Rochester
Electronics ${ }^{\circ}$

Datasheet

ADG201A/ADG202A

LC²MOS Quad SPST Switches

The ADG201A and ADG202A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process which gives an increased signal handling capability of $\pm 15 \mathrm{~V}$. These switches also feature high switching speeds and low RON*.
The ADG201A and ADG202A consist of four SPST switches. They differ only in that the digital control logic is inverted. All devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

FEATURES
$44 V$ Supply Maximum Rating $\pm 15 \mathrm{~V}$ Analog Signal Range
Low Ron (60S)
Low Leakage (0.5 nA)
Break Before Make Switching
Extended Plastic Temperature Range
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Low Power Dissipation (33mW)
Available in 16-Lead DIP/SOIC and
20-Lead PLCC/LCCC Packages
Superior Second Source:
ADG201A Replaces DG201A, HI-201
ADG202A Replaces DG202

GENERAL DESCRIPTION

The ADG201A and ADG202A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC 2 MOS process which gives an increased signal handling capability of $\pm 15 \mathrm{~V}$. These switches also feature high switching speeds and low R_{ON}.
The ADG201A and ADG202A consist of four SPST switches. They differ only in that the digital control logic is inverted. All devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Extended Signal Range:

These switches are fabricated on an enhanced LC 2 MOS process, resulting in high breakdown and an increased analog signal range of $\pm 15 \mathrm{~V}$.
2. Single Supply Operation:

For applications where the analog signal is unipolar (0 V to 15 V), the switches can be operated from a single +15 V supply.
3. Low Leakage:

Leakage currents in the range of 500 pA make these switches suitable for high precision circuits. The added feature of Break before Make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

ADG201A	ADG202A	SWITCH IN
0	1	CONDITION

Table I. Truth Table

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Fax: 617/326-8703
Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

Parameter	K Version		B Version		T Version		Units	Test Conditions
	$25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$		
ANALOG SWITCH								
Analog Signal Range	± 15	Volts						
$\mathrm{R}_{\text {ON }}$	60		60		60		Ω typ	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant+10 \mathrm{~V}$
	90	145		145		145	Ω max	$\mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~mA}$
								Test Circuit 1
$\mathrm{R}_{\text {ON }}$ vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	20		20		20		\%typ	
$\mathrm{R}_{\text {ON }}$ Drift	0.5		0.5		0.5		\% ${ }^{\circ} \mathrm{Ctyp}$	
$\mathrm{R}_{\text {ON }}$ Match	5		5		5		\%typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA}$
$\mathrm{I}_{\text {S }}(\mathrm{OFF})$	0.5		0.5		0.5		nA typ	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}} \mp 14 \mathrm{~V} ;$ Test Circuit 2
OFF Input Leakage	2	100	2	100		100	$n A$ max	
I_{D} (OFF)	0.5		0.5		0.5		nA typ	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mp 14 \mathrm{~V} ;$ Test Circuit 2
OFF Output Leakage	2	100	2	100		100	$n A \max$	
I_{D} (ON)	0.5		0.5		0.5		nA typ	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V} ;$ Test Circuit 3
ON Channel Leakage	2	200	2	200	1	200	$n A$ max	
DIGITAL CONTROL								
$\mathrm{V}_{\text {INH }}$, Input High Voltage		2.4		2.4		2.4	V min	
$\mathrm{V}_{\text {INL }}$, Input Low Voltage		0.8		0.8		0.8	$V_{\text {max }}$	
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		1		1		1	$\mu A \max$	
DYNAMICCHARACTERISTICS								
topen	30		30		30		ns typ	
ton^{1}	300		300		300		ns max	Test Circuit 4
$\mathrm{t}_{\text {OFF }}{ }^{1}$	250		250		250		ns max	Test Circuit 4
OFF Isolation	80		80		80		dB typ	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{f}=100 \mathrm{kHz}$
								$\mathrm{R}_{\mathrm{L}}=75 \Omega$; Test Circuit 6
Channel-to-Channel Crosstalk	80		80		80		dB typ	Test Circuit 7
$\mathrm{C}_{\mathrm{S}}(\mathrm{OFF})$	5		5		5		pF typ	
C_{D} (OFF)	5		5		5		pF typ	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$	16		16		16		pF typ	
$\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	5		5		5		pF typ	
Qinj Charge Injection	20		20		20		pCtyp	$\mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ Test Circuit 5
POWER SUPPLY								
$\mathrm{I}_{\text {DD }}$	0.6		0.6		0.6		mA typ	Digital Inputs $=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
$\mathrm{I}_{\text {DD }}$		2		2		2	mA max	
$\mathrm{I}_{\text {SS }}$	0.1		0.1		0.1		mA typ	
$\mathrm{I}_{\text {Ss }}$		0.2		0.2		0.2	$m A \max$	
Power Dissipation		33		33		33	mW max	

NOTES

${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated)

Power Dissipation (Any Package)	
Up to $+75^{\circ} \mathrm{C}$.	470 mW
Derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature	
Commercial (K Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10sec)	$+300^{\circ} \mathrm{C}$

NOTE

${ }^{1}$ Overvoltage at IN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

WARNING!
 Mrinit
 esd sensitive device

ORDERING GUIDE

| | Temperature
 Range | Package
 Option |
| :--- | :--- | :--- | :--- |
| Model ${ }^{1}$ | | |

PIN CONFIGURATIONS

ADG201A/ADG202A FUNCTIONAL DIAGRAM

Figure 1. Typical Digital Input Cell

ADG201A/ADG202A - Typical Performance Characteristics

The switches are guaranteed functional with reduced single or dual supplies down to 4.5 V .

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

Switching Time vs. Supply Voltage (Dual Supply)

$R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage

Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage

Switching Time vs. Supply Voltage (Single Supply)

Test Circuit 1

Test Circuit 2
Test Circuit 3

Test Circuit 4

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

ADG201A/ADG202A

TERMINOLOGY $\quad \mathrm{t}_{\mathrm{ON}} \quad$| Delay time between the 50% and 90% points of |
| :--- |
| the digital input and switch "ON" condition |

MECHANICALINFORMATION

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Pin Plastic (N-16)

16-Pin Cerdip (Q-16)

LEADS ARE SOLDER OR TIN-PLATED KOVAR OR ALLOY 42
LEADS ARE SOLDER OR TIN-PLATED KOVAR OR ALLOY 42
SOIC Package
(R-16A)

20-Terminal Leadless Ceramic Chip Carrier (E-20A)

20-Terminal Plastic Leaded Chip Carrier
(P-20A)

Package/Price Information

For detailed packaging information, please select the Datasheets button.
60 Ohm, Quad SPST Switch (Normally Open Switch, DG202A replacement)

Model	Status	Package Description	Pin Count	Temperature Range	Price* $(100-499)$
ADG202ABQ	PRODUCTION	CERDIP GLASS SEAL	16	INDUSTRIAL	$\$ 3.71$
ADG202AKN	PRODUCTION	PLASTIC/EPOXY DIP	16	COMMERCIAL	$\$ 1.91$
ADG202AKP	PRODUCTION	PLASTIC LEAD CHIP CARRIER	20	COMMERCIAL	$\$ 2.17$
ADG202AKP-REEL	PRODUCTION	PLASTIC LEAD CHIP CARRIER	20	COMMERCIAL	-
ADG202AKR	PRODUCTION	SO NARROW .150" - 2mm thick	16	COMMERCIAL	$\$ 1.91$
ADG202AKR-REEL	PRODUCTION	SO NARROW .150" - 2mm thick	16	COMMERCIAL	-
ADG202AKR-REEL7	PRODUCTION	SO NARROW .150" - 2mm thick	16	COMMERCIAL	-
ADG202ATQ	PRODUCTION	CERDIP GLASS SEAL	16	MILITARY	$\$ 8.21$
ADG202ATQ/883B	PRODUCTION	CERDIP GLASS SEAL	16	MILITARY	$\$ 11.48$
* This price is provided for budgetary purposes as recommended list price in U.S. Dollars per unit the					
stated volume. Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing. View					
Pricing and Availability (currently available to North American customers) for further information.					

