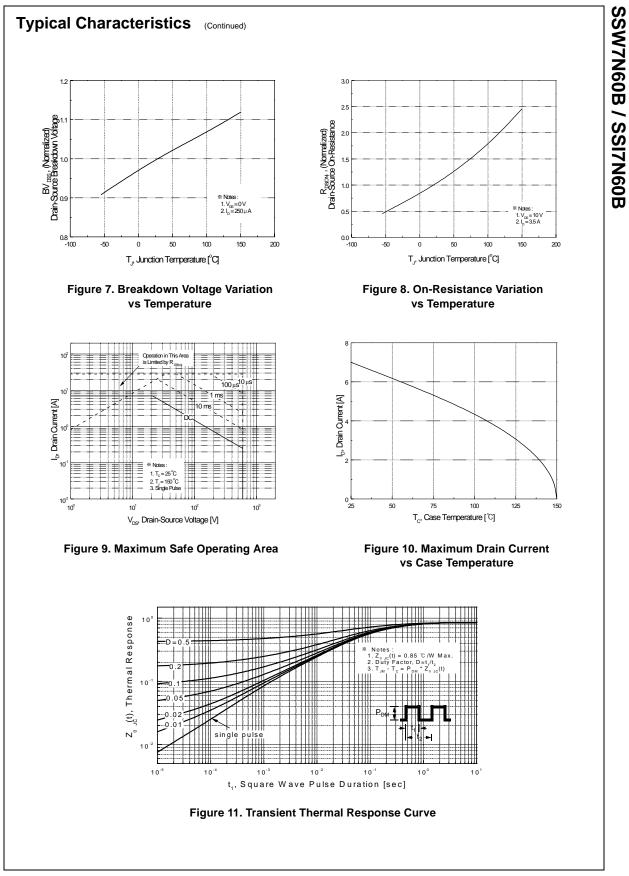
Features

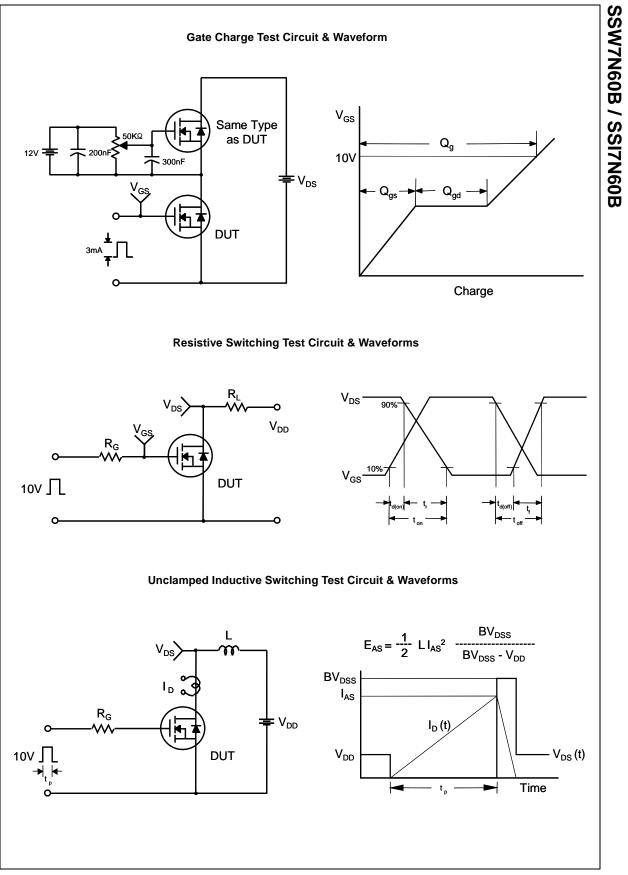
- 7.0A, 600V, $R_{DS(on)} = 1.2\Omega @V_{GS} = 10 V$ Low gate charge (typical 38 nC)
- Low Crss (typical 23 pF) •
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

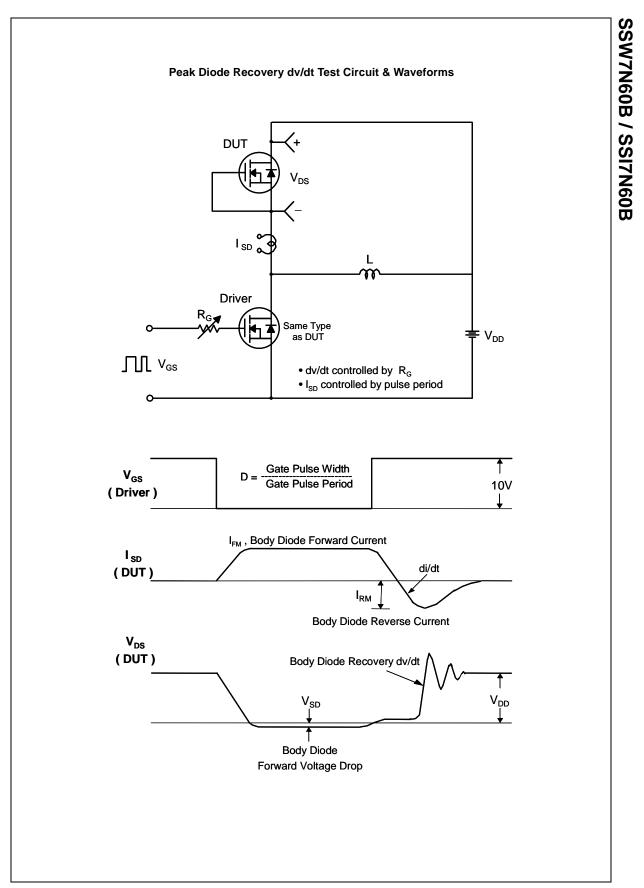

Symbol	Parameter		SSW7N60B / SSI7N60B	Units
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°	C)	7.0	А
	- Continuous (T _C = 100)°C)	4.4	А
I _{DM}	Drain Current - Pulsed	(Note 1)	28	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	420	mJ
I _{AR}	Avalanche Current	(Note 1)	7.0	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	14.7	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.13	W
	Power Dissipation $(T_C = 25^{\circ}C)$		147	W
	- Derate above 25°C	1.18	W/°C	
T _J , T _{stg}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

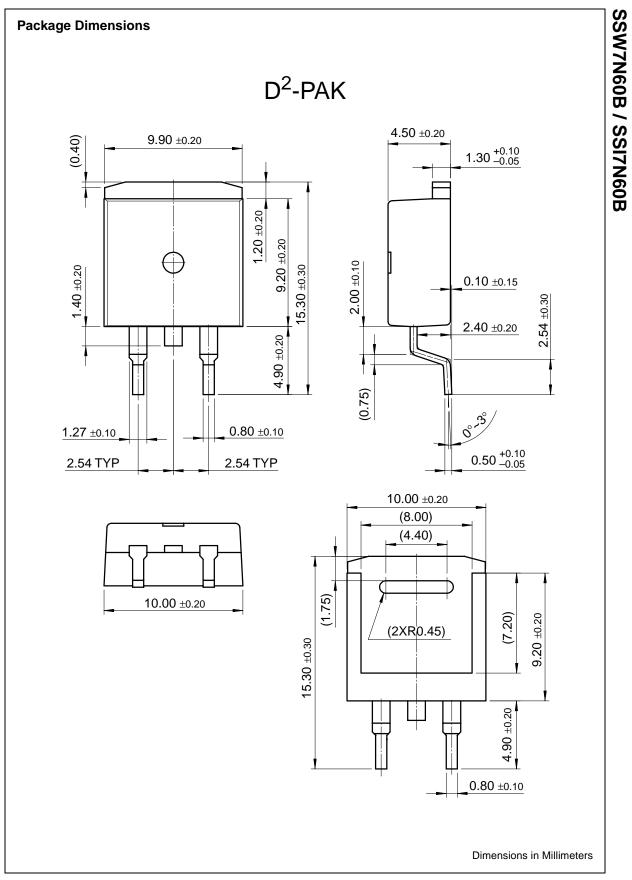
Thermal Characteristics

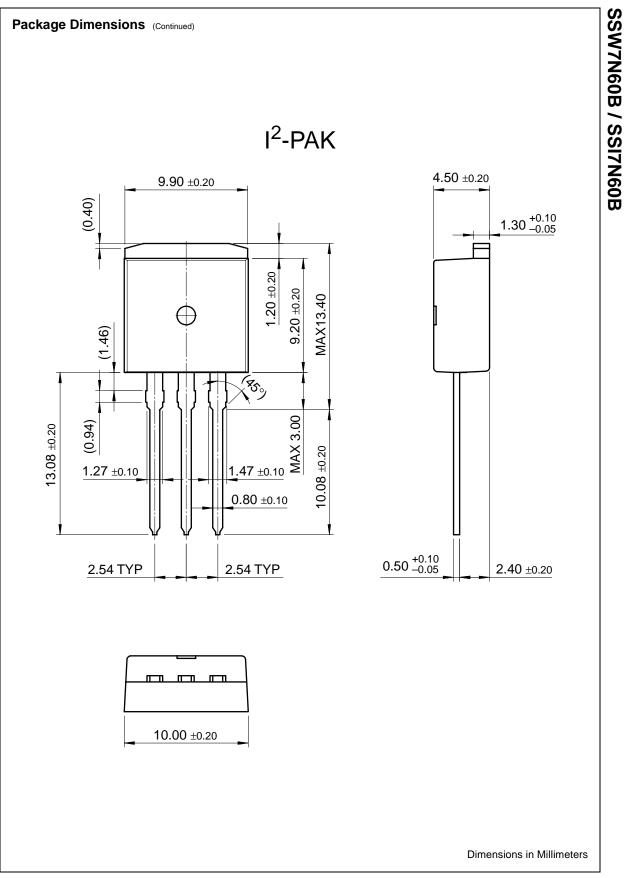

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.85	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W


©2001 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
off Cha	aracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		600			V
ABV _{DSS}	Breakdown Voltage Temperature			000			v
ΔT_{J}	Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C			0.65		V/°C
DSS		V _{DS} = 600 V, V _{GS} = 0 V				10	μA
	Zero Gate Voltage Drain Current	V _{DS} = 480 V, T _C = 125°C				100	μA
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				-100	nA
						L	
	aracteristics	V _{DS} = V _{GS} , I _D = 250 μA		2.0		10	V
GS(th)	Gate Threshold Voltage	$v_{\text{DS}} = v_{\text{GS}}, \text{ ID} = 230 \mu\text{A}$		2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V_{GS} = 10 V, I _D = 3.5 A			1.0	1.2	Ω
JFS	Forward Transconductance	V _{DS} = 40 V, I _D = 3.5 A	(Note 4)		8.2		S
	ic Characteristics	Γ				[
Siss	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,			1380	1800	pF
S _{oss}	Output Capacitance	f = 1.0 MHz			115	150	pF
2 _{rss}	Reverse Transfer Capacitance				23	30	pF
Switchi	ing Characteristics						
d(on)	Turn-On Delay Time				30	70	ns
r	Turn-On Rise Time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 7.0 \text{ A},$			80	170	ns
d(off)	Turn-Off Delay Time	R _G = 25 Ω			125	260	ns
f	Turn-Off Fall Time		(Note 4, 5)		85	180	ns
, ζ ^α	Total Gate Charge	V _{DS} = 480 V, I _D = 7.0 A,			38	50	nC
ي ک _{gs}	Gate-Source Charge	$V_{GS} = 10 V$			6.4		nC
2 _{gd}	Gate-Drain Charge		(Note 4, 5)		15		nC
0						I	
Drain-S	Source Diode Characteristics ar	nd Maximum Ratings	5				
S	Maximum Continuous Drain-Source Dic	de Forward Current				7.0	А
SM	Maximum Pulsed Drain-Source Diode F	orward Current				28	А
/ _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 7.0 A$				1.4	V
rr	Reverse Recovery Time	$V_{GS} = 0 V, I_{S} = 7.0 A,$			415		ns
ל ^{גג}	Reverse Recovery Charge	dl _F / dt = 100 A/µs	(Note 4)		4.6		μC
	ating : Pulse width limited by maximum junction tempe	ature					




Rev. B, November 2001



Rev. B, November 2001

Rev. B, November 2001

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E^2 CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MicroPak[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SLIENT SWITCHER[®] SMART STARTTMVCXTMSTAR*POWERTMStealthTMSuperSOTTM-3SuperSOTTM-6SuperSOTTM-6SyncFETTMTruTranslationTMTinyLogicTMUHCTMUHCTMUltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Filder - Parenne F/N	SSW/NOOD - 000V N-Channel B-FE1 / Substitute of SSW /	NOOA	
Fairchild Semiconductor		s <mark>SEARCH <u>Parametr</u></mark>	ic Cross Reference
		space Product	Folders and Applica
find products	<u>Home</u> >> <u>Find products</u> >>		
Products groups Analog and Mixed	SSW7N60B 600V N-Channel B-FET / Substitute of		Related Links
Signal	SSW7N60A		Request samples
Discrete Interface Logic	Contents General description Features Product	Datasheet Download this datasheet	Dotted line How to order products Dotted line Product Change Notices
<u>Microcontrollers</u> <u>Non-Volatile</u> Memory	status/pricing/packaging	PDF	(PCNs) Dotted line Support
Optoelectronics Markets and	General description	e-mail this datasheet	Dotted line Distributor and field sales representatives
applications New products Product selection and	These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS	This page <u>Print version</u>	Dotted line Quality and reliability Dotted line
parametric search	technology.		Design tools
<u>Cross-reference</u> <u>search</u>	This advanced technology has been especially tailored to minimize on-state resistance,		
technical information	provide superior switching performance, and withstand high energy pulse in the avalanche		
buy products	and commutation mode. These devices are well suited for high efficiency switch mode power		
technical support	supplies.	-	
my Fairchild	_		
company	back to top		
	Features		

back to top

Product status/pricing/packaging

• 7.0A, 600V,

• Fast switching

o $R_{DS(on)} = 1.2\Omega @V_{GS} = 10V$

• Low gate charge (typical 38 nC)

• Low Crss (typical 23 pF)

100% avalanche testedImproved dv/dt capability

Product	Product status	Pricing*	Package type	Leads	Packing method

I					
SSW7N60BTM	Full Production	\$1.00	TO-263(D2PAK)	2	TAPE REEL
* 1,000 piece Budge	tary Pricing				
back to top					
•					
	s Technical information				
 Support Company	Contact us Site inde	<u>ex Privacy</u>	policy		
© Convright 2002 F	airchild Semiconducto	or			
<u>o copyrigit 2002 10</u>					_

Troduct Polder - Partennu P/N	SSI/NOOD - 000 V IN-Channel B-FE1 / Substitute of SSI/NO	0A	
Fairchild Semiconductor		s <mark>SEARCH <u>Parametr</u></mark>	ric Cross Reference
		snace Product	Folders and Annlica
find products	<u>Home</u> >> <u>Find products</u> >>		
Products groups	SSI7N60B 600V N-Channel B-FET / Substitute of		Related Links
<u>Analog and Mixed</u> <u>Signal</u>	SSI7N60A		Request samples
Discrete Interface	Contents	Datasheet Download this	How to order products
Logic	<u>General description Features Product</u> status/pricing/packaging	datasheet	Product Change Notices (PCNs)
Microcontrollers Non-Volatile		PDF	Dotted line Support
<u>Memory</u> Optoelectronics	General description	e-mail this datasheet	Dotted line Distributor and field sales
Markets and	-	[E-	representatives
applications New products	These N-Channel enhancement mode power field effect transistors are produced using		Dotted line Quality and reliability
Product selection and	Fairchild's proprietary, planar, DMOS	This page <u>Print version</u>	Dotted line Design tools
parametric search Cross-reference	technology.		
search	This advanced technology has been especially tailored to minimize on-state resistance,		
technical information	provide superior switching performance, and withstand high energy pulse in the avalanche		
buy products	and commutation mode. These devices are well suited for high efficiency switch mode power		
technical support	supplies.	-	
my Fairchild	-		
company	back to top		
	Features		

- 7.0A, 600V,
 - $R_{DS(on)} = 1.2\Omega @V_{GS} = 10V$
- Low gate charge (typical 38 nC)
- Low Crss (typical 23 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method

SSI7N60BTU	Full Production	\$1.00	TO-262(I2PAK)	3	RAIL
* 1,000 piece Budg	etary Pricing	,		, ,	
back to top					
	tts <u>Technical informa</u> <u>Contact us</u> <u>Site inde</u>				
© Copyright 2002 I	Fairchild Semiconduct	<u>or</u>			-