Datasheet

PART NUMBER

55463BPA-ROCS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

55461, 55463

Microcircuits, Monolithic Silicon Interface, Dual Peripheral Drivers

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

INCH-POUND
MIL-M-38510/129B
06 December 2004
SUPERSEDING
MIL-M-38510/129A
06 December 1985

MIL-M-38510/129B
06 December 2004
MIL-M-38510/129A
06 December 1985

MILITARY SPECIFICATION
 MICROCIRCUITS, MONOLITHIC SILICON INTERFACE, DUAL PERIPHERAL DRIVERS

Reactivated after 06 December 2004 and may be used for either new or existing design acquisition.
This specification is approved for use by all Departments and Agencies of the Department of Defense.
The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF-38535.

1. SCOPE
1.1 Scope. This specification covers the detail requirements for bipolar, monolithic silicon, dual peripheral drivers. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number. For this product, the requirements of MIL-M- 38510 have been superseded by MIL-PRF38535, (see 6.3)
1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device types. The device types are as follows:

Device types	Circuit
01	Dual NAND/AND gate and transistor (separate), high speed switching
02	Dual AND gate and transistor (connected), high speed switching
03	Dual NAND gate and transistor (connected), high speed switching
04	Dual OR gate and transistor (connected), high speed switching Dual NOR gate and transistor (connected), high speed switching High voltage dual NAND/AND gate and transistor (separate), medium speed switching
06	High voltage dual AND gate and transistor (connected), medium speed switching High voltage dual NAND gate and transistor (connected), medium speed switching
08	High voltage dual OR gate and transistor (connected), medium speed switching High voltage dual NOR gate and transistor (connected), medium speed switching

1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outline. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
C	GDIP1-T14 or CDIP2-T14	14	Dual in line
P	GDIP1-T8 or CDIP2-T8	8	Dual in line

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43218-3990, or email LInear@dscc.dla.mili. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database a http://assist.daps.dla.mil.
1.3 Absolute maximum ratings.
Supply voltage (V_{Cc}) 7 V dc
Input voltage (VIN) 5.5 V dc
Interemitter voltage (VEM) 5.5 V dc
V_{CC} to substrate voltage ($\mathrm{V}_{\mathrm{CCS}}$):
Device type 01 35 V dc
Device type 06 40 V dc
Collector to substrate voltage (V_{CS}):
Device type 01 35 V dc
Device type 06 40 V dc
Collector to base voltage (V_{EB}):
Device type 01 35 V dc
Device type 06 40 V dc
Collector to emitter voltage ($\mathrm{V}_{\mathrm{CER}}$):
Device type 01 30 V dc
Device type 06 40 V dc
Collector to emitter voltage ($\mathrm{V}_{\text {CEO }}$): Device type 06 25 V dc
Emitter to base voltage (V_{BE}): Device types 01 and 06 5 V dc
Offstate output voltage (V_{OO}): Device types 02 through 05 30 V dc
Device types 07 through 10 35 V dc
Continuous collector current (ICC): Device types 01 and 06 300 mA
Continuous output current (loc):
Device types 02 through 05 and 07 through 10 300 mA 1/
Peak collector current (ICP):
Device types 01 and 06 500 mA
Peak output current (lop): Device types 02 through 05 and 07 through 10 500 mA
Continuous total dissipation at $25^{\circ} \mathrm{C}$ ambient:
Device types 01 and 06 1375 mW
Device types 02 through 05 and 07 through 10 1050 mW
Ambient operating temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction temperature (TJ_{J}) $+150^{\circ} \mathrm{C}$
Lead temperature $1 / 16$ inch from case, (soldering, 60 seconds) $300^{\circ} \mathrm{C}$
1.4 Recommended operating conditions.
Supply voltage range +4.5 V to +5.5 V 2/
Ambient operating temperature range (T_{A}) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1/ Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous power dissipation ratings.
2/ For device types 01 and 06 only, the substrate (pin 8) must always be at the most negative device voltage for proper operation.
1.5 Power and thermal characteristics.

Package	Case outline	Maximum allowable power dissipation	Maximum θ_{JC}	Maximum θ_{JA}
14 lead dual in line	C	275 mW at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C} / \mathrm{W}$	$91^{\circ} \mathrm{C} / \mathrm{W}$
8 lead dual in line	P	210 mW at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C} / \mathrm{W}$	$119^{\circ} \mathrm{C} / \mathrm{W}$

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3,4 , or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications, standards, and handbooks. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS
MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.
(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein the text of this document shall takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Logic diagrams and terminal connections. The logic diagrams and terminal connections shall be as specified on figure 1.
3.3.2 Truth tables. The truth tables shall be as specified on figure 2.
3.3.3 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
3.3.5 Package and sealing material. Package and sealing material shall be in accordance with MIL-PRF-38535.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended ambient operating temperature range, unless otherwise specified.
3.6 Electrical test requirements. Electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 53 (see MIL-PRF-38535, appendix A).

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Input clamp voltage	VIC	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$	All		-1.5	V
High level input currents into A or B	IIH1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	All		40	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IH} 2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1	mA
High level input current into G	$\mathrm{I}_{\mathbf{H} 3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	01,06		80	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IH} 4}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			2	mA
Low level input currents into A or B	IIL1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ or 5.5 V	All		-1.6	mA
Low level input current into G	IIL2	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ or 5.5 V	01,06		-3.2	mA
High level supply current	ICCH1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	01,06		4	mA
	ICCH2	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	$\begin{aligned} & \hline 02,04, \\ & 07,09 \\ & \hline \end{aligned}$		11	
	ICCH3	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	05,08		17	
	ICCH4	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	03		14	
	ICCH5	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	10		10	
Low level supply current	ICCL1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	01,06		11	mA
	ICCL2	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	02		65	
	ICCL3	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	04		63	
	ICCL4	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	03		71	
	ICCL5	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	07,09		76	
	ICCL6	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	08		76	
	ICCL7	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$	05		79	
	ICCL8	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	10		85	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Low level output voltage	VOL1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 4.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} \end{aligned}$	02, 07		0.5	V
	VoL2	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{IOL}=100 \mathrm{~mA}$	03, 08		0.5	
	Vol3	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{IOL}=100 \mathrm{~mA}$	04, 09		0.5	
	VOL4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V} \text { or } 0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} \end{aligned}$	05, 10		0.5	
	Vol5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OL}}=300 \mathrm{~mA} \end{aligned}$	02, 07		0.8	
	VOL6	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{IOL}=300 \mathrm{~mA}$	03, 08		0.8	
	VoL7	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{IOL}=300 \mathrm{~mA}$	04, 09		0.8	
	VoL8	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V} \text { or } 0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA} \end{aligned}$	05, 10		0.8	
Low level output voltage, TTL gate	VOL9	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$	01, 06		0.5	V
High level output current	IOH1	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}$	02,07		300	$\mu \mathrm{A}$
	IOH 2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	03,08		300	
	IOH3	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V} \text { or } 0 \mathrm{~V} \\ & \hline \end{aligned}$	04,09		300	
	IOH 4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$	05,10		300	
High level output voltage, TTL gate	VOH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=-400 \mu \mathrm{~A} \end{aligned}$	01,06	2.4		V
Short circuit output current, TTL gate	Ios1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	01,06		-55	mA
	IOS2	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-18		
Collector base breakdown voltage	VCB01	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	01	35		V
	VCB02	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	06	40		
Collector emitter breakdown voltage	VCER1	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$	01	35		V
	VCER2	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$	06	40		

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Collector emitter breakdown voltage	VCE01	$\mathrm{IC}=10 \mathrm{~mA}$	06	25		V
Emitter base breakdown voltage	Vebo	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0$	01,06	5		V
Static forward current transfer ratio	$h_{\text {FE1 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I} \mathrm{C}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=4 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C} \end{aligned}$	01,06	25		
	$h_{\text {FE2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C} \end{aligned}$		30		
	$h_{\text {FE3 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I} \mathrm{C}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=4 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		10		
	$h_{\text {FE4 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		15		
Base emitter voltage	VBE1	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{C}=100 \mathrm{~mA}$	01,06		1.2	V
	$V_{B E 2}$	$\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			1.4	
Collector emitter saturation voltage	VCESAT1	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	01,06		0.5	V
	VCESAT2	$\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			0.8	
Delay time	tD	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01,06		15	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			22.5	
Rise time	t_{R}	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01,06		20	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			30	
Storage time	ts	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	01		15	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			22.5	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Storage time	ts	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	06		23	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			34.5	
Fall time	t_{F}	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01,06		15	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			22.5	
Propagation delay time (low to high level output) TTL gate	tPLH1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01,06		30	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			45	
Propagation delay time (low to high level output)	tPLH2	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01		30	ns
		$\begin{aligned} & \mathrm{IC}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			45	
	tPLH3	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	06		65	
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			90	
Propagation delay time (high to low level output) TTL gate	tPHL1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01,06		15	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			22.5	
Propagation delay time (high to low level output)	tPHL2	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01		30	ns
		$\begin{aligned} & \mathrm{I} \mathrm{C}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			45	
	tPHL3	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01		50	
		$\begin{aligned} & \mathrm{IC}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			75	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Transition time (low to high level output)	tTLH1	$\begin{aligned} & \mathrm{IC}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01		15	ns
		$\begin{aligned} & \mathrm{I} \mathrm{C}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			22.5	
	${ }_{\text {t }}^{\text {TLH2 }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	06		20	
		$\begin{aligned} & \mathrm{IC}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			30	
Transition time (high to low level output)	${ }^{\text {t }}$ HL1	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	01		15	ns
		$\begin{aligned} & \mathrm{I} \mathrm{C}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			22.5	
	${ }^{\text {t }}$ HL2	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	06		20	
		$\begin{aligned} & \mathrm{IC}=200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			30	
Propagation delay time (low to high level output)	tPLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	02,04		30	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			45	
	tPLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	03		35	
			05		45	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	03		55	
			05		75	
	tPLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	07,09		55	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	07		65	
			09		70	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Propagation delay time (low to high level output)	tPLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	08,10		65	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	08		95	
			10		90	
Propagation delay time (high to low level output)	tPHL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	02,04		30	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IO}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			45	
	${ }_{\text {tPHL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	03,05		35	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			55	
	tPHL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	07,09		40	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			60	
	tPHL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	08,10		50	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			75	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device type	Limits		Units
				Min	Max	
Transition time (low to high level output)	${ }^{\text {t }}$ LLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 02,03, \\ & 04,05 \end{aligned}$		14	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			18.5	
	t'Lu	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	07,10		20	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			26.5	
	${ }^{\text {t }}$ LLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	08,09		25	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			33.5	
Transition time (high to low level output)	${ }_{\text {t }}$ HL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 02,03, \\ & 04,05 \end{aligned}$		20	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			25	
	${ }^{\text {t }}$ HL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	07,08,10		20	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	07,10		25	
			08		35	
	${ }_{\text {t }}$ HL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l} \mathrm{O}=200 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	09		25	

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters	$1^{*}, 2,3,9$	$1^{\star}, 2,3,9$
Group A test requirements	$1,2,3,9$, 10,11	$1,2,3,9$, 10,11
Group B electrical test parameters when using the method 5005 QCI option	$1,2,3$, and table IV delta limits	N/A
Group C end-point electrical parameters	$1,2,3$, and table IV delta limits	1 and table IV delta limits
Group D end-point electrical parameters	$1,2,3$	1

*PDA applies to subgroup 1.

4. VERIFICATION.

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.

Figure 1. Logic diagrams and terminal connections.

Device types

O1,06			
A	G	Y	Y^{\prime}
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Y is output at the gate.
Y^{\prime} is output at the transistor with the gate connected to the base of the transistor.

Device types02,07			OUTPUT ON
A	B	Y	
0	0	0	
0	1	0	ON
1	0	0	ON
1	1	1	OFF

Device types
03, 08

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

OUTPUT
OFF
OFF
OFF ON

$\begin{gathered} \text { Device types } \\ 04,09 \end{gathered}$		
A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

OUTPUT
ON
OFF
OFF
OFF

Device types05,10		
A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

OUTPUT
OFF
ON
ON
ON

Figure 2. Truth tables.

NOTES:

1. The output offset voltage shall be adjusted to zero volts with the device under test (DUT) removed. The operational amplifier stabilization networks may vary with test adapter construction. Alternative drive circuits for the 2N6295 may be used to develop the proper forcing currents and input voltage pulses. These circuits shall require the approval of the qualifying activity.
2. Relay switch positions are defined in table III.
3. Resistors R5, R6, R14 shall have a tolerance $\leq 0.1 \%$ for device types 01, 06.
4. Reference figure 4 for input and output waveforms for device types $01,06$.

FIGURE 3. Test circuit for static tests, device types 01 and 06.

NOTES:

1. The pulse generator shall have the following characteristics:

$$
\mathrm{PRR}=1 \mathrm{kHz}, \mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}, \mathrm{Z}_{\mathrm{out}} \cong 50 \Omega, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}
$$

2. All V_{O} measurements are referenced to 0 V GND.
3. Use figures $4 a$ and $4 b$ for tests $23-26$ and figures $4 a, 4 c$, and $4 d$ for tests $27-34$.

FIGURE 4. $h_{F E}, V_{B E}, V_{C E}($ sat $)$ waveforms for table III, device types 01 and 06.

Figure 5. Test circuit for static tests, device types 02 through 05 and 07 through 10.

NOTES:

1. The pulse generator shall have the following characteristics: $\operatorname{PRR}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}, \mathrm{Z}_{\text {out }} \cong 50 \Omega$.
2. $R 1=6.04 \mathrm{k} \Omega \pm 1$ percent, $1 / 8$ watt.
3. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \pm 5 \mathrm{pF}$ (including probe and parasitic capacitance).
4. Select $R 2$ for a current flow of $16 \mathrm{~mA} \pm 1 \%$ out of Point B with Point L held at 0.5 volts.
5. $\mathrm{CR} 1=1 \mathrm{~N} 4150$ or equivalent.
6. $\mathrm{R} 1=51 \Omega \pm 5 \%$ carbon.

Figure 6. Propagation delay time waveforms (TTL gates only), for device types 01 and 06.

NOTES:

1. The pulse generator shall have the following characteristics: $\mathrm{PRR}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}, \mathrm{Z}_{\text {out }} \cong 50 \Omega$.
2. When testing device 01 or 06 , connect output Y to transistor base and ground the substrate terminal.
3. $\mathrm{R}_{\mathrm{L}}=47 \Omega \pm 5 \%$ carbon.
4. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ minimum, including probe and jig capacitance.
5. $R 1=51 \Omega \pm 5 \%$ carbon.

FIGURE 7. Switching time waveforms (TTL gates and transistors combined) for device types 01 and 06.

NOTES:

1. The pulse generator shall have the following characteristics: $\operatorname{PRR}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{p}}=0.3 \mu \mathrm{~s}, \mathrm{Z}_{\mathrm{out}} \cong 50 \Omega$.
2. $C_{L}=100 \mathrm{pF}$ minimum, including probe and jig capacitance.
3. $\mathrm{R} 1=62 \Omega \pm 5 \%$ carbon.
4. $R 2=1 \mathrm{k} \Omega \pm 5 \%$ carbon.
5. $\mathrm{C} 1=0.1 \mu \mathrm{~F} \pm 5 \%$.
6. $\mathrm{R}_{\mathrm{L}}=47 \Omega \pm 5 \%$ carbon.
7. $R 3=51 \Omega \pm 5 \%$ carbon.
8. All voltages have a tolerance of $\pm 1 \%$ of nominal.

FIGURE 8. Switching times (transistors only) for device types 01 and 06.

NOTES:

1. Pulse generator shall have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{out}} \cong 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$.
2. $\mathrm{R} 1=51 \Omega \pm 5 \%$.
3. $\mathrm{R}_{\mathrm{L}}=47 \Omega \pm 5 \%$.
4. $C_{L}=100 \mathrm{pF} \pm 10 \%$, including probe and jig capacitance.

FIGURE 9. Switching time waveforms for device types 02 through 05 and 07 through 10.

TABLE III. Group A inspection for device type 01.

Subgroup	Symbol	Test no.	1	2 17 12 15 16 4 3 5 8 9 10 11 7 6 $\mathrm{~V}_{S 2}$ $\mathrm{~V}_{S 3}$ 1 B 1 C 1 E 2 B 2 E 2 C V_{Cc} G 1 A 1 Y 2 A 2 Y														Relays ener- gized	Measured terminal			Equations	Note	Test limits		Unit
			V ${ }_{\text {S }}$															No.	Value	Unit	Min			Max		
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$																							See		-1.5	V
																							figure 3		-1.5	V
																							for test		-1.5	V
																							circuit		40	$\mu \mathrm{A}$
																							"		40	$\mu \mathrm{A}$
																							"		1	mA
																							"		1	mA
																							"		80	$\mu \mathrm{A}$
																							"		2	mA
																							"		-1.6	mA
																							"		-1.6	"
																							"		-3.2	"
																							"		4	"
																							"		11	"
																							"		0.5	V
																							"		0.5	
																							"	2.4		"
																							"	2.4		"
																							"		-55	mA
																							"		-55	mA
																							"	-18		"
																							"	-18		"
																							See figures 3 and 4	25		
																							for test	25		
																							circuit	30		
																							and waveforms	30		
																							"		1.2	V
																							"		1.2	V

TABLE III. Group A inspection for device type 01 - Continued.

TABLE III. Group A inspection for device type 01 - Continued.

TABLE III. Group A inspection for device type 01 - Continued.

TABLE III. Group A inspection for device type 01 - Continued.

Subgroup	Symbol	Test no.	1	2	17	12	15	16	4	3	5	8	9	10	11	7	6	Relays energized	Measured terminal			Equations	Note	Test limits		Unit
			V ${ }_{\text {S }}$	$\mathrm{V}_{\text {S2 }}$	$\mathrm{V}_{\mathrm{S} 3}$	1B	1 C	1E	2B	2E	2C	VCC	G	1A	1Y	2A	$2 Y$		No.	Value	Unit			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$		109																					See figures 3 and 4		1.4	V
	$\mathrm{V}_{\mathrm{BE} 2}$	110																					for test		1.4	V
	VCESAT 1	111																					circuit		0.5	"
	$\mathrm{V}_{\mathrm{CESAT}}$ 1	112																					and waveforms		0.5	"
	$\begin{gathered} \mathrm{V}_{\mathrm{CESAT}} \\ 2 \end{gathered}$	113																					"		0.8	"
	$\begin{gathered} \mathrm{V}_{\text {CESAT }} \\ 2 \\ \hline \end{gathered}$																						"		0.8	"
	$\mathrm{V}_{\text {СВ01 }}$																						See figure 3 for test	35		"
	$\mathrm{V}_{\text {cb01 }}$	116																						35		"
	$V_{\text {CER1 }}$	117																					"	35		"
	$V_{\text {CER1 }}$	118																					"	35		"
																							"	5		"
	Vebo	120																					"	5		"

TABLE III. Group A inspection for device type 01 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Notes	Measured terminal	Test limits		Unit
			G	1A	1 Y	1B	1 C	1E	GND	Sub	2E	2C	2B	2 Y	2A	VCC			Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tD tD ts ts t_{R} t_{R} t_{F} t_{F}	$\begin{aligned} & 121 \\ & 122 \\ & 123 \\ & 124 \\ & 125 \\ & 126 \\ & 127 \\ & 128 \end{aligned}$				A A A A	B B B B	GND GND GND GND		GND	GND GND GND GND	B B B B	A A A A				See figure 8 for test circuit and waveforms !	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		$\begin{gathered} 15 \\ " \\ " \\ " \\ 20 \\ 20 \\ 15 \\ 15 \end{gathered}$	ns
	tPLH1	$\begin{aligned} & 129 \\ & 130 \\ & 131 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	OUT									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	See figure 6 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		30 " "	
	tPHL1 " " "	$\begin{aligned} & 133 \\ & 134 \\ & 135 \\ & 136 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	OUT OUT									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { "، } \\ \text { "。 } \end{gathered}$	"	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		15 " " "	"
	tPLH2	$\begin{aligned} & 137 \\ & 138 \\ & 139 \\ & 140 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { Connect } \\ \text { to } 1 \mathrm{~B} \\ \text { Connect } \\ \text { to } 1 \mathrm{~B} \end{gathered}$		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$		Connect to 2B Connect to 2B	IN 3 V	$4.5 \mathrm{~V}$	See figure 7 for test circuit and waveforms	2 to 5 1 to 5 13 to 10 1 to 10		30	"
	tpHL2	$\begin{aligned} & 141 \\ & 142 \\ & 143 \\ & 144 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	```Connect to 1B Connect to 1B```		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					OUT		Connect to 2B Connect to 2B		$4.5 \mathrm{~V}$	"	2 to 5 1 to 5 13 to 10 1 to 10		30	
		$\begin{aligned} & 145 \\ & 146 \\ & 147 \\ & 148 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	IN IN	Connect to 1 B Connect to 1 B		OUT OUT					OUT OUT		Connect to 2 BConnectto 2 B	IN IN	"	"	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		15 " ،	"

TABLE III. Group A inspection for device type 01 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Notes	Measured terminal	Test limits		Unit
			G	1A	1Y	1B	1C	1E	GND	Sub	2E	2C	2B	2 Y	2A	V_{Cc}			Min	Max	
	tD tD ts ts t_{R} t_{R} t_{F} t_{F}	$\begin{array}{\|l} \hline 149 \\ 150 \\ 151 \\ 152 \\ 153 \\ 154 \\ 155 \\ 156 \end{array}$				A A A A	B B B B	GND GND GND GND		GND	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \text { GND } \\ & \text { GND } \end{aligned}$	B B B B	A A A A				See figure 8 for test circuit and waveforms	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		$\begin{gathered} \hline 22.5 \\ " \\ " \\ " \\ 30 \\ 30 \\ 22.5 \\ 22.5 \end{gathered}$	ns
	tPLH1	$\begin{aligned} & 157 \\ & 158 \\ & 159 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { "" } \\ \text { " } \end{gathered}$	See figure 6 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		45 " "	
	$\begin{gathered} \text { tPHL1 } \\ \text { " } \\ \text { " } \end{gathered}$	$\begin{aligned} & 161 \\ & 162 \\ & 163 \\ & 164 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$									OUT OUT	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	4.5 V " " "	"	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		22.5 $"$ " "	
	tPLH2	$\begin{aligned} & 165 \\ & 166 \\ & 167 \\ & 168 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left.\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned} \right\rvert\,$		Connect to 2B Connect to 2B	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	See figure 7 for test circuit and waveforms	2 to 5 1 to 5 13 to 10 1 to 10		45	" ${ }^{\text {" }}$
	tpHL2	$\begin{array}{\|c} 169 \\ 170 \\ 171 \\ 172 \end{array}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$		Connect to 2B Connect to 2B		$4.5 \mathrm{~V}$	"	2 to 5 1 to 5 13 to 10 1 to 10			"
	$\begin{aligned} & \text { tTLH1 } \\ & \text { tTLH1 } \\ & \text { tTHL1 } \\ & \text { tTHL1 } \end{aligned}$	$\begin{array}{\|c\|} \hline 173 \\ 174 \\ 175 \\ 176 \end{array}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	IN IN	Connect to 1 B Connect to 1 B		OUT OUT					OUT OUT		Connect to 2 B Connect to 2 B	IN IN	"	"	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		22.5	"

TABLE III. Group A inspection for device type 01 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Notes	Measured terminal	Test limits		Unit
			G	1A	1Y	1B	1C	1E	GND	Sub	2E	2 C	2B	2 Y	2A	V Cc			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$		$\begin{array}{\|l\|} \hline 177 \\ 178 \\ 179 \\ 180 \\ 181 \\ 182 \\ 183 \\ 184 \\ \hline \end{array}$				A A A A	B B B B	GND GND GND GND		GND	GND GND GND GND	B B B B	A A A A				See figure 8 for test circuit and waveforms !	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ \hline 10 \\ 5 \\ 10 \\ \hline \end{gathered}$		$\begin{gathered} \hline 22.5 \\ \text { " } \\ \text { " } \\ \text { " } \\ 30 \\ 30 \\ 22.5 \\ 22.5 \\ \hline \end{gathered}$	
	tpLH1	$\begin{aligned} & 185 \\ & 186 \\ & 187 \\ & 188 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { OUT } \\ & \text { OUT } \end{aligned}$									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \\ \hline \end{gathered}$	$4.5 \mathrm{~V}$	See figure 6 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		45 " " "	
	tpHL1	$\begin{array}{\|l\|} \hline 189 \\ 190 \\ 191 \\ 192 \\ \hline \end{array}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$		$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \end{gathered}$		22.5 $"$ $"$ "	
	tPLH2	$\begin{aligned} & 193 \\ & 194 \\ & 195 \\ & 196 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left\|\begin{array}{l} \text { OUT } \\ \text { OUT } \end{array}\right\|$		Connect to 2B Connect to 2B	$\begin{aligned} & \mathrm{IN} \\ & 3 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	See figure 7 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 5 \\ 1 \text { to } 5 \\ 13 \text { to } 10 \\ 1 \text { to } 10 \end{gathered}$		45	" ${ }^{\text {" }}$
	tpHL2	$\begin{aligned} & 197 \\ & 198 \\ & 199 \\ & 200 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	IN 3 V	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left\|\begin{array}{l} \text { OUT } \\ \text { OUT } \end{array}\right\|$		Connect to 2B Connect to 2B		$4.5 \mathrm{~V}$	"	2 to 5 1 to 5 13 to 10 1 to 10			"
	$\begin{aligned} & \text { tTLH1 } \\ & \text { tTLH1 } \\ & \text { tTHL1 } \\ & \text { tTHL1 } \end{aligned}$	$\begin{aligned} & 201 \\ & 202 \\ & 203 \\ & 204 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	IN IN	Connect to 1 B Connect to 1 B		OUT OUT					OUT		Connect to 2B Connect to 2B	IN IN	"	"	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		22.5	"

TABLE III. Group A inspection for device type 02.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$V_{l C}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	9 10 11 12	5.5 V	GND		"				"	" ${ }^{\prime}$	1 to 4 2 to 4 6 to 4 7 to 4			mA
			GND	5.5 V		"				"					
						"		5.5 V	GND	"					
						"		GND	5.5 V	"					
	ILLI	13 14 15 16	0.4 V	5.5 V		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \mathrm{I} \mathrm{CH} 2 \\ & \mathrm{I} \mathrm{CCL} 2 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	
			GND	GND		"		GND	GND	"				65	
	Vol1 Vol1	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	$\begin{aligned} & \text { VoL5 } \\ & \text { VOL5 } \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \mathrm{lOH} 1 \\ & \mathrm{IOH} 1 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	2 V	2 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	2 V	"				300	

TABLE III. Group A inspection for device type 02 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILI	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	5.5 V		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \mathrm{I}_{\mathrm{CCH}} 2 \\ & \mathrm{I}_{\mathrm{CCL} 2} \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				65	
	Vol1 VoL1	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol5 Vol5	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 1 \\ & \mathrm{IOH} 1 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	2 V	2 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	2 V	"				300	

TABLE III. Group A inspection for device type 02 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V Cc			Min	Max	
3$\mathrm{T}_{\mathrm{A}}=$$-55^{\circ} \mathrm{C}$	VIC	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		-1.5	V
			4.5 V	-12mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & \hline 53 \\ & 54 \\ & 55 \\ & 56 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	5.5 V		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \mathrm{I}_{\mathrm{CCL}} \end{aligned}$	$\begin{array}{r} 65 \\ 66 \\ \hline \end{array}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$		11	
			GND	GND		"		GND	GND	"				65	
	Vol1 VoL1	$\begin{array}{r} 67 \\ 68 \\ \hline \end{array}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	$\begin{aligned} & \text { VoL5 } \\ & \text { VoL5 } \end{aligned}$	$\begin{aligned} & 69 \\ & 70 \\ & \hline \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	3 to 4 5 to 4		0.8	
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 1 \\ & \mathrm{IOH} 1 \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	2 V	2 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	${ }^{\mu \mathrm{A}}$
						"	30 V	2 V	2 V	"				300	

TABLE III. Group A inspection for device type 02 - Continued.

TABLE III. Group A inspection for device type 02 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{gathered} 97 \\ 98 \\ 99 \\ 100 \end{gathered}$	IN	3 V	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		45	ns
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	3 V	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		"	
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	${ }^{\text {t }}$ LH ttin ${ }^{\text {t }} \mathrm{HL}$ $\mathrm{t}_{\mathrm{T} H \mathrm{~L}}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		18.5	"
						"	OUT	IN	IN	"		5		18.5	"
			IN	IN	OUT	"				"		3		25	"
						"	OUT	IN	IN	"		5		25	"

TABLE III. Group A inspection for device type 03.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	2 Y	2A	2B	VCc			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	IIH_{1}	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	5.5 V	GND		"				"		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	0.4 V	5.5 V		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH4 } \\ & \text { ICCL4 } \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	GND	GND		"		GND	GND	"		$\begin{aligned} & 8 \\ & 8 \end{aligned}$		14	
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				71	
	VOL2 VOL2	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	$\begin{aligned} & \text { VOL6 } \\ & \text { VoL6 } \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 2 \\ & \mathrm{IOH} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	0.8 V	4.5 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	4.5 V	"				300	

TABLE III. Group A inspection for device type 03 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	$2 Y$	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILLI	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	5.5 V		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \mathrm{ICCH} 4 \\ & \text { ICCL4 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		14	
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				71	
	Vol2 Vol2	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol6 Vol6	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 2 \\ & \mathrm{IOH} 2 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	0.8 V	4.5 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	¢ ${ }^{\text {A }}$
						"	30 V	0.8 V	4.5 V	"				300	

TABLE III. Group A inspection for device type 03 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2A	2B	Vcc			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	VIC	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\begin{gathered} \mathrm{I}_{\mathrm{H} 1} \\ \text { " } \\ \text { " } \\ \hline \end{gathered}$	53 54 55 56	2.4 V	GND		"				5.5 V		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	5.5 V		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \mathrm{I} \mathrm{CCH} 4 \\ & \mathrm{I} \mathrm{CCL} 4 \end{aligned}$	65	GND	GND		"		GND	GND	"	"	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$		14	
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				71	
	Vol2 Vol2	$\begin{aligned} & 67 \\ & 68 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	$\begin{aligned} & \hline \text { VOL6 } \\ & \text { VoL6 } \end{aligned}$	69	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 2 \\ & \mathrm{IOH}_{2} \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	0.8 V	4.5 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	4.5 V	"				300	

TABLE III. Group A inspection for device type 03 - Continued.

TABLE III. Group A inspection for device type 03 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{gathered} 97 \\ 98 \\ 99 \\ 100 \end{gathered}$	IN	3 V	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		55	ns
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	3 V	OUT	"				4.5 V		1 to 3 2 to 3 6 to 5 7 to 5		"	
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tтLH ttin ${ }^{\text {t }}$ THL ${ }^{\text {t }} \mathrm{H} \mathrm{HL}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		18.5	"
						"	OUT	IN	IN	"		5		18.5	"
			IN	IN	OUT	"				"		3		25	"
						"	OUT	IN	IN	"		5		25	"

TABLE III. Group A inspection for device type 04.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	VIC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{H} 2}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	$\mathrm{I}_{\mathrm{LL} 1}$	13 14 15 16	0.4 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	$\begin{gathered} \text { mA } \\ \text { " } \\ \text { " } \\ \text { " } \end{gathered}$
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \text { ICCL3 } \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$		11	
			GND	GND		"		GND	GND	"				68	
	Vol3 Vol3	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol7 Vol7	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \text { ІОН3 } \\ & \mathrm{I}_{\mathrm{OH} 3} \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	2 V	GND	30 V	"				"	"	3		300	$\mu \mathrm{A}$
						"	30 V	2 V	GND	"	"	5		300	

TABLE III. Group A inspection for device type 04 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	2 Y	2A	2B	Vcc			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	VIC	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	5.5 V	GND		"				"	" ${ }^{\prime}$	1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILLI	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	GND		"				"	" ${ }^{\text {" }}$	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \text { ICCL3 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				65	
	Vol3 Vol3	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol7 Vol7	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"		$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \text { ІОН3 } \\ & \text { ІОН3 } \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	2 V	GND	30 V	"				"	"	35		300	${ }^{\mu \mathrm{A}}$
						"	30 V	2 V	GND	"				300	

TABLE III. Group A inspection for device type 04 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	V_{IC}	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 53 \\ & 54 \\ & 55 \\ & 56 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \mathrm{I}_{\mathrm{CCL}} \end{aligned}$	$\begin{aligned} & 65 \\ & 66 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				65	
	Vol3 Vol3	$\begin{aligned} & 67 \\ & 68 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	$\begin{aligned} & \text { VOL7 } \\ & \text { VOL7 } \end{aligned}$	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	IOH_{3} ${ }^{\mathrm{IOH} 3}$	7172	2 V	GND	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	GND	"				300	

TABLE III. Group A inspection for device type 04 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2A	2B	VCc			Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{t}_{\mathrm{PLH}}$	$\begin{aligned} & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		30	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	IN	GND	OUT	"				4.5 V		1 to 3 2 to 3 6 to 5 7 to 5		30	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TL} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	81 82 83 84	IN	IN	OUT	"				"		$\begin{aligned} & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$		14	
						"	OUT	IN	IN	"				14	
			IN	IN	OUT	"				"				20	
						"	OUT	IN	IN	"				20	
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	tpLH	85 86 87 88	IN	GND	OUT	GND				4.5 V	"	$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		45	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\mathrm{t}_{\mathrm{PHL}}$	$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	IN	GND	OUT	"				4.5 V	"	1 to 3 2 to 3 6 to 5 7 to 5		45	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & 93 \\ & 94 \\ & 95 \\ & 96 \end{aligned}$	IN	IN	OUT	"				"	"	3 5 3 5		18.5	
						"	OUT	IN	IN	"				18.5	
			IN	IN	OUT	"				"				25	
						"	OUT	IN	IN	"				25	

TABLE III. Group A inspection for device type 04 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	2 Y	2 A	2B	V_{CC}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{gathered} 97 \\ 98 \\ 99 \\ 100 \end{gathered}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		45	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	GND	OUT	"				4.5 V		1 to 3 2 to 3 6 to 5 7 to 5		"	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\begin{gathered} \mathrm{t}_{\text {TLH }} \\ \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ \mathrm{t}_{\mathrm{T} H \mathrm{H}} \\ \mathrm{t}_{\text {THL }} \end{gathered}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		18.5	"
						"	OUT	IN	IN	"		5		18.5	"
			IN	IN	OUT	"				"		3		25	"
						"	OUT	IN	IN	"		5		25	"

TABLE III. Group A inspection for device type 05.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	VIC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	5.5 V	GND		"				"		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	13 14 15 16	0.4 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \mathrm{I} \mathrm{CCH} 3 \\ & \mathrm{I} \mathrm{CCL} 7 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \\ & \hline \end{aligned}$	GND	GND		"		GND	GND	"		$\begin{aligned} & 8 \\ & 8 \end{aligned}$		17	
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				79	
	VOL4 VoL4	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	$\begin{aligned} & \text { VOL8 } \\ & \text { VoL8 } \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 4 \\ & \mathrm{IOH} 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	0.8 V	0.8 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	0.8 V	"				300	

TABLE III. Group A inspection for device type 05 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	$1 Y$	GND	$2 Y$	2A	2B	VCC			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{l C}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	33 34 35 36	5.5 V	GND		"				"		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	GND		"				"		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ІССН3 } \\ & \text { ICCL7 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		17	"
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				79	
	Vol4 Vol4	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol8 Vol8	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 4 \\ & \mathrm{IOH} 4 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	0.8 V	0.8 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	0.8 V	"				300	

TABLE III. Group A inspection for device type 05 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2A	2B	Vcc			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	IIH_{1}	53 54 55 56	2.4 V	GND		"				5.5 V		$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH3 } \\ & \text { ICCL7 } \end{aligned}$	$\begin{aligned} & 65 \\ & 66 \\ & \hline \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		17	"
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				79	
	Vol4 VoL4	$\begin{aligned} & 67 \\ & 68 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OL} 8} \\ & \mathrm{~V}_{\mathrm{OL} 8} \end{aligned}$	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 4 \\ & \mathrm{IOH} 4 \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	0.8 V	0.8 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	0.8 V	"				300	

TABLE III. Group A inspection for device type 05 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms\square 6	1 to 3 2 to 3 6 to 5 7 to 5		45	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	IN	GND	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		35	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{T} H \mathrm{~L}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	81 82 83 84	IN	IN	OUT	"				"	" ${ }^{\prime \prime}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$		14	"
						"	OUT	IN	IN	"				14	
			IN	IN	OUT	"				"				20	
						"	OUT	IN	IN	"				20	
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	tpLH	85 86 87 88	IN	GND	OUT	GND				4.5 V		1 to 3 2 to 3 6 to 5 7 to 5		75	ns
			GND	IN	OUT	"				"	"			"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	IN	GND	OUT	"				4.5 V	"	1 to 3 2 to 3 6 to 5 7 to 5		55	"
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	${ }^{\text {t }}$ tLH t tilh tTHL $\mathrm{t}_{\mathrm{THL}}$	93 94 95 96	IN	IN	OUT	"				"	"	3 5 3 5		18.5	
						"	OUT	IN	IN	"				18.5	
			IN	IN	OUT	"				"				25	
						"	OUT	IN	IN	"				25	

TABLE III. Group A inspection for device type 05. - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1Y	GND	2 Y	2 A	2B	VCC			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 97 \\ & 98 \\ & 99 \\ & 100 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		75	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	GND	OUT	"				4.5 V		1 to 3 2 to 3 6 to 5 7 to 5		55	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\mathrm{t}_{\mathrm{TL}} \mathrm{H}$ ${ }^{\text {t }}$ LLH t thL ${ }_{\text {t }}{ }^{\text {HL }}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		18.5	"
						"	OUT	IN	IN	"		5		18.5	"
			IN	IN	OUT	"				"		3		25	"
						"	OUT	IN	IN	"		5		25	"

TABLE III. Group A inspection for device type 06.

TABLE III. Group A inspection for device type 06 - Continued.

TABLE III. Group A inspection for device type 06 - Continued.

TABLE III. Group A inspection for device type 06 - Continued.

TABLE III. Group A inspection for device type 06 - Continued.

TABLE III. Group A inspection for device type 06 - Continued.

Subgroup	Symbol	$\begin{array}{\|l} \hline \text { Test } \\ \text { no. } \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Notes	Measured terminal	Test limits		Unit
			G	1A	1Y	1B	1C	1E	GND	Sub	2 E	2C	2B	2Y	2A	VCC			Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tD tD ts ts tR t_{R} t_{F} t_{F}	$\begin{aligned} & 127 \\ & 128 \\ & 129 \\ & 130 \\ & 131 \\ & 132 \\ & 133 \\ & 134 \end{aligned}$				A A A A	B B B B	GND GND GND GND		GND	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \text { GND } \\ & \text { GND } \end{aligned}$	B B B B	A A A A				See figure 8 for test circuit and waveforms	$\begin{gathered} 5 \\ 10 \\ 5 \\ 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		$\begin{aligned} & 15 \\ & 15 \\ & 23 \\ & 23 \\ & 20 \\ & 20 \\ & 15 \\ & 15 \end{aligned}$	ns
	tPLH1 " " "	$\begin{array}{\|l\|} \hline 135 \\ 136 \\ 137 \\ 138 \\ \hline \end{array}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \\ \hline \end{gathered}$	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { " } \\ \text { " } \end{gathered}$	See figure 6 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		30	" ${ }_{\text {" }}$
	tPHL1 " " "	$\begin{array}{\|l} 139 \\ 140 \\ 141 \\ 142 \\ \hline \end{array}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \\ \hline \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { OUT } \\ & \text { OUT } \end{aligned}$									OUT OUT	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	4.5 V " " "	"	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		15 " "	" ${ }_{\text {" }}$
	tPLH3	$\begin{aligned} & 143 \\ & 144 \\ & 145 \\ & 146 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left\|\begin{array}{l} \text { OUT } \\ \text { OUT } \end{array}\right\|$		Connect to 2B Connect to 2B	IN 3 V	$4.5 \mathrm{~V}$	See figure 7 for test circuit and waveforms	2 to 5 1 to 5 13 to 10 1 to 10		65 "	"
	tpHL3	$\begin{aligned} & 147 \\ & 148 \\ & 149 \\ & 150 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left\|\begin{array}{l} \text { OUT } \\ \text { OUT } \end{array}\right\|$		Connect to 2B Connect to 2B	IN 3 V	$4.5 \mathrm{~V}$	"	$\begin{gathered} 2 \text { to } 5 \\ 1 \text { to } 5 \\ 13 \text { to } 10 \\ 1 \text { to } 10 \end{gathered}$		50 " " "	"
		$\begin{aligned} & 151 \\ & 152 \\ & 153 \\ & 154 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	IN IN	Connect to 1 B Connect to 1 B		OUT OUT					$\begin{array}{\|c\|} \text { OUT } \\ \text { OUT } \end{array}$		Connect to 2B Connect to 2B	IN IN	"	"	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		20	"

TABLE III. Group A inspection for device type 06 - Continued.

Subgroup	Symbol	$\begin{array}{\|l} \hline \text { Test } \\ \text { no. } \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Notes	Measured terminal	Test limits		Unit
			G	1A	1Y	1B	1C	1E	GND	Sub	2 E	2C	2B	2Y	2A	VCC			Min	Max	
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	t_{D} tD ts ts tR t_{R} t_{F} t_{F}	$\begin{array}{\|l} \hline 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \end{array}$				A A A A	B B B B	GND GND GND GND		GND	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \text { GND } \\ & \text { GND } \end{aligned}$	B B B B	A A A A				See figure 8 for test circuit and waveforms	$\begin{gathered} 5 \\ 10 \\ 5 \\ 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		$\begin{gathered} \hline 22.5 \\ 22.5 \\ 34.5 \\ 34.5 \\ 30 \\ 30 \\ 22.5 \\ 22.5 \\ \hline \end{gathered}$	ns
	tPLH1 " " "	$\begin{aligned} & 163 \\ & 164 \\ & 165 \\ & 166 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \\ \hline \end{gathered}$	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	See figure 6 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		45 " " "	
	tPHL1 " " "	$\begin{aligned} & 167 \\ & 168 \\ & 169 \\ & 170 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \\ \hline \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { OUT } \\ & \text { OUT } \end{aligned}$									OUT OUT	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	$4.5 \mathrm{~V}$	"	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		22.5 $"$ $"$ "	
	tPLH3	$\begin{gathered} 171 \\ 172 \\ 173 \\ 174 \end{gathered}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left\|\begin{array}{l} \text { OUT } \\ \text { OUT } \end{array}\right\|$		Connect to 2B Connect to 2B	IN 3 V	$4.5 \mathrm{~V}$	See figure 7 for test circuit and waveforms	2 to 5 1 to 5 13 to 10 1 to 10		90	"
	tpHL3	$\begin{gathered} 175 \\ 176 \\ 177 \\ 178 \end{gathered}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\left\|\begin{array}{l} \text { OUT } \\ \text { OUT } \end{array}\right\|$		Connect to 2B Connect to 2B	IN 3 V	$4.5 \mathrm{~V}$	"	$\begin{gathered} 2 \text { to } 5 \\ 1 \text { to } 5 \\ 13 \text { to } 10 \\ 1 \text { to } 10 \end{gathered}$		75 " " "	
		$\begin{aligned} & 179 \\ & 180 \\ & 181 \\ & 182 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	IN IN	Connect to 1 B Connect to 1 B		OUT OUT					$\begin{array}{\|c\|} \text { OUT } \\ \text { OUT } \end{array}$		Connect to 2B Connect to 2B	IN IN	"	"	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		30	"

TABLE III. Group A inspection for device type 06 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Notes	Measured terminal	Test limits		Unit
			G	1A	1 Y	1B	1 C	1E	GND	Sub	2E	2 C	2B	2 Y	2A	VCC			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tD tD ts ts tr t_{R} t_{F} t_{F}	$\begin{array}{\|l\|} \hline 183 \\ 184 \\ 185 \\ 186 \\ 187 \\ 188 \\ 189 \\ 190 \end{array}$				A A A A	B B B B	GND GND GND GND		GND	GND GND GND	B B B B	A A A A				See figure 8 for test circuit and waveforms	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		$\begin{gathered} \hline 22.5 \\ 22.5 \\ 34.5 \\ 34.5 \\ 30 \\ 30 \\ 22.5 \\ 22.5 \end{gathered}$	
	tPLH1	$\begin{aligned} & 191 \\ & 192 \\ & 193 \\ & 194 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & \hline \end{aligned}$	$\begin{gathered} \text { IN } \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$									$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	See figure 6 for test circuit and waveforms	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		45 " "	
	tPHL1 " " "	$\begin{aligned} & 195 \\ & 196 \\ & 197 \\ & 198 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & \mathrm{IN} \\ & 3 \mathrm{~V} \\ & \mathrm{IN} \end{aligned}$	$\begin{gathered} \mathrm{IN} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$								OUT	$\begin{gathered} \text { OUT } \\ 3 \mathrm{~V} \\ \hline \end{gathered}$	IN	4.5 V " "	"	$\begin{gathered} 2 \text { to } 3 \\ 1 \text { to } 3 \\ 13 \text { to } 12 \\ 1 \text { to } 12 \\ \hline \end{gathered}$		22.5 $" /$ "	
	tPLH3	$\begin{aligned} & 199 \\ & 200 \\ & 201 \\ & 202 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\begin{array}{\|l\|} \text { OUT } \\ \text { OUT } \end{array}$		Connect to 2B Connect to 2B	IN 3 V	$4.5 \mathrm{~V}$	See figure 7 for test circuit and waveforms	2 to 5 1 to 5 13 to 10 1 to 10		90	"
	tpHL3	$\begin{aligned} & 203 \\ & 204 \\ & 205 \\ & 206 \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \mathrm{IN} \\ 3 \mathrm{~V} \\ \mathrm{IN} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & 3 \mathrm{~V} \end{aligned}$	Connect to 1 B Connect to 1 B		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$					$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$			IN 3 V	$4.5 \mathrm{~V}$	"	$\begin{gathered} 2 \text { to } 5 \\ 1 \text { to } 5 \\ 13 \text { to } 10 \\ 1 \text { to } 10 \end{gathered}$		75 "	
	$\begin{aligned} & \text { tTLH2 } \\ & \mathrm{t}_{\text {TLH2 }} \\ & \mathrm{t}_{\text {THL2 }} \\ & \mathrm{t}_{\text {THL2 }} \end{aligned}$	$\begin{aligned} & 207 \\ & 208 \\ & 209 \\ & 210 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	IN IN	$\begin{gathered} \hline \begin{array}{c} \text { Connect } \\ \text { to } 1 \mathrm{~B} \end{array} \\ \\ \text { Connect } \\ \text { to } 1 \mathrm{~B} \end{gathered}$		OUT OUT					OUT OUT		Connect to 2B Connect to 2B	IN IN	"	"	$\begin{gathered} 5 \\ 10 \\ 5 \\ 10 \end{gathered}$		30	"

TABLE III. Group A inspection for device type 07.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	5.5 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	13 14 15 16	0.4 V	5.5 V		"				"	"	$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \mathrm{ICCH} 2 \\ & \text { ICCL5 } \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				76	
	Vol1 Vol1	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$3 \text { to } 4$ 5 to 4		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	VoL5 Vol5	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\mathrm{IOH} 1$$\mathrm{IOH}_{1}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	2 V	2 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	2 V	"				300	

TABLE III. Group A inspection for device type 07 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	v
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{H} 2}$	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	I/L1	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	5.5 V		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \text { ICCL5 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	
			GND	GND		"		GND	GND	"				76	
	Vol1 Vol1	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol5 VoL5	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 1 \\ & \mathrm{IOH} 1 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	2 V	2 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	2 V	"				300	

TABLE III. Group A inspection for device type 07 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	VIC	49 50 51 52	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 53 \\ & 54 \\ & 55 \\ & 56 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\begin{gathered} \text { IH2 } \\ \text { " } \\ " \\ " \end{gathered}$	57 58 59 60	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	5.5 V		"				"		1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \mathrm{ICCH} 2 \\ & \text { ICCL5 } \end{aligned}$	$\begin{aligned} & 65 \\ & 66 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				76	
	Vol1 Vol1	$\begin{aligned} & 67 \\ & 68 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol5 VoL5	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	3 to 4 5 to 4		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \text { ІОН1 } \\ & \text { ІОН1 } \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	2 V	2 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	2 V	"				300	

TABLE III. Group A inspection for device type 07 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$	IN	3 V	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		55	ns
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tpHL	$\begin{aligned} & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	IN	3 V	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		40	
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	81 82 83 84	IN	IN	OUT	"				"	"	3		20	
						"	OUT	IN	IN	"	"	5		"	
			IN	IN	OUT	"				"	"	3		"	
						"	OUT	IN	IN	"	"	5		"	
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 85 \\ & 86 \\ & 87 \\ & 88 \end{aligned}$	IN	3 V	OUT	GND				4.5 V	"	1 to 3		65	ns
			3 V	IN	OUT	"				"	"	2 to 3		"	
						"	OUT	IN	3 V	"	"	6 to 5		"	
						"	OUT	3 V	IN	"	"	7 to 5		"	
	tpHL	$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	IN	3 V	OUT	"				4.5 V	"	1 to 3 2 to 3 6 to 5 7 to 5		60	
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
		93 94 95 96	IN	IN	OUT	"				"	"	3 5 3 5		26.5	
						"	OUT	IN	IN	"				26.5	
			IN	IN	OUT	"				"				25	
						"	OUT	IN	IN	"				25	

TABLE III. Group A inspection for device type 07 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{gathered} 97 \\ 98 \\ 99 \\ 100 \end{gathered}$	IN	3 V	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		65	ns
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	3 V	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		60	
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	${ }_{\mathrm{t} \text { TLH }}$ ${ }^{\text {t }}$ tLH ${ }^{\text {tTHL }}$ ${ }^{\text {t }} \mathrm{HL}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		26.5	
						"	OUT	IN	IN	"		5		26.5	
			IN	IN	OUT	"				"		3		25	
						"	OUT	IN	IN	"		5		25	

TABLE III. Group A inspection for device type 08.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	1 2 3 4	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	5.5 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	IL1	13 14 15 16	0.4 V	5.5 V		"				"	" ${ }^{\prime}$	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH3 } \\ & \text { ICCL6 } \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		17	"
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				76	
	$\begin{aligned} & \text { Vol2 } \\ & \text { VOL2 } \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol6 Vol6	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 2 \\ & \mathrm{IOH} 2 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	0.8 V	4.5 V	30 V	"				"	"	35		300	$\ldots \mathrm{A}$
						"	30 V	0.8 V	4.5 V	"				300	

TABLE III. Group A inspection for device type 08 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	VIC	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILLI	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	5.5 V		"				"	" ${ }^{\prime}$	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH3 } \\ & \text { ICCL6 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		17	"
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				76	
	Vol2 Vol2	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol6 Vol6	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \text { ІОН2 } \\ & \text { IOH2 } \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	0.8 V	4.5 V	30 V	"				"	"	35		300	${ }^{\mu \mathrm{A}}$
						"	30 V	0.8 V	4.5 V	"				300	

TABLE III. Group A inspection for device type 08 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	49 50 51 52	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	53 54 55 56	2.4 V	GND		"				5.5 V		1 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"		2 to 4		"	
						"		2.4 V	GND	"		6 to 4		"	
						"		GND	2.4 V	"		7 to 4		"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILLI	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	5.5 V		"				"	"	$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		-1.6	mA
			5.5 V	0.4 V		"				"				"	
						"		0.4 V	5.5 V	"				"	
						"		5.5 V	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH3 } \\ & \text { ICCL6 } \end{aligned}$	$\begin{aligned} & 65 \\ & 66 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		17	"
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				76	
	$\begin{aligned} & \text { VoL2 } \\ & \text { VoL2 } \end{aligned}$	$\begin{aligned} & 67 \\ & 68 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol6 Vol6	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 2 \\ & \mathrm{IOH} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	0.8 V	4.5 V	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	4.5 V	"				300	

TABLE III. Group A inspection for device type 08 - Continued.

Subgroup	Symbol	$\begin{gathered} \text { Test } \\ \text { no. } \end{gathered}$	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$	IN	3 V	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		65	ns
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tpHL	$\begin{aligned} & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	IN	3 V	OUT	"				4.5 V		1 to 3		50	"
			3 V	IN	OUT	"				"		2 to 3		"	"
						"	OUT	IN	3 V	"		6 to 5		"	"
						"	OUT	3 V	IN	"		7 to 5		"	"
	${ }^{\text {t }}$ L H tith ${ }^{\text {t }} \mathrm{HL}$ $\mathrm{t}_{\mathrm{THL}}$	81 82 83 84	IN	IN	OUT	"				"	"	3		25	"
						"	OUT	IN	IN	"	"	5		25	"
			IN	IN	OUT	"				"	"	3		20	"
						"	OUT	IN	IN	"	"	5		20	"
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 85 \\ & 86 \\ & 87 \\ & 88 \end{aligned}$	IN	3 V	OUT	GND				4.5 V	"	1 to 3		95	ns
			3 V	IN	OUT	"				"	"	2 to 3		"	"
						"	OUT	IN	3 V	"	"	6 to 5		"	"
						"	OUT	3 V	IN	"	"	7 to 5		"	"
	tpHL	$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	IN	3 V	OUT	"				4.5 V	"	1 to 3		75	"
			3 V	IN	OUT	"				"	"	2 to 3		"	"
						"	OUT	IN	3 V	"	"	6 to 5		"	"
						"	OUT	3 V	IN	"	"	7 to 5		"	"
	${ }^{\text {tTLH }}$ ttin tTHL $\mathrm{t}_{\mathrm{T} H \mathrm{~L}}$	$\begin{aligned} & 93 \\ & 94 \\ & 95 \\ & 96 \end{aligned}$	IN	IN	OUT	"				"	"	3		33.5	"
						"	OUT	IN	IN	"	"	5		33.5	"
			IN	IN	OUT	"				"	"	3		35	"
						"	OUT	IN	IN	"	"	5		35	"

TABLE III. Group A inspection for device type 08 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{gathered} 97 \\ 98 \\ 99 \\ 100 \end{gathered}$	IN	3 V	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		95	ns
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	3 V	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		75	
			3 V	IN	OUT	"				"				"	
						"	OUT	IN	3 V	"				"	
						"	OUT	3 V	IN	"				"	
	${ }^{\text {t }}$ LLH tith t the $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		33.5	"
						"	OUT	IN	IN	"		5		33.5	"
			IN	IN	OUT	"				"		3		35	"
						"	OUT	IN	IN	"		5		35	\cdots

TABLE III. Group A inspection for device type 09.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	13 14 15 16	0.4 V	GND		"				"	"	$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \mathrm{ICCH} 2 \\ & \mathrm{I} \mathrm{CCL} 5 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				76	
	Vol3 Vol3	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol7 Vol7	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \text { ІОн3 } \\ & \text { ІОН3 } \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	2 V	GND	30 V	"				"	"	35		300	$\mu \mathrm{A}$
						"	30 V	2 V	GND	"				300	

TABLE III. Group A inspection for device type 09 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{Cc}			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	VIC	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	5.5 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	37 38 39 40	0.4 V	GND		"				"	" ${ }^{\prime}$	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \text { ICCL5 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				76	
	$\begin{aligned} & \text { Vol3 } \\ & \text { VoL3 } \end{aligned}$	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol7 Vol7	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \text { ІОН3 } \\ & \text { ІОН3 } \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	2 V	GND	30 V	"				"	"	35		300	${ }^{\mu \mathrm{A}}$
						"	30 V	2 V	GND	"				300	

TABLE III. Group A inspection for device type 09 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	53 54 55 56	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILL1	61 62 63 64	0.4 V	GND		"				"	" ${ }^{\prime}$	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH2 } \\ & \text { ICCL5 } \end{aligned}$	$\begin{aligned} & 65 \\ & 66 \end{aligned}$	5.5 V	5.5 V		"		5.5 V	5.5 V	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		11	"
			GND	GND		"		GND	GND	"				76	
	Vol3 Vol3	$\begin{aligned} & 67 \\ & 68 \end{aligned}$	0.8 V	0.8 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	0.8 V	0.8 V	"				0.5	
	Vol7 Vol7	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	0.8 V	0.8 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	0.8 V	0.8 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 3 \\ & \mathrm{IOH} 3 \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	2 V	GND	30 V	"				"	"	35		300	${ }^{\mu \mathrm{A}}$
						"	30 V	2 V	GND	"				300	

TABLE III. Group A inspection for device type 09 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured	Tes	imits	Unit
			1A	1B	1 Y	GND	$2 Y$	2A	2B	V_{Cc}		terminal	Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		55	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	IN	GND	OUT	"				4.5 V		1 to 3		40	
			GND	IN	OUT	"				"		2 to 3		"	
						"	OUT	IN	GND	"		6 to 5		"	
						"	OUT	GND	IN	"		7 to 5		"	
	$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	81 82 83 84	IN	IN	OUT	"				"	"	3		25	
						"	OUT	IN	IN	"	"	5		"	
			IN	IN	OUT	"				"	"	3		"	
						"	OUT	IN	IN	"	"	5		"	
$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 85 \\ & 86 \\ & 87 \\ & 88 \end{aligned}$	IN	GND	OUT	GND				4.5 V	"	1 to 3		70	ns
			GND	IN	OUT	"				"	"	2 to 3		"	
						"	OUT	IN	GND	"	"	6 to 5		"	
						"	OUT	GND	IN	"	"	7 to 5		"	
	tpHL	$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	IN	GND	OUT	"				4.5 V	"	1 to 3 2 to 3 6 to 5 7 to 5		60	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	${ }^{\text {tTLH }}$ ttin t th L ${ }^{\mathrm{t}} \mathrm{THL}$	$\begin{aligned} & 93 \\ & 94 \\ & 95 \\ & 96 \end{aligned}$	IN	IN	OUT	"				"	"	3 5 3 5		33.5	
						"	OUT	IN	IN	"				33.5	
			IN	IN	OUT	"				"				25	
						"	OUT	IN	IN	"				25	

TABLE III. Group A inspection for device type 09 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 97 \\ & 98 \\ & 99 \\ & 100 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	1 to 3 2 to 3 6 to 5 7 to 5		70	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tphL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	GND	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		60	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\mathrm{t}_{\mathrm{T} L \mathrm{H}}$ ${ }^{\text {t }}$ th $\mathrm{t}_{\mathrm{th}} \mathrm{L}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		33.5	
						"	OUT	IN	IN	"		5		33.5	
			IN	IN	OUT	"				"		3		25	
						"	OUT	IN	IN	"		5		25	

TABLE III. Group A inspection for device type 10.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	VIC	1 2 3 4	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	V
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{IH} 1}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	9 10 11 12	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4			mA
			GND	5.5 V		"				"					
						"		5.5 V	GND	"					
						"		GND	5.5 V	"					
	ILLI	13 14 15 16	0.4 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA"""
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ІСCH5 } \\ & \text { ICCL8 } \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		19	"
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				85	
	Vol4 VOL4	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol8 Vol8	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$3 \text { to } 4$ 5 to 4		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 4 \\ & \mathrm{IOH} 4 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	0.8 V	0.8 V	30 V	"				"	"	$3$$5$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	0.8 V	"				300	

TABLE III. Group A inspection for device type 10 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2 A	2B	VCC			Min	Max	
$\begin{gathered} 2 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	$\mathrm{I}_{\mathrm{H} 1}$	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	33 34 35 36	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILLI	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	0.4 V	GND		"				"	"	$\begin{aligned} & 1 \text { to } 4 \\ & 2 \text { to } 4 \\ & 6 \text { to } 4 \\ & 7 \text { to } 4 \end{aligned}$		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \text { ICCH5 } \\ & \text { ICCL8 } \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		19	
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				85	
	Vol4 Vol4	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	2 V	2 V	100 mA	"				4.5 V	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol8 Vol8	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 4 \\ & \mathrm{IOH} 4 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	0.8 V	0.8 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	0.8 V	"				300	

TABLE III. Group A inspection for device type 10 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1 Y	GND	$2 Y$	2 A	2B	VCC			Min	Max	
$\begin{gathered} 3 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	$V_{I C}$	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	-12 mA	4.5 V		GND				4.5 V	See figure 5 for test circuit	1 to 4 2 to 4 6 to 4 7 to 4		-1.5	
			4.5 V	-12 mA		"				"				"	
						"		-12 mA	4.5 V	"				"	
						"		4.5 V	-12 mA	"				"	
	IIH1	$\begin{aligned} & 53 \\ & 54 \\ & 55 \\ & 56 \end{aligned}$	2.4 V	GND		"				5.5 V		1 to 4 2 to 4 6 to 4 7 to 4		40	$\mu \mathrm{A}$
			GND	2.4 V		"				"				"	
						"		2.4 V	GND	"				"	
						"		GND	2.4 V	"				"	
	$\mathrm{I}_{\mathrm{IH} 2}$	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	5.5 V	GND		"				"		1 to 4 2 to 4 6 to 4 7 to 4		1	mA
			GND	5.5 V		"				"				"	
						"		5.5 V	GND	"				"	
						"		GND	5.5 V	"				"	
	ILLI	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \end{aligned}$	0.4 V	GND		"				"	"	1 to 4 2 to 4 6 to 4 7 to 4		-1.6	mA
			GND	0.4 V		"				"				"	
						"		0.4 V	GND	"				"	
						"		GND	0.4 V	"				"	
	$\begin{aligned} & \mathrm{ICCH} 5 \\ & \mathrm{ICCL} \end{aligned}$	$\begin{aligned} & 65 \\ & 66 \end{aligned}$	GND	GND		"		GND	GND	"	"	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		19	
			5.5 V	5.5 V		"		5.5 V	5.5 V	"				85	
	Vol4 Vol4	67 68	2 V	2 V	100 mA	"				4.5 V	"	3 to 4 5 to 4		0.5	V
						"	100 mA	2 V	2 V	"				0.5	
	Vol8 Vol8	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	2 V	2 V	300 mA	"				"	"	$\begin{aligned} & 3 \text { to } 4 \\ & 5 \text { to } 4 \end{aligned}$		0.8	"
						"	300 mA	2 V	2 V	"				0.8	
	$\begin{aligned} & \mathrm{IOH} 4 \\ & \mathrm{IOH} 4 \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \end{aligned}$	0.8 V	0.8 V	30 V	"				"	"	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		300	$\mu \mathrm{A}$
						"	30 V	0.8 V	0.8 V	"				300	

TABLE III. Group A inspection for device type 10 - Continued.

Subgroup	Symbol	Test no.	1 1 A	$\frac{2}{1 \mathrm{~B}}$	$\frac{3}{1 Y}$	$\frac{4}{\text { GND }}$	$\frac{5}{2 Y}$	$\begin{gathered} 6 \\ \hline 2 \mathrm{~A} \end{gathered}$	$\frac{7}{2 \mathrm{CB}}$	$\frac{8}{\mathrm{~V}_{\mathrm{CC}}}$	Notes	Measured terminal	Test limits		Unit
													Min	Max	
$\begin{gathered} 9 \\ \mathrm{~T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure 9 for test circuit and waveforms	$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		65	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tphL	$\begin{aligned} & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	IN	GND	OUT	"				4.5 V		1 to 3		50	"
			GND	IN	OUT	"				"		2 to 3		"	"
						"	OUT	IN	GND	"		6 to 5		"	"
						"	OUT	GND	IN	"		7 to 5		"	"
	${ }^{\text {t }}$ LH tith tTHL ${ }^{\text {t }} \mathrm{H} \mathrm{HL}$	$\begin{aligned} & 81 \\ & 82 \\ & 83 \\ & 84 \end{aligned}$	IN	IN	OUT	"				"	"	3		20	"
						"	OUT	IN	IN	"	"	5		"	"
			IN	IN	OUT	"				"	"	3		"	"
						"	OUT	IN	IN	"	"	5		"	"
$\begin{gathered} 10 \\ \mathrm{~T}_{\mathrm{A}}= \\ +125^{\circ} \mathrm{C} \end{gathered}$	tpLH	85 86 87 88	IN	GND	OUT	GND				4.5 V	"	1 to 3		90	ns
			GND	IN	OUT	"				"	"	2 to 3		"	"
						"	OUT	IN	GND	"	"	6 to 5		"	*
						"	OUT	GND	IN	"	"	7 to 5		"	"
	tpHL	$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	IN	GND	OUT	"				4.5 V	"	1 to 3		75	"
			GND	IN	OUT	"				"	"	2 to 3		"	"
						"	OUT	IN	GND	"	"	6 to 5		"	"
						"	OUT	GND	IN	"	"	7 to 5		"	"
	$\begin{gathered} \mathrm{t}_{\mathrm{T} \text { LH }} \\ \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ \mathrm{t}_{\mathrm{T} H \mathrm{~L}} \\ \mathrm{t}_{\mathrm{T} H \mathrm{~L}} \end{gathered}$	$\begin{aligned} & 93 \\ & 94 \\ & 95 \\ & 96 \end{aligned}$	IN	IN	OUT	"				"	"	3		26.5	"
						"	OUT	IN	IN	"	"	5		26.5	"
			IN	IN	OUT	"				"	"	3		25	"
						"	OUT	IN	IN	"	"	5		25	"

TABLE III. Group A inspection for device type 10 - Continued.

Subgroup	Symbol	Test no.	1	2	3	4	5	6	7	8	Notes	Measured terminal	Test limits		Unit
			1A	1B	1Y	GND	2 Y	2A	2B	V_{CC}			Min	Max	
$\begin{gathered} 11 \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \end{gathered}$	tpLH	$\begin{aligned} & 97 \\ & 98 \\ & 99 \\ & 100 \end{aligned}$	IN	GND	OUT	GND				4.5 V	See figure9 for test circuit and waveforms	$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		90	ns
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	tpHL	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \end{aligned}$	IN	GND	OUT	"				4.5 V		$\begin{aligned} & 1 \text { to } 3 \\ & 2 \text { to } 3 \\ & 6 \text { to } 5 \\ & 7 \text { to } 5 \end{aligned}$		75	
			GND	IN	OUT	"				"				"	
						"	OUT	IN	GND	"				"	
						"	OUT	GND	IN	"				"	
	$\begin{gathered} \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ \mathrm{t}_{\mathrm{TL} \mathrm{LH}} \\ \mathrm{t}_{\mathrm{T} \mathrm{HL}} \\ \mathrm{t}_{\mathrm{THL}} \end{gathered}$	$\begin{aligned} & \hline 105 \\ & 106 \\ & 107 \\ & 108 \end{aligned}$	IN	IN	OUT	"				"		3		26.5	"
						"	OUT	IN	IN	"		5		26.5	"
			IN	IN	OUT	"				"		3		25	"
						"	OUT	IN	IN	"		5		25	"

4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups $4,5,6,7$, and 8 in table I shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows.
4.5.1 Voltage and current. All voltage values given are referenced to the ground terminal of the device under test (DUT). Currents values given are for conventional current and are positive when flowing into the referenced terminal.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

TABLE IV. Group C end-point electrical parameters.

$$
\pm \mathrm{V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$

(Device types 01 through 10)				
	Limits		Delta	Unit
	Min	Max		
IOH	---	300	± 50	$\mu \mathrm{~A}$

6. NOTES

6.1 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. Pin and compliance identifier, if applicable (see 1.2).
c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to acquiring activity in addition to notification of the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of MIL-STD-883, method 5003), corrective action and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
i. Requirements for "JAN" marking.
j. Packaging requirements (see 5.1).
6.3 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43218-3990.

MIL-M-38510/129B

6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-STD-1331, and as follows:

VIC	Input clamp voltage.
1 lH	High level input current ($\mathrm{V}_{\mathrm{IN}}=2.4$ or 5.5 V).
IIL	Low level input current (with $\mathrm{V}_{\text {IN }}=0.4$).
ICCH	High level supply current. This is the supply current with the output high.
ICCL	Low level supply current. This is the supply current with the output low.
VOL	Low level output voltage. This at rated load for the TTL gates.
IOH	High level output current.
V OH	High level output voltage, TTL gate.
los	Short circuit output current TTL gate.
$V_{\text {CBO }}$	Collector base breakdown voltage, separate transistor.
$V_{\text {CER }}$	Collector base breakdown voltage with $\mathrm{R}_{\mathrm{BE}}=500$ ohms.
$\mathrm{V}_{\text {CEO }}$	Collector emitter breakdown voltage.
$V_{\text {BEO }}$	Emitter base breakdown voltage.
$h_{\text {FE }}$	Static forward current transfer ratio.
$V_{B E}$	Base emitter voltage.
$V_{\text {CE(SAT }}$	Collector emitter saturation voltage.
$t_{\text {D }}$	Delay time.
t_{R}	Rise time.
ts	Storage time.
t_{F}	Fall time.
tpLH	Propagation delay time (low to high level output transition).
tPHL	Propagation delay time (high to low level output transition).
$\mathrm{t}_{\text {TLH }}$	Transition time (low to high level output transition).
t ${ }_{\text {THL }}$	Transition time (high to low level output transition).

6.6 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	55450
02	55451
03	55452
04	55453
05	55454
06	55460
07	55461
08	55462
09	55463
10	55464

MIL-M-38510/129B

6.8 Changes from previous issue. Marginal notations are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	
Air Force - 11	Project $5962-2081$
NASA - NA	
DLA - CC	

Review activities:
Army - MI, SM
Navy - AS, CG, SH, TD
Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of this date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.

