Precision Monolithics Inc.

FEATURES

- Compatible with Standards for Noise and Crosstalk in Telephony Systems
- Pin Compatible with DG508, HI-508A, LF11508
- JFET Switches Rather Than CMOS
- Low "ON" Resistance - 220Ω Typical
- Low Output Leakage Current - 100nA Max
- Digital Inputs Compatible with TTL and CMOS
- Input Overvoltage and Supply Loss Protected

GENERAL DESCRIPTION

The MUX-88 is a monolithic eight-channel analog multiplexer ideally suited to shared-channel PCM CODEC systems. One-of-eight channels is selected upon the decoding of a 3 bit binary address. An enable input (E_{n}) disables all switches when logic low providing package select. All logic control inputs have true TTL input compatibility eliminating the need for pull-up resistors necessary for some CMOS equivalent products.
Fabricated with Precision Monolithics' high performance Bipolar-JFET technology, this device offers low "ON" resistance, low leakage, fast settling time and excellent crosstalk isolation (98dB @ 20kHz). These characteristics make this device suitable for meeting system level communication requirements in shared-channel PCM CODECs.

TRUTH TABLE

A_{2}	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	L	NONE
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)				
Operating Temperature Range				
MUX-88EQ, FQ...................................... $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Maximum Current Through Any Pin 25 mA			
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	PACKAGE TYPE	$\boldsymbol{\Theta}_{\text {IA }}$ (Note 1)	$\theta_{\text {Ic }}$	UNITS
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$	PACKAGE TYPE	$\Theta_{\text {JA }}$ (Note 1)	$\theta_{\text {Jc }}$	UNITS
V+ Supply to V-Supply .. 36V	16-Pin Hermetic DIP (Z)	100	16	${ }^{\circ} \mathrm{CN}$
V+ Supply to Ground ... 18V	NOTE:			
Logic Input Voltage (Note 5) \qquad (V- or -4 V) to V_{+} Analog Input Voltage \qquad V-Supply -20 V to $\mathrm{V}+$ Supply +20 V	1. $\Theta_{i \mathrm{~A}}$ is specified for device in socket for	ounting cond age.		ed for

ELECTRICAL CHARACTERISTICS for $\mathrm{V}+=-15 \mathrm{~V}$ and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted.

NOTES:

1. Conditions applied to leakage tests insure worst case leakages. Exceeding 11 V on the analog input may cause an "OFF" channel to turn "ON"
2. Sample tested. The measurement conditions of Figure 1 insure worst case transition time.
3. Crosstalk is measured by driving channel 8 with channel 4 ON
$R_{L}=1 \mathrm{M} \Omega, C_{L}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ RMS, $\mathrm{f}=20 \mathrm{kHz}$. (See Figure 2)
4. OFF isolation is measured by driving channel 8 with ALL channels OFF $R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ RMS, $\mathrm{f}=20 \mathrm{kHz} . C_{D S}$ is computed from:-e OFF isolation measurement.
5. Guaranteed by $R_{O N}$ and leakage current testing. For normal operat :maximum analog signal voltages should be restricted to less tra" $(\mathrm{V}+)-4 \mathrm{~V}$.

DICE
For applicable DICE information see MUX-08/MUX-24 data sheet.

TYPICAL PERFORMANCE CHARACTERISTICS

SWITCH LEAKAGE CURRENTS vs ANALOG INPUT VOLTAGE

* $R_{L}=10 \mathrm{M} \Omega, C_{L}=10 \mathrm{pF}, \mathrm{V}_{1}=-10 \mathrm{~V}, \mathrm{~V}_{8}=+10 \mathrm{~V}$ Voltage $=5 \mathrm{~V} /$ Div, Time $=1 \mu \mathrm{~S} /$ Div, See Transition Time Circuit of Figure 1.

$\cdot R_{L}=1 \mathrm{M} \Omega, C_{L}=10 p F, V_{1}=-500 \mathrm{mV}$, $V_{\text {SB }}=+500 \mathrm{mV}$ Voltage $=500 \mathrm{mV} /$ Div, Time $=1 \mu \mathrm{~S} /$ Div, See Transition Circuit of Figure 1.

SWITCH LEAKAGE CURRENTS vs TEMPERATURE

-Voltage $=500 \mathrm{mV} /$ Div, Time $=500 \mathrm{~ns} /$ Div, See Break-Before-Make Circuit of Figure 3.

SMALL-SIGNAL SWITCHING WITH FILTERING

$\cdot R_{\mathrm{L}}=1 \mathrm{M} \Omega, C_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{V}_{1}=-500 \mathrm{mV}$, $V_{S 8}=500 \mathrm{mV}$ Voltage $=500 \mathrm{mV} /$ Div, Time $=1 \mu \mathrm{~S} /$ Div. See Transition Time Circuit of Figure 1.

SWITCH CAPACITANCE vs ANALOG INPUT VOLTAGE

TRANSITION TIMES vs TEMPERATURE

ENABLE DELAY TIME vs TEMPERATURE

NOTE:

*Top Waveforms: Digital Input 5V/Div Bottom Waveforms: Multiplex Output

A.C. TEST CIRCUITS

TRANSITION TIME

CROSSTALK MEASUREMENT CIRCUIT

Figure 2

OFF ISQLATION MEASUREMENT CIRCUIT

Figure 4

APPLICATIONS INFORMATION

These analog multiplexers employ ion-implanted JFETs in a switch configuration designed to assure break-before-make action. The turn-off time is much faster than the turn-on time to guarantee this feature over the full operating temperature and input voltage range. Because the digital inputs only require a 2 V logic " 1 " input level, power-consuming pull-up resistors are not required for TTL compatibility to insure break-before-make switching as is most often the case with CMOS multiplexers. The digital inputs utilize PNP input transistors where input current is maximum at the logic " 0 " level and drops to that of a reverse-biased diode (about 10nA) as the input voltage is raised above $\approx 1.4 \mathrm{~V}$.
The "ON" resistance, R_{ON}, of the analog switches is constant over the wide input voltage range of -15 V to +11 V with $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$. Higher input voltage is tolerable provided that some form of current limiting is employed (such as that of an op-amp output stage) to avoid exceeding junction temperature and power dissipation requirements. For normal
operation, however, positive input voltages should be restricted to 11 V (or 4 V less than the positive supply). This assures that the V_{GS} of an OFF switch remains greater than its V_{p}, and prevents that channel from being falsely turned ON.
When operating with negative input voltages, the gate-tochannel diode will be turned on if the voltage drop across an ON switch exceeds -0.6 V . While this condition will cause an error in the output, it will not damage the switch. In lab tests, the multiplexer output load capacitor has increased to $0.01 \mu \mathrm{~F}$ in the Transition Time circuit, Figure 1. With $\mathrm{V}_{\mathrm{S} 1}=-10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S} 8}=+10 \mathrm{~V}$, the logic input was driven at a 1 kHz rate. The positive-going slew rate was $0.3 \mathrm{~V} / \mu \mathrm{sec}$ which is equivalent to a normal IDSS of 3 mA . The negative-going slew rate was $0.7 \mathrm{~V} / \mu \mathrm{sec}$ which is equivalent to a "reverse" I DSS of 7 mA . Note that when switch 1 is first turned ON it has a drop of -20 V across its terminals. In spite of that fact, the current is limited to approximately twice its normal IDSs.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

OFF PERFORMANCE OF CHANNEL 8

R $_{\text {on }}$ vs SWITCH VOLTAGE ($\mathbf{V}_{\text {SD }}$)

Ron vs SWITCH CURRENT (Is)
 IS - SWITCH CURRENT ($\mu \mathrm{A}$)

