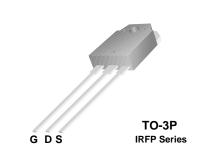
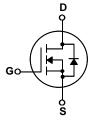
November 2001

FAIRCHILD SEMICONDUCTOR®

IRFP254B 250V N-Channel MOSFET


General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

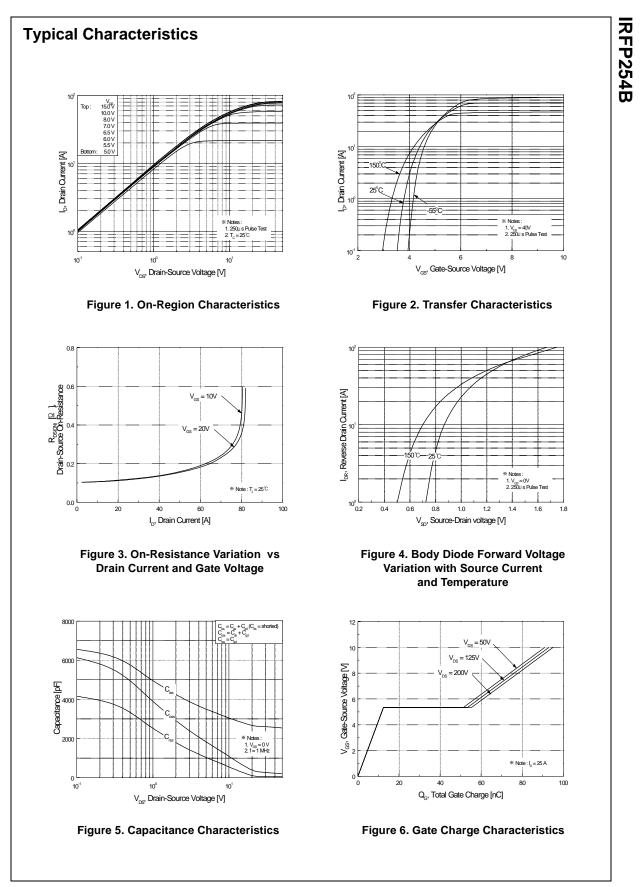
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters and switch mode power supplies.

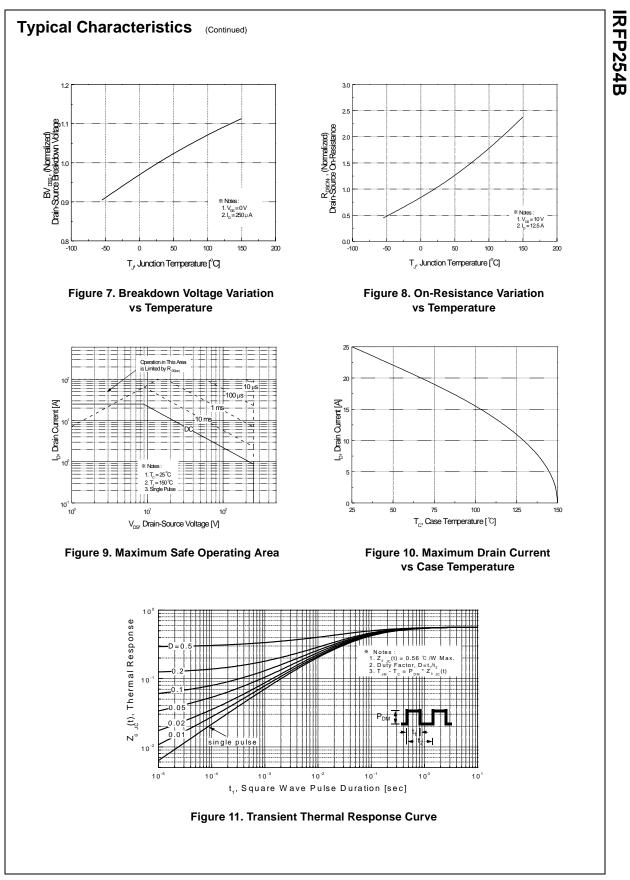
Features

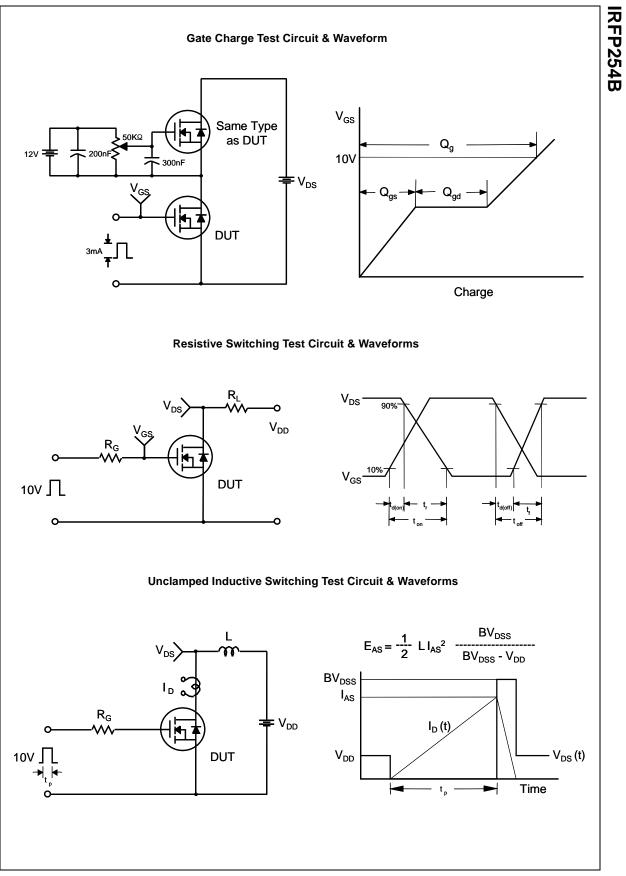
- 25A, 250V, $R_{DS(on)} = 0.14\Omega @V_{GS} = 10 V$ Low gate charge (typical 95 nC)
- Low Crss (typical 60 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

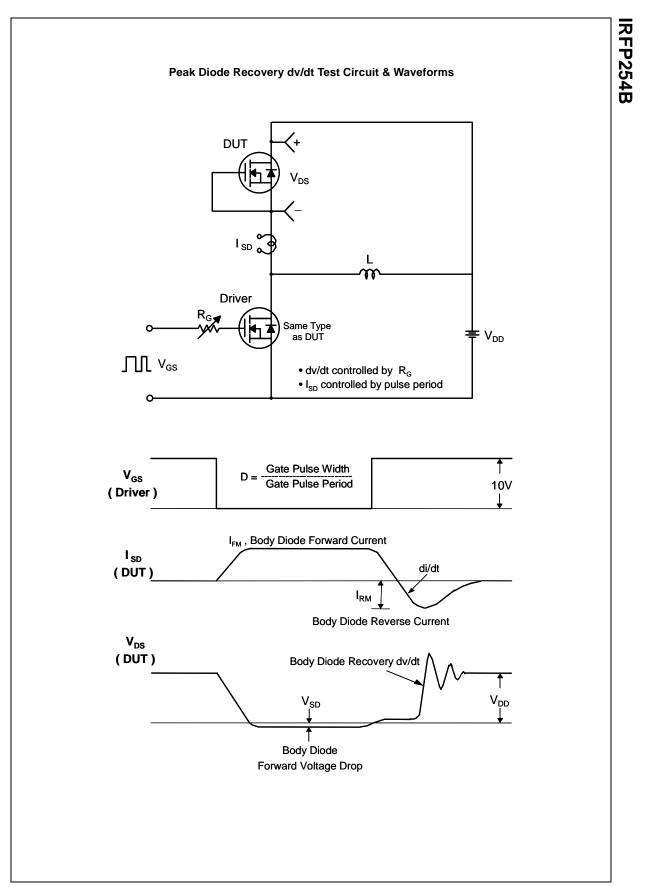
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

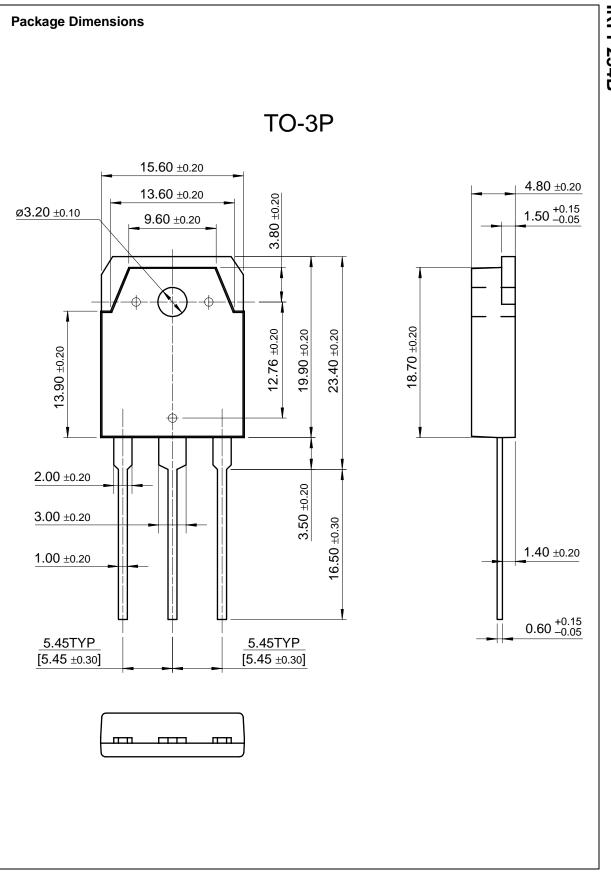
Symbol	Parameter		IRFP254B	Units
V _{DSS}	Drain-Source Voltage		250	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		25	A
	- Continuous (T _C = 100°C)		15.9	A
I _{DM}	Drain Current - Pulsed	(Note 1)	100	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	700	mJ
I _{AR}	Avalanche Current	(Note 1)	25	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	22.1	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)		221	W
	- Derate above 25°C		1.79	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum lead temperature for soldering 1/8" from case for 5 seconds	purposes,	300	°C


Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		0.56	°C/W
R _{0CS} Thermal Resistance, Case-to-Sink		0.24		°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 250 \mu A$	250			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		0.26		V/°C
I _{DSS}	Zana Cata Malta na Duain Commant	$V_{DS} = 250 \text{ V}, V_{GS} = 0 \text{ V}$			10	μA
	Zero Gate Voltage Drain Current	$V_{DS} = 200 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 12.5 A		0.1	0.14	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, I_D = 12.5 \text{ A}$ (Note 4)		25		S
C _{iss} C _{oss}	Input Capacitance Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		2600 290	3400 380	pF pF
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		2600	3400	pF
C _{rss}	Reverse Transfer Capacitance			60	80	pF
Switchi	ing Characteristics			35	80	ns
t _r	Turn-On Rise Time	$V_{DD} = 125 \text{ V}, \text{ I}_{D} = 25 \text{ A},$		195	400	ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 25 \Omega$		300	610	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		180	370	ns
1	Total Gate Charge	V _{DS} = 200 V, I _D = 25 A,		95	123	nC
Q _a						
0	Gate-Source Charge			12		nC
Q _{gs}	Gate-Source Charge	$V_{\rm DS} = 200$ V, $I_{\rm D} = 25$ A, $V_{\rm GS} = 10$ V (Note 4, 5)				nC nC
Q _{gs} Q _{gd}	° °	V _{GS} = 10 V (Note 4, 5)		12		
Q _{gs} Q _{gd} Drain-S	Gate-Source Charge Gate-Drain Charge	V _{GS} = 10 V (Note 4, 5)		12		
Q _{gs} Q _{gd} Drain-S	Gate-Source Charge Gate-Drain Charge	V _{GS} = 10 V (Note 4, 5) nd Maximum Ratings ode Forward Current		12 43		nC
Q _{gs} Q _{gd} Drain-S	Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Dio	V _{GS} = 10 V (Note 4, 5) nd Maximum Ratings ode Forward Current		12 43 	 25	nC A
$\begin{array}{c} Q_{g} \\ \overline{Q_{gs}} \\ \overline{Q_{gd}} \\ \end{array} \\ \hline \textbf{Drain-S} \\ \overline{I_{S}} \\ \overline{I_{SM}} \\ \overline{V_{SD}} \\ \overline{t_{rr}} \\ \end{array}$	Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	V _{GS} = 10 V (Note 4, 5) nd Maximum Ratings ode Forward Current Forward Current		12 43 	 25 100	nC A A


Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 1.8mH, I_{AS} = 25A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 25A, di/dt \leq 300A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature


IRFP254B

IRFP254B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E^2 CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MicroPak[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SLIENT SWITCHER[®] SMART STARTTMVCXTMSTAR*POWERTMStealthTMSuperSOTTM-3SuperSOTTM-6SuperSOTTM-6SyncFETTMTruTranslationTMTinyLogicTMUHCTMUHCTMUltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

BUY

Datasheet

datasheet

PDF

<u>-</u>

Download this

Home >> Find products >>

IRFP254B

250V N-Channel B-FET / Substitute of IRFP254 & IRFP254A

Contents

 General description Features Product status/pricing/packaging

Qualification Support

•Order Samples

General description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters and switch mode power supplies.

back to top

Features

• 25A, 250V

 \circ R_{DS(on)} = 0.14 Ω @V_{GS} = 10 V

- Low gate charge (typical 95 nC)
- Low Crss (typical 60 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

BUY

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

This page Print version

e-mail this datasheet

Product	Product status	Pb-free Status	Package type	Leads	Packing method	Package Marking Convention**
IRFP254B_FP001	Not recommended for new designs	Ø	<u>TO-3P</u>	3	RAIL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 4 (4-Digit Date Code) Line 2: IRFP Line 3: 254B

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product IRFP254B is available. Click here for more information.

back to top

Qualification Support

Click on a product for detailed qualification data

Product				
IRFP254B_FP001				

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (