Datasheet

PART NUMBER

54LS113FMB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MIL-M-38510/301E 14 February 2003 SUPERSEDING
MIL-M-38510/301D
8 April 1988

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.
This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 Scope. This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, flipflops, bistable logic gate microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
1.2 Part number. The part number shall be in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device types. The device types shall be as follows:

Device type
01
02
03
04
05
06
07
08
09
10

Circuit
Dual J-K flip-flop with clear
Dual D type flip-flop with clear and preset
Dual J-K flip-flop with clear and preset
Dual J-K flip-flop with preset
Dual J-K flip-flop with preset and common clear and common clock
Hex D type flip-flop with common clear and common clock
Quad D type flip-flop with common clear and common clock
Dual, J-K flip-flop with clear
Dual, J- \bar{K} flip-flop with clear and preset
Dual, J-K flip-flop with clear and preset
1.2.2 Device class. The device class shall be the product assurance level as defined in MIL-PRF-38535.

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

MIL-M-38510/301E

1.2.3 Case outlines. The case outlines shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
A	GDFP5-F14 or CDFP6-F14	14	Flat pack
B	GDFP4-14	14	Flat pack
C	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
X	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

1.3 Absolute maximum ratings.

1.4 Recommended operating conditions.

Supply voltage (V_{CC})	4.5 V dc minimum to 5.5 V dc maximum
Minimum high level input voltage (V_{IH})	2.0 V dc
Maximum low level input voltage (V_{IL})	0.7 V dc
Case operating temperature range (T_{C})	-55° to $+125^{\circ} \mathrm{C}$
Input set up time:	
Device types:	
01, 03, 04, 05, 08, 09, and 10	25 ns minimum
02, 06, and 07	20 ns minimum
Input hold time:	
Device types:	
01, 03, 04, 05, 08, and 10	0 ns minimum
02, 06, 07, and 09	5 ns minimum

[^0]
2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 Specifications and Standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE
$\begin{array}{lll}\text { MIL-STD-883 } & -\quad \text { Test Method Standard for Microelectronics. } \\ \text { MIL-STD-1835 } & -\quad \text { Interface Standard Electronic Component Case Outlines. }\end{array}$
(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
3.3.2 Logic diagrams. The logic diagrams shall be as specified on figure 2.
3.3.3 Truth tables. The truth tables and logic equations shall be as specified on figure 3.
3.3.4 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
3.6 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 10 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with, MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups 4,5 , and 6 shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End-point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

MIL-M-38510/301E

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions 1/ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified		Device types	Limits		Unit	
				Min	Max			
High level output voltage	Vor	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \hline \end{aligned}$			All	2.5		V
Low level output voltage	VoL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, $\mathrm{loL}=4 \mathrm{~mA}$		All		0.4	V	
Input clamp voltage	V_{10}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{aligned}$		All		-1.5	V	
Low level input current	IL1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	$\underline{2}$	$\begin{aligned} & \hline 01,03,04, \\ & 05,08,10 \\ & \hline \end{aligned}$	-. 030	-. 360	mA	
			2/3/	06, 07	-. 075	-. 400		
	IL2			02, 09	-. 030	-. 400		
			3/	06	-. 075	-. 420		
				07	-. 075	-. 420		
	IL3		$4 /$$4 /$	01, 08	-. 060	-. 720		
				03, 04, 10	-. 060	-. 760		
	IL4		5/	$\begin{gathered} 01,02,03, \\ 04,05,08, \\ 09,10 \end{gathered}$	-. 060	-. 800		
	IL5		6/	02	-. 060	-1.20		
	IL6		4/	05	-. 12	-1.52		
	1L7		$\begin{array}{r} \overline{6} / \\ \underline{6} / \\ \hline \end{array}$	05	-. 120	-1.60		
				09	-. 060	-1.60		
High level input current	$1_{1 H 1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	7/	All		20	$\mu \mathrm{A}$	
	1 1H2	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	7/	All		100		
	І ${ }_{\text {¢ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$	8/	02, 09		40		
	$1{ }_{1 / 4}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$	8/	02, 09		200		
	1 1H5	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	9/	$\begin{gathered} \hline 01,02,03, \\ 04,05,08, \\ 10 \\ \hline \end{gathered}$		60		
	І\|н6	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$	9/	$\begin{gathered} \hline 01,02,03, \\ 04,05,08, \\ 10 \end{gathered}$		300		
	$1{ }_{1 H 7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	10/	$\begin{aligned} & 01,03,04, \\ & 08,09,10 \\ & \hline \end{aligned}$		80		
	І\|н8	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	10/	$\begin{aligned} & 01,03,04, \\ & 08,09,10 \end{aligned}$		400		
	ІІн	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	6/	05		120		
	$1{ }_{1+10}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	6/	05		600		
	$1{ }_{1+11}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	4/	05		160		
	1_{1+12}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=5.5 \mathrm{~V}$	4/	05		800		

See footnotes at end of table.

MIL-M-38510/301E

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions 1/ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified	Device types	Limits		Unit
				Min	Max	
Short circuit output current	los	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \quad 11 / \\ \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \end{array} \\ & \hline 1 \end{aligned}$	$\begin{gathered} \hline 01,02,03, \\ 05,06,07, \\ 08,09 \\ \hline \end{gathered}$	-15	-100	mA
			04, 10	-15	-130	
Supply current	ICC	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	$\begin{gathered} 01,02,03, \\ 04,05,08 \\ 09,10 \end{gathered}$		8	mA
			06		26	
			07		18	
Maximum clock frequency	$\mathrm{f}_{\text {MAX }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \% \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \pm 5 \% \end{aligned}$	$\begin{gathered} 01,03,04 \\ 05,06,07 \\ 08,10 \end{gathered}$	25		MHz
			02, 09	20		
Propagation delay to high logic level (clear or preset to output)	tplh1		$\begin{aligned} & 01,03,04 \\ & 05,08,10 \\ & \hline \end{aligned}$	5	32	ns
			02, 09	5	39	
			07	5	51	
Propagation delay to low logic level (clear or preset to output)	tpHL1		$\begin{aligned} & 01,03,04, \\ & 05,08,10 \end{aligned}$	5	40	ns
			02, 09	5	59	
			06	5	52	
			07	5	55	
Propagation delay to high logic level (clock to output)	tplH2		$\begin{aligned} & 01,03,04, \\ & 05,08,10 \end{aligned}$	5	32	ns
			02, 09	5	39	
			06	5	47	
			07	5	46	
Propagation delay to low logic level (clock to output)	tpHL2		$\begin{aligned} & \hline 01,03,04, \\ & 05,08,10 \end{aligned}$	5	42	ns
			02, 09	5	59	
			06	5	52	
			07	5	55	

1/ See table III for complete terminal conditions.
$\underline{\underline{2}} /$ Input condition - J or K (device types 01, 03, 04, 05, 08, and 10); and D (device types 06 and 07).
3/ Input condition - D (device type 02); clock or clear (device types 06 and 07); and J or $\overline{\mathrm{K}}$ (device type 09).
4/ Input condition-Clock.
5/ Input condition - Clear or preset (device types 03 and 10); clear (device types 01 and 08); preset or clock (device types 02 and 09); and preset (device types 04 and 05).
6/ Input condition-Clear.
I/ Input condition - J or K (device types 01, 03, 04, 05, 08, and 10); D (device type 02); J or \bar{K} (device type 09); and D, clear, clock (device types 06 and 07).
8/ Input condition - Preset or clock.
$\underline{\underline{9}} /$ Input condition - Clear or preset (device types 03 and 10); clear (device types 01, 02, and 08); and preset (device types 04 and 05).
10/ Input condition - Clock (device type 01, 03, 04, 08, and 10); and clear (device type 09).
11/ Not more than one output should be shorted at a time.

MIL-M-38510/301E
TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters	$1^{*}, 2,3,7,9$,	$1^{*}, 2,3,9$
	10,11	
Group A test requirements	$1,2,3,7,8$,	$1,2,3,7,8$,
	$9,10,11$	$9,10,11$
Group C end-point electrical parameters	$1,2,3$,	$1,2,3$
	$9,10,11$	
Group D end-point electrical parameters	$1,2,3$	$1,2,3$

*PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

Pin number	Pin symbols device type 01		Pin symbols device type 02		Pin symbols device type 03		Pin symbols device type 04		Pin symbols device type 05	
	$\begin{gathered} \hline \text { Cases } \\ 2, \mathrm{X} \end{gathered}$	Cases A, B, C, and D	$\begin{gathered} \hline \text { Cases } \\ 2, \mathrm{x} \end{gathered}$	Cases A, B, C, and D	$\begin{gathered} \hline \text { Cases } \\ 2, \mathrm{X} \end{gathered}$	Cases E, F	$\begin{gathered} \text { Cases } \\ 2, X \end{gathered}$	Cases A, B, C, and D	$\begin{gathered} \hline \text { Cases } \\ 2, X \end{gathered}$	Cases A, B, C, and D
1	NC	CLK1	NC	CLR1	NC	CLK1	NC	CLK1	NC	CLR1
2	CLK1	CLR1	CLR1	1D	CLK1	1K	CLK1	1K	CLR	1K
3	CLR1	1K	1D	CLK1	1K	1 J	1K	1 J	1K	1 J
4	1K	$\mathrm{V}_{\text {c }}$	CLK1	PS1	1 J	PS1	1 J	PS1	1 J	PS1
5	NC	CLK2	NC	1Q	PS1	1Q	NC	1Q	NC	1Q
6	V_{cc}	CLR2	PS1	1Q	NC	1Q	PS1	1Q	PS1	1Q
7	NC	2 J	NC	GND	1Q	$2 \bar{Q}$	NC	GND	NC	GND
8	CLK2	$2 \bar{Q}$	1Q	$2 \bar{Q}$	$1 \overline{\mathrm{Q}}$	GND	1Q	$2 \bar{Q}$	1Q	$2 \bar{Q}$
9	CLR2	2Q	$1 \bar{Q}$	2Q	$2 \bar{Q}$	2Q	$1 \overline{\mathrm{Q}}$	2Q	$1 \overline{\mathrm{Q}}$	2Q
10	2 J	2K	GND	PS2	GND	PS2	GND	PS2	GND	PS2
11	NC	GND	NC	CLK2	NC	2 J	NC	2 J	NC	2 J
12	$2 \bar{Q}$	1Q	$2 \bar{Q}$	2D	2Q	2K	$2 \bar{Q}$	2K	$2 \bar{Q}$	2K
13	2Q	$1 \overline{\mathrm{Q}}$	2Q	CLR2	PS2	CLK2	2Q	CLK2	2Q	CLK
14	2K	1 J	PS2	$\mathrm{V}_{\text {c }}$	2 J	CLR2	PS2	V_{cc}	PS2	$\mathrm{V}_{\text {cc }}$
15	NC		NC		2K	CLR1	NC		NC	
16	GND		CLK2		NC	$\mathrm{V}_{\text {c }}$	2 J		2 J	
17	NC		NC		CLK2		NC		NC	
18	1Q		2D		CLR2		2 K		2K	
19	1Q		CLR2		CLR1		CLK2		CLK	
20	1 J		V_{cc}		$\mathrm{V}_{\text {c }}$		V_{cc}		$\mathrm{V}_{\text {c }}$	

FIGURE 1. Terminal connections.

Pin number	Pin symbols device type 06		Pin symbols device type 07		Pin symbols device type 08		Pin symbols device type 09		Pin symbols device type 10	
	$\begin{gathered} \text { Cases } \\ 2, X \end{gathered}$	$\begin{aligned} & \text { Cases } \\ & \mathrm{E}, \mathrm{~F} \end{aligned}$	$\begin{gathered} \text { Cases } \\ 2, X \end{gathered}$	Cases E, F	$\begin{gathered} \text { Cases } \\ 2, \mathrm{X} \end{gathered}$	Cases A, B, C and D	$\begin{gathered} \text { Cases } \\ 2, X \end{gathered}$	Cases E, F	$\begin{gathered} \text { Cases } \\ 2, X \end{gathered}$	Cases E, F
1	NC	CLR	NC	CLR	NC	1 J	NC	1CLR	NC	1CLK
2	CLR	1Q	CLR	1Q	1 J	1 Q	1CLR	1J	1CLK	1PS
3	1Q	1D	1Q	$1 \overline{\mathrm{Q}}$	$1 \overline{\mathrm{Q}}$	1Q	1 J	1 K	1PS	1CLR
4	1D	2D	$1 \overline{\mathrm{Q}}$	1D	1Q	1K	1 K	1CLK	1CLR	1 J
5	2D	2Q	1D	2D	NC	2Q	1CLK	1PS	1 J	$\mathrm{V}_{c c}$
6	NC	3D	NC	$2 \bar{Q}$	1K	$2 \bar{Q}$	NC	1Q	NC	2CLK
7	2Q	3Q	2D	2Q	NC	GND	1PS	1 $\overline{\mathrm{Q}}$	V_{cc}	2PS
8	3D	GND	$2 \bar{Q}$	GND	2Q	2 J	1Q	GND	2CLK	2CLR
9	3Q	CLK	2Q	CLK	$2 \bar{Q}$	2CLK	1 Q	$2 \bar{Q}$	2PS	2 J
10	GND	4Q	GND	3Q	GND	2CLR	GND	2Q	2CLR	$2 \bar{Q}$
11	NC	4D	NC	$3 \overline{\mathrm{Q}}$	NC	2K	NC	2PS	NC	2Q
12	CLK	5Q	CLK	3D	2 J	1CLK	$2 \bar{Q}$	2CLK	2 J	2K
13	4Q	5D	3Q	4D	2CLK	1CLR	2Q	$2 \bar{K}$	$2 \bar{Q}$	GND
14	4D	6 D	$3 \bar{Q}$	$4 \overline{\mathrm{Q}}$	2CLR	$\mathrm{V}_{\text {cc }}$	2PS	2 J	2Q	$1 \overline{\mathrm{Q}}$
15	5Q	6Q	3D	4Q	NC		2CLK	2CLR	2 K	1Q
16	NC	V_{cc}	NC	V_{cc}	2K		NC	V_{CC}	NC	1K
17	5D		4D		NC		$2 \bar{K}$		GND	
18	6D		$4 \bar{Q}$		1CLK		2J		$1 \bar{Q}$	
19	6 Q		4Q		1CLR		2CLR		1 Q	
20	$\mathrm{V}_{c c}$		V_{CC}		$\mathrm{V}_{C \mathrm{C}}$		$\mathrm{V}_{C C}$		1K	

FIGURE 1. Terminal connections - Continued.
(Pin numbers shown apply to the DIP and flat packs only) DEVICE TYPE 01

FIGURE 2. Logic Diagrams.
(Pin numbers shown apply to the DIP and flat packs only)

FIGURE 2. Logic Diagrams - Continued.
(Pin numbers shown apply to the DIP and flat packs only)

DEVICE TYPE 06

FIGURE 2. Logic Diagrams - Continued.
(Pin numbers shown apply to the DIP and flat packs only)

DEVICE TYPE 07

FIGURE 2. Logic Diagrams - Continued.

MIL-M-38510/301E

(Pin numbers shown apply to the DIP and flat packs only)

FIGURE 2. Logic Diagrams - Continued.

DEVICE TYPE 01

INPUTS				OUTPUTS	
CLEAR	CLOCK	J	K	Q	$\overline{\mathrm{Q}}$
L	X	X	X	L	H
H	\downarrow	L	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H	TOGGLE^{\prime}	
H	H	X	X	Q_{0}	
Q_{0}					

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\downarrow=$ transition from high to low level
$\mathrm{Q}_{0}=$ the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.

DEVICE TYPE 02

INPUTS				OUTPUTS	
PRESET	CLEAR	CLOCK	D	Q	$\overline{\mathrm{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H^{*}	H^{*}
H	H	\uparrow	H	H	L
H	H	\uparrow	L	L	H
H	H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

$\mathrm{H}=$ high level (steady state)
$L=$ low level (steady state)
X = irrelevant
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

FIGURE 3. Truth tables.

MIL-M-38510/301E

DEVICE TYPES 03 AND 10

INPUTS						OUTPUTS	
PRESET	CLEAR	CLOCK	J	K	Q	$\overline{\mathrm{Q}}$	
L	H	X	X	X	H	L	
H	L	X	X	X	L	H	
L	L	X	X	X	H^{*}	H^{*}	
H	H	\downarrow	L	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$	
H	H	\downarrow	H	L	H	L	
H	H	\downarrow	L	H	L	H	
H	H	\downarrow	H	H	TOGGLE		
H	H	H	X	X	Q_{0}		
$\overline{\mathrm{Q}}_{0}$							

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\downarrow=$ transition from high to low level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

DEVICE TYPE 04

INPUTS				OUTPUTS	
PRESET	CLOCK	J	K	Q	$\overline{\mathrm{Q}}$
L	H	X	X	H	L
H	\downarrow	L	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H	TOGGLE^{2}	
H	H	X	X	Q_{0}	
$\overline{\mathrm{Q}}_{0}$					

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\downarrow=$ transition from high to low level
$Q_{0}=$ the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.

FIGURE 3. Truth tables - Continued.

INPUTS						OUTPUTS	
PRESET	CLEAR	CLOCK	J	K	Q	$\overline{\mathrm{Q}}$	
L	H	X	X	X	H	L	
H	L	X	X	X	L	H	
L	L	X	X	X	H^{*}	H^{*}	
H	H	\downarrow	L	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$	
H	H	\downarrow	H	L	H	L	
H	H	\downarrow	L	H	L	H	
H	H	\downarrow	H	H	TOGGLE		
H	H	H	X	X	Q_{0}		
$\overline{\mathrm{Q}}_{0}$							

$\mathrm{H}=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
X = irrelevant
$\downarrow=$ transition from high to low level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \downarrow clock transition.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

DEVICE TYPE 06

INPUTS			OUTPUT
CLEAR	CLOCK	D	Q
L	X	X	L
H	\uparrow	H	H
H	\uparrow	L	L
H	L	X	Q_{0}

$\mathrm{H}=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
X = irrelevant
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.

FIGURE 3. Truth tables - Continued.

MIL-M-38510/301E

DEVICE TYPE 07

INPUTS			OUTPUT	
CLEAR	CLOCK	D	Q	$\overline{\mathrm{Q}}$
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	L
H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.

DEVICE TYPE 08

INPUTS				OUTPUTS	
CLEAR	CLOCK	J	K	Q	$\overline{\mathrm{Q}}$
L	X	X	X	L	H
H	\uparrow	L	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$
H	\uparrow	H	L	H	L
H	\uparrow	L	H	L	H
H	\uparrow	H	H	TOGGLE	

$H=$ high level (steady state)
$L=$ low level (steady state)
$X=$ irrelevant
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated input conditions
were established.
TOGGLE: Each output changes to the complement of its
previous level on each clock transition.

FIGURE 3. Truth tables - Continued.

DEVICE TYPE 09

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	J	$\overline{\mathrm{K}}$	Q	$\overline{\mathrm{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	\uparrow	L	L	L	
H	H	\uparrow	H	L	TOGGLE	
H	H	\uparrow	L	H	Q_{0}	$\overline{\mathrm{Q}}_{0}$
H	H	\uparrow	H	H	H	L
H	H	L	X	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X = irrelevant
$\uparrow=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each \uparrow clock transition.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

FIGURE 3. Truth tables - Continued.

VOLTAGE WAVEFORM

NOTES:

1. Clear inputs dominate regardless of the state of clock or J-K inputs.
2. Clear input pulse characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clear) $=30 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.
3. All diodes are 1 N3064, or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
6. Clock input pulse characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{\mathrm{p}}($ clock $)=25 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.

FIGURE 4. Clear switching time test circuit and waveforms for device types 01 and 08.

VOLTAGE WAVEFORMS

NOTES:

1. Clock input characteristics for $t_{\text {PLh, }} \mathrm{t}_{\text {phL }}$ (clock to output), $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $=25 \mathrm{~ns}, \mathrm{PRR} \leq 1$ MHz . When testing $\mathrm{f}_{\text {max }}$ the clock input characteristics are $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $\leq 25 \mathrm{~ns}$, and PRR $=$ see table III.
2. All diodes are 1 N3064, or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
4. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.

FIGURE 5. Synchronous switching test circuit for device types 01 and 08.

VOLTAGE WAVEFORMS

NOTES:

1. Clear and preset inputs dominate regardless of the state of clock or D inputs.
2. All diodes are 1 N 3064 , or equivalent.
3. Clear or preset input pulse characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clear) $=\mathrm{t}_{\mathrm{p}}$ (preset) $=35 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
6. When testing clear to output switching, preset input shall have a logical "1" voltage applied. When testing preset to output switching, clear input shall have a logical "1" voltage applied (see table III).

FIGURE 6. Clear and preset switching test circuit and waveforms for device type 02.

VOLTAGE WAVEFORM

NOTES:

1. Clock input pulse has the following characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $=30 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$. When testing $\mathrm{f}_{\text {MAX }}, \mathrm{PRR}=$ see table III, t_{p} (clock) $\leq 30 \mathrm{~ns}$, and $\mathrm{t}_{0}=\mathrm{t}_{1} \leq 6 \mathrm{~ns}$.
2. Dinput has the following characteristics: $V_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=20 \mathrm{~ns}, \mathrm{t}_{\text {hold }}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=25 \mathrm{~ns}$, and PRR is 50% of the clock PRR. For $f_{\text {MAX }}, \mathrm{t}_{0}=\mathrm{t}_{1} \leq 6 \mathrm{~ns}$.
3. All diodes are 1 N 3064 , or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.

FIGURE 7. Synchronous switching test circuit (high-level data) for device type 02.

VOLTAGE WAVEFORM

NOTES:

1. Clock input pulse has the following characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $=30 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.
2. D input has the following characteristics: $V_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=20 \mathrm{~ns}$, $\mathrm{t}_{\text {hold }}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=25 \mathrm{~ns}$, and PRR is 50% of the clock PRR.
3. All diodes are 1 N3064, or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 k \Omega \pm 5 \%$.

FIGURE 8. Synchronous switching test circuit (low-level data) for device type 02.

VOLTAGE WAVEFORM

NOTES:

1. Clear or preset inputs dominate regardless of the state of clock or J-K inputs.
2. Clear or preset input has the following characteristics: $V_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clear $)=\mathrm{t}_{\mathrm{p}}($ preset $)=30 \mathrm{~ns}$, $P R R \leq 1 M H z$, and $Z_{\text {out }} \approx 50 \Omega$.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
4. $R_{L}=2 k \Omega \pm 5 \%$.
5. All diodes are 1 N 3064 , or equivalent.
6. When testing clear to output switching, preset input shall have a logical "1" voltage applied. When testing preset to output switching, clear input shall have a logical "1" voltage applied. (see table III).
7. Clock input pulse characteristics: t_{p} (clock) $\geq 25 \mathrm{~ns}, \mathrm{~V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.

FIGURE 9. Clear and preset switching test circuit and waveforms for device types 03,05 , and 10.

VOLTAGE WAVEFORMS

NOTES:

1. Clock input characteristics for $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ (clock to output), $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $=25 \mathrm{~ns}, \mathrm{PRR} \leq 1$ MHz . When testing $\mathrm{f}_{\text {max }}$ the clock input characteristics are $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $\leq 25 \mathrm{~ns}$, and $\mathrm{PRR}=$ see table III.
2. All diodes are 1 N 3064 , or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
4. $R_{L}=2 k \Omega \pm 5 \%$.

FIGURE 10. Synchronous switching test circuit for device types 03,05 , and 10.

VOLTAGE WAVEFORM

NOTES:

1. Preset inputs dominate regardless of the state of clock or J-K inputs.
2. Preset input pulse characteristics: $\mathrm{V}_{\mathrm{gen}}=3 \mathrm{~V}, \mathrm{t}_{0} \leq 15 \mathrm{~ns}, \mathrm{t}_{1} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (preset) $=30 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.
3. All diodes are 1 N3064, or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
6. Clock input pulse characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{\mathrm{p}}($ clock $) \geq 25 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.

FIGURE 11. Preset switching test circuit and waveforms for device type 04.

VOLTAGE WAVEFORMS

NOTES:

1. Clock input characteristics for $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ (clock to output), $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=25 \mathrm{~ns}$, PRR $\leq 1 \mathrm{MHz}$. When testing $\mathrm{f}_{\mathrm{MAX}}$ the clock input characteristics are $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $\leq 25 \mathrm{~ns}$, and $\operatorname{PRR}=$ see table III.
2. All diodes are 1 N3064, or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
4. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.

FIGURE 12. Synchronous switching test circuit for device type 04.

NOTES:

1. Clear input dominates regardless of the state of clock or D inputs.
2. All diodes are 1 N3064, or equivalent.
3. Clear input pulse characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clear) $=35 \mathrm{~ns}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 k \Omega \pm 5 \%$.
6. \bar{Q} output applies to device type 07 only.
7. Clock input pulse characteristics: $\mathrm{t}_{\mathrm{p}}($ clock $) \geq 25 \mathrm{~ns}, \mathrm{~V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.

FIGURE 13. Asynchronous switching test circuit for device types 06 and 07.

NOTES:

1. Clock input pulse has the following characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=30 \mathrm{~ns}$, and $\mathrm{PRR} \leq 1$ MHz . When testing $\mathrm{f}_{\text {MAX }}, \operatorname{PRR}=$ see table III, $\mathrm{t}_{\mathrm{p}}($ clock $) \leq 30 \mathrm{~ns}$, and $\mathrm{t}_{0}=\mathrm{t}_{1} \leq 6 \mathrm{~ns}$.
2. D input has the following characteristics: $V_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=20 \mathrm{~ns}$, $\mathrm{t}_{\text {hold }}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=25 \mathrm{~ns}$, and PRR is 50% of the clock PRR. For $f_{\text {max }}, t_{0}=t_{1} \leq 6 n s$.
3. All diodes are 1 N3064, or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
6. \bar{Q} output applies to device type 07 only.

FIGURE 14. Synchronous switching test circuit (high-level data) for device types 06 and 07.

VOLTAGE WAVEFORM

NOTES:

1. Clock input pulse has the following characteristics: $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}(\mathrm{clock})=30 \mathrm{~ns}$, and $\mathrm{PRR} \leq 1$ MHz .
2. D input has the following characteristics: $V_{\text {gen }}=3 V, t_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=20 \mathrm{~ns}$, $\mathrm{t}_{\text {hold }}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=25 \mathrm{~ns}$, and PRR is 50% of the clock PRR.
3. All diodes are 1 N 3064 , or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
5. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
6. \bar{Q} output applies to device type 07 only.

FIGURE 15. Synchronous switching test circuit (low-level data) for device types 06 and 07.

NOTES:

1. Clock input characteristics for $t_{\text {PLH }}, t_{\text {PHL }}$ (clock to output), $V_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}$ (clock) $=25 \mathrm{~ns}$, and PRR \leq 1 MHz . When testing $\mathrm{f}_{\mathrm{MAx}}$, the clock input characteristics are $\mathrm{V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $) \leq 25 \mathrm{~ns}$, and $\mathrm{PRR}=$ see table III,.
2. All diodes are 1 N 3064 , or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
4. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.

FIGURE 16. Synchronous switching test circuit for device type 09.

> VOLTAGE WAVEFORM

NOTES:

1. Clear or preset inputs dominate regardless of the state of clock or J- $\overline{\mathrm{K}}$ inputs.
2. Clear or preset input has the following characteristics: $V_{\text {gen }}=3 \mathrm{~V}, \mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{0} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clear $)=\mathrm{t}_{\mathrm{p}}($ preset $)=30 \mathrm{~ns}$, $\mathrm{PRR} \leq 1 \mathrm{MHz}$, and $\mathrm{Z}_{\text {out }} \approx 50 \Omega$.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 10 \%$ (including jig and probe capacitance).
4. $R_{L}=2 \mathrm{k} \Omega \pm 5 \%$.
5. All diodes are 1 N 3064 , or equivalent.
6. When testing clear to output switching, preset input shall have a logical "1" voltage applied. When testing preset to output switching, clear input shall have a logical "1" voltage applied. (see table III).
7. Clock input pulse characteristics: $\mathrm{t}_{\mathrm{p}}($ clock $) \geq 25 \mathrm{~ns}, \mathrm{~V}_{\text {gen }}=3 \mathrm{~V}, \mathrm{PRR} \leq 1 \mathrm{MHz}$.

FIGURE 17, Clear and preset switching test circuit and waveforms for device type 09.

TABLE III. Group A inspection for device type 01 and 08.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open)

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	Cases 1/		3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit
			2, X	** 18	19	6	20	13	14	12	9	8	16	10	4	3	2				
			$\begin{gathered} \text { Case } \\ A, B, C, D \end{gathered}$	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14				
				** 12	13	4	14	9	10	8	6	5	11	7	3	2	1				
			Test no.	CLK1	CLR1	K1	$\mathrm{V}_{C C}$	CLK2	CLR2	J2	Q2	Q2	K2	GND	Q1	Q1	J1		Min	Max	
1$\mathrm{Tc}=25^{\circ} \mathrm{C}$	V_{OH}	3006	1	2.0 V	0.7 V	2.0 V	4.5 V							GND		$-.4 \mathrm{~mA}$	2.0 V	Q1	2.5		V
			2	$\underline{\underline{2}}$	2.0 V	2.0 V	"							"		$-.4 \mathrm{~mA}$	0.7 V	Q1	"		"
			3	2/	2.0 V	0.7 V	"							"	-. 4 mA		2.0 V	Q1	"		"
			4				"	2.0 V	0.7 V	2.0 V	$-.4 \mathrm{~mA}$		2.0 V	"				Q2	"		"
			5				"	$\underline{2}$	2.0 V	0.7 V	$-.4 \mathrm{~mA}$		2.0 V	"				Q2	"		"
			6				"	"	"	2.0 V		-. 4 mA	0.7 V	"				Q2	"		"
	VoL	3007	7				"	"	"	2.0 V	4 mA		0.7 V	"				Q2		0.4	"
			8				"	"	"	0.7 V		4 mA	2.0 V	"				Q2		"	"
			9				"	2.0 V	0.7 V	2.0 V		4 mA	2.0 V	"				Q2		"	"
			10	2.0 V	0.7 V	2.0 V	"							"	4 mA		2.0 V	Q1		"	"
			11	$\underline{2 /}$	2.0 V	2.0 V	"							"	4 mA		0.7 V	Q1		"	
			12	$\underline{2} /$	2.0 V	0.7 V	"							"		4 mA	2.0 V	Q1		"	
	$\mathrm{V}_{\text {IC }}$		13	-18 mA			"							"				CLK1		-1.5	"
			14		-18 mA		"							"				CLR1		"	"
			15			-18mA	"							"				K1		"	"
			16				"	-18mA						"				CLK2		"	"
			17				"		-18mA					"				CLR2		"	"
			18				"			-18mA				"				J2		"	"
			19				"						-18mA	"				K2		"	"
			20				"							"			-18mA	J1		"	"
	$\mathrm{I}_{\text {L1 }}$	$\begin{gathered} 3009 \\ " \\ " \\ " \end{gathered}$	21	3/	4.5 V	0.4 V	5.5 V							"			4.5 V	K1	4/	4/	mA
			22	4.5 V	3/	4.5 V	"							"			0.4 V	J1	"	"	,
			23				"	4.5 V	3/	0.4 V			4.5 V	"				J2	"	"	"
			24				"	3/	4.5 V	4.5 V			0.4 V	"				K2	"	"	"
	$I_{\text {IL3 }}$	"	25	0.4 V	3/	4.5 V	"							"			4.5 V	CLK1	"	"	"
		"	26				"	0.4 V	3/	4.5 V			4.5 V	"				CLK2	"	"	"
	$I_{\text {IL4 }}$	"	27	4.5 V	0.4 V	4.5 V	"							"			4.5 V	CLR1	"	"	"
		"	28				"	4.5 V	0.4 V	4.5 V			4.5 V	"				CLR2	"	"	"
	I_{1+1}	3010	29	GND	GND	2.7 V	"							"			4.5 V	K1		20	$\mu \mathrm{A}$
			30	GND	GND	4.5 V	"							"			2.7 V	J1		"	"
			31				"	GND	GND	2.7 V			4.5 V	"				J2		"	"
			32				"	GND	GND	4.5 V			2.7 V	"				K2		"	"
	$\mathrm{I}_{\mathrm{H} 2}$	"	33				"	GND	GND	4.5 V			5.5 V	"				K2		100	"
		"	34				"	GND	GND	5.5 V			4.5 V	"				J2		"	"
		"	35	GND	GND	5.5 V	"							"			4.5 V	K1		"	"
		"	36	GND	GND	4.5 V	"							"			5.5 V	J1		"	"
	$\mathrm{I}_{\mathrm{H} 5}$	"	37	GND	2.7 V	4.5 V	"							"			GND	CLR1		60	"
		"	38				"	GND	2.7 V	GND			4.5 V	"				CLR2		60	"
	$\mathrm{I}_{\mathbf{H 6}}$	"	39				"	GND	5.5 V	GND			4.5 V	"				CLR2		300	"
		"	40	GND	5.5 V	4.5 V	"										GND	CLR1		300	"

See footnotes at end of device types 01 and 08.

TABLE III. Group A inspection for device type 01 and 08 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

TABLE III. Group A inspection for device type 01 and 08 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	2, X	** 18	19	6	20	13	14	12	9	8	16	10	4	3	2	Measured terminal	Limits		Unit
			$\begin{gathered} \text { Case } \\ \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \end{gathered}$	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14				
				** 12	13	4	14	9	10	8	6	5	11	7	3	2	1				
			Test no.	CLK1	CLR1	K1	$\mathrm{V}_{\text {cc }}$	CLK2	CLR2	J2	Q2	Q2	K2	GND	Q1	Q1	J1		Min	Max	
$\begin{gathered} 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & f_{\text {MAX }} \\ & \underline{10 /} \end{aligned}$	Fig. 4	80	IN	2.7 V	2.7 V	5.0 V							GND	OUT		2.7 V	Q1	25		MHz
			81	IN	2.7 V	2.7 V	"							"		OUT	2.7 V	Q1			
		.	82				"	IN	2.7 V	2.7 V	OUT		2.7 V	"				Q2	"		"
			83				"	IN	2.7 V	2.7 V		OUT	2.7 V	"				Q2	"		"
	tpLH1	$\begin{aligned} & \hline 3003 \\ & \text { Fig. } 4 \end{aligned}$	84				"	IN	IN	2.7 V	OUT		GND	"				CLR2 to Q2	5	21	ns
			85	IN	IN	GND	"							"		OUT	2.7 V	CLR1 to $\overline{\text { Q }} 1$	"	21	"
	$\mathrm{tPHL1}$	"	86	IN	IN	GND	"							"	OUT		2.7 V	CLR1 to Q1	"	28	"
			87				"	IN	IN	2.7 V		OUT	GND	"				CLR2 to Q2	"	28	"
	$\mathrm{t}_{\text {PLH2 }}$	3003 Fig. 5	88				"	IN	2.7 V	2.7 V		OUT	2.7 V	"				CLK2 to Q2	"	22	"
			89				"	IN	2.7 V	2.7 V	OUT		2.7 V	"				CLK2 to $\overline{\mathrm{Q}} 2$	"		"
			90	IN	2.7 V	2.7 V	"							"	OUT		2.7 V	CLK1 to Q1	"	"	"
			91	"	,	,	"							"		OUT	2.7 V	CLK1 to Q1	"	"	"
	$\mathrm{t}_{\text {PHL2 }}$	3003 Fig. 5	92	"	"	"	"							"		OUT	2.7 V	CLK1 to $\overline{\mathrm{Q}} 1$	"	30	"
			93	"	"	"	"							"	OUT		2.7 V	CLK1 to Q1	"	"	"
			94				"	IN	2.7 V	2.7 V	OUT		2.7 V	"				CLK2 to Q]2	"	"	"
			95				"	IN	2.7 V	2.7 V		OUT	2.7 V	"				CLK2 to Q2	"	"	"
$\begin{array}{c\|} \hline 10 \\ \mathrm{TC}=+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & f_{\text {MAX }} \\ & 101 \end{aligned}$	Fig. 4	96-99	Same tests and terminal conditions as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$															25		$\underset{"}{\mathrm{MHz}}$
	tpLH1	$\begin{aligned} & \hline 3003 \\ & \text { Fig. } 4 \\ & \hline \end{aligned}$	100-101																5	32	ns
	$\mathrm{t}_{\text {PHL1 }}$	$\begin{aligned} & \hline 3003 \\ & \text { Fig. } 4 \\ & \hline \end{aligned}$	102-103																5	40	"
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{array}{r} 3003 \\ \text { Fig. } 5 \\ \hline \end{array}$	104-107																5	32	"
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{array}{r} 3003 \\ \text { Fig. } 5 \\ \hline \end{array}$	108-111																5	42	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$																				

* Terminal numbers for device type 01.
** Terminal numbers for device type 08.
1/ Case X and 2 pins not referenced are NC.
ㄹ/́ㅢ

2.5 V minumum/5.5 V maximum

3/

2.5 V minumum $/ 5.5 \mathrm{~V}$ maximum

TABLE III. Group A inspection for device type 01 and 08 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

4/ $I_{\text {IL }}$ limits in $m A$ are as follows:

IIL1 *	Min/Max limits for CKT					
	A	B	C	D	E	
	$-.075 /-.250$	$-.03 /-.30$	$-.11 /-.25$	$-.12 /-.36$	$-.12 /-.36$	

I IL3 *	Min/Max limits for CKT					
	A	B	C	D	E	
	$-.15 /-.60$	$-.06 /-.60$	$-.15 /-.56$	$-.29 /-.72$	$-.24 /-.72$	

I IL4 *	Min/Max limits for CKT					
	A	B	C	D	E	
	$-.16 /-.70$	$-.06 /-.70$	$-.29 /-.65$	$-.20 /-.80$	$-.12 /-.72$	

5/ los limits are as follows:
Test nos. 46 and 48: CKT's A, B, C - -7.5/-50

6/ Input voltages shown are $A=2.0$ volts minimum and $B=0.7$ volts maximum.
7/ Tests shall be performed in sequence, attributes data only.
8/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$.
9/ These tests may be performed as shown in table III or alternately as follows:

Test no.	CLK1	CLR1	K1	$\mathrm{V}_{C C}$	CLK2	CLR2	J2	Q2	Q2	K2	GND	Q1	Q1	J1
72A	A	A	A	4.5 V	B	A	A	H	L	A	GND	L	H	A
72B	B	"	"	"	B	"	"	H	L	"	"	H	L	"
72C	B	"	"	"	A	"	"	H	L	"	"	H	L	"
78A	A	"	"	"	B	"	"	L	H	"	"	H	L	"
78B	B	"	"	"	B	"	"	L	H	"	"	L	H	"
78C	B	"	"	"	A	"	"	L	H	"	"	L	H	"

10/ $f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 02
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{array}{c\|} \hline \text { Cases 1/ } \\ 2, \mathrm{X} \end{array}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit
			$\begin{array}{c\|} \hline \text { Cases } \\ \text { A,B,C,D } \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
			Test no.	CLR1	D1	CLK1	PR1	Q1	Q1	GND	Q2	Q2	PR2	CLK2	D2	CLR2	V_{Cc}		Min	Max	
1 TC $=25^{\circ} \mathrm{C}$	V_{OH}	$\begin{gathered} \hline 3006 \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ \hline " \\ \hline \end{gathered}$	1	0.7 V	2.0 V	GND	2.0 V		$-.4 \mathrm{~mA}$	GND							4.5 V	Q1	2.5		V
			2	2.0 V	"	GND	0.7 V	-. 4 mA		"							"	Q1	"		"
			3	"	"	$\underline{\underline{1} /}$	2.0 V	-. 4 mA		"							"	Q1	"		"
			4	"	0.7 V	$\underline{2}$	2.0 V		-. 4 mA	"							"	Q1	"		"
			5							"		$-.4 \mathrm{~mA}$	0.7 V	GND	2.0 V	2.0 V	"	Q2	"		"
			6							"	-. 4 mA		2.0 V	GND	2.0 V	0.7 V	"	Q2	"		"
			7							"	$-.4 \mathrm{~mA}$		"	$\underline{2}$	0.7 V	2.0 V	"	Q2	"		"
			8							"		$-.4 \mathrm{~mA}$	"	$\underline{\underline{1 /}}$	2.0 V	2.0 V	"	Q2	"		"
	VoL	3007	9	2.0 V	0.7 V	$\underline{\text { 2/ }}$	2.0 V	4 mA		"							"	Q1		0.4	"
			10	"	2.0 V	$\underline{2 /}$	2.0 V		4 mA	"							"	Q1		"	"
			11	"	"	GND	0.7 V		4 mA	"							"	Q1		${ }^{\prime}$	"
			12	0.7 V	"	GND	2.0 V	4 mA		"							"	Q1		"	"
			13							"		4 mA	2.0 V	$\underline{\underline{1}}$	0.7 V	2.0 V	"	Q2		"	"
			14							"	4 mA		2.0 V	$\underline{1} /$	2.0 V	"	"	Q2		"	"
			15							"	4 mA		0.7 V	GND	"	"	"	Q2		"	"
			16							"		4 mA	2.0 V	GND	"	0.7 V	"	Q2		"	"
	$\mathrm{V}_{\text {IC }}$		17	-18 mA						"							"	CLR1		-1.5	"
			18		-18 mA					"							"	D1		"	"
			19			-18 mA				"							"	CLK1		"	"
			20				-18 mA			"							"	PR1		"	"
			21							"			-18 mA				"	PR2		"	"
			22							"				-18 mA			"	CLK2		"	"
			23							"					-18 mA		"	D2		"	"
			24							"						$-18 \mathrm{~mA}$	"	CLR2		"	"
	$\mathrm{I}_{\text {LL2 }}$	$\begin{gathered} 3009 \\ \hline \end{gathered}$	25	4.5 V	0.4 V	4.5 V	GND			"							5.5 V	D1	$3 /$	3/	mA
			26							"			GND	4.5 V	0.4 V	4.5 V	"	D2	"	"	"
	$\mathrm{I}_{1 / 4}$		27	4.5 V	GND	0.4 V	GND			"							"	CLK1	"	"	"
			28	GND	GND	GND	0.4 V			"							"	PR1	"	"	"
			29							"			0.4 V	GND	GND	GND	"	PR2	"	"	"
			30							"			GND	0.4 V	GND	4.5 V	"	CLK2	"	"	"

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } 1 / \prime \\ 2, \mathrm{X} \end{gathered}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit					
			$\begin{gathered} \hline \text { Cases } \\ A, B, C, D \\ \hline \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14									
			Test no.	CLR1	D1	CLK1	PR1	Q1	Q1	GND	Q2	Q2	PR2	CLK2	D2	CLR2	$\mathrm{V}_{\text {cc }}$		Min	Max						
$\begin{gathered} 1 \\ \hline \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	IL5	3009	31	0.4 V	4.5 V	4.5 V	GND			GND							5.5 V	CLR1	$3 /$	$3 /$	mA					
			32										GND	4.5 V	4.5 V	0.4 V		CLR2	3/	3/	mA					
	1_{1+1}	3010	33	GND	2.7 V	4.5 V	4.5 V			"							"	D1		20	$\mu \mathrm{A}$					
			34							"			4.5 V	4.5 V	2.7 V	GND	"	D2		20						
	$\mathrm{I}_{\mathbf{H} 2}$	"	35							"			4.5 V	4.5 V	5.5 V	GND	"	D2		100	"					
			36	GND	5.5 V	4.5 V	4.5 V			"							"	D1		100	"					
	1_{1+3}		37	GND	4.5 V	2.7 V	4.5 V			"							"	CLK1		40	"					
			38	4.5 V	4.5 V	4/	2.7 V			"							"	PR1			"					
			39							"			2.7 V	4/	4.5 V	4.5 V	"	PR2		"	"					
			40							"			4.5 V	2.7 V	4.5 V	GND	"	CLK2		"	"					
	1_{1+4}		41							"			4.5 V	5.5 V	4.5 V	GND	"	CLK2		200	"					
			42							"			5.5 V	4/	4.5 V	4.5 V	"	PR2			"					
			43	4.5 V	4.5 V	4/	5.5 V			"							"	PR1		"	"					
			44	GND	4.5 V	5.5 V	4.5 V			"							"	CLK1		"	"					
	$1{ }_{1+5}$	"	45	2.7 V	GND	4/	4.5 V			"							"	CLR1		60	"					
		"	46							"			4.5 V	4/	GND	2.7 V	"	CLR2		60	"					
	1_{1+6}	"	47							"			4.5 V	4/	GND	5.5 V	"	CLR2		300	"					
		"	48	5.5 V	GND	4/	4.5 V			"							"	CLR1		300	"					
	Ios	$\begin{gathered} \hline 3011 \\ " \\ " \\ " \end{gathered}$	49	GND					GND	"							"	Q1	-15	-100	mA					
			50				GND	GND		"							"	Q1	"	"	"					
			51							"		GND	GND				"	Q2	"	"	"					
			52							"	GND					GND	"	Q2	"	"	"					
	lcc	$\begin{aligned} & 3005 \\ & 3005 \\ & \hline \end{aligned}$	53	5.5 V	GND	GND	GND			"			GND	GND	GND	5.5 V	"	V_{cc}		8.0	"					
			54	GND	GND	GND	5.5 V			"			5.5 V	GND	GND	GND	"	V_{cc}		8.0	"					
2																										
3																										
$\begin{array}{\|c\|} \hline 7 \underline{5} /, \underline{6} / \\ \text { Tc }=25^{\circ} \mathrm{C} \end{array}$	Truthtabletests	3014	55	B	B	B	B	H	H	GND	H	H	B	B	B	B	4.5 V	All outputs		See 7						
			56	B	"	"	A		"	"	"	L	A		"	B	"									
			57	A	"	"	A		"	"	"	L	A	"	"	A	"	"		"						
			58		"	"	B	H	L	"	L	H	B	"	"	"	"	"		"						
			59	"	"	A	,	"	L	"	L	"	"	A	"	"	"	"		"						
			60	B	"	"	"	"	H	"	H	"	"	"	A	B	"	"		"						

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } 1 / \\ 2, X^{-1} \\ \hline \end{gathered}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit
			$\begin{gathered} \hline \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
			Test no.	CLR1	D1	CLK1	PR1	Q1	Q1	GND	Q2	Q2	PR2	CLK2	D2	CLR2	$\mathrm{V}_{\text {cc }}$		Min	Max	
10	$\begin{gathered} f_{\text {MAX }} \\ 8 / \\ \hline \end{gathered}$	Fig. 8	102-105	Same tests and terminal conditions as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$															20		MHz
	${ }_{\text {tPLH1 }}$	3003 Fig. 6	106-109																5	39	ns
	$\mathrm{t}_{\text {PHL1 }}$	3003 Fig. 6	110-113																"	59	"
	$\mathrm{t}_{\text {PLH2 }}$	3003 Fig. 7	114																"	39	"
		3003 Fig. 8	115																"	"	"
		3003 Fig. 7	116																"	"	"
		3003 Fig. 8	117																"	"	"
	$\mathrm{t}_{\text {PHL2 }}$	3003 Fig. 7	118																"	59	"
		3003 Fig. 8	119																"		"
		3003 Fig. 7	120																"	"	"
		3003 Fig. 8	121																"	"	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$																				

1/ Case X and 2 pins not referenced are NC.
2/ $\quad--2.5 \mathrm{~V}$ minumum $/ 5.5 \mathrm{~V}$ maximum

0 V
3/ IIL limits in mA are as follows:

4/

5/ Input voltages shown are $\mathrm{A}=2.0$ volts minimum and $\mathrm{B}=0.7$ volt maximum.
6/ Tests shall be performed in sequence, attributes data only.
7/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$.
$\overline{8} / f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 04.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } 1 / \\ 2, \mathrm{X} \\ \hline \end{gathered}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit
			$\begin{gathered} \hline \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
			Test no.	CLK1	K1	J1	PR1	Q1	Q1	GND	Q2	Q2	PR2	J2	K2	CLK2	$\mathrm{V}_{C C}$		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	${ }^{3006}$	1	2.0 V	2.0 V	2.0 V	0.7 V	$-.4 \mathrm{~mA}$		GND							4.5 V	Q1	2.5		V
			2	$\underline{2 /}$	2.0 V	0.7 V	2.0 V		-.4 mA	"							"	Q1	"		"
			3	2/	0.7 V	2.0 V	2.0 V	-. 4 mA		"							"	Q1	"		"
			4							"	-. 4 mA		2.0 V	0.7 V	2.0 V	$\underline{2 /}$	"	Q2	"		"
			5							"		$-.4 \mathrm{~mA}$	2.0 V	2.0 V	0.7 V	2/	"	Q2	"		"
			6							"		$-.4 \mathrm{~mA}$	0.7 V	"	2.0 V	2.0 V	"	Q2	"		"
	VoL	3007	7							"	4 mA		0.7 V	"	2.0 V	2.0 V	"	Q2		0.4	"
			8							"	4 mA		2.0 V	"	0.7 V	$\underline{2}$	"	Q2		"	"
			9							"		4 mA	2.0 V	0.7 V	2.0 V	2/	"	Q2		"	"
			10	2.0 V	2.0 V	2.0 V	0.7 V		4 mA	"							"	Q1		"	"
			11	$\underline{\underline{2}}$	0.7 V	2.0 V	2.0 V		4 mA	"							"	Q1		"	"
			12	2/	2.0 V	0.7 V	2.0 V	4 mA									"	Q1		"	"
	$\mathrm{V}_{\text {IC }}$		13	-18 mA						"							"	CLK1		-1.5	"
			14		-18 mA					"							"	K1		"	"
			15			-18 mA				"							"	J1		"	"
			16				-18 mA			"							"	PR1		"	"
			17							"			-18 mA				"	PR2		"	"
			18							"				-18 mA			"	J2		"	"
			19							"					-18 mA		"	K2		"	"
			20							"						-18 mA	"	CLK2		"	"
	$\mathrm{I}_{\text {LL1 }}$	$\begin{gathered} \hline 3009 \\ " \\ " \\ " \end{gathered}$	21	4.5 V	0.4 V	GND	3/			"							5.5 V	K1	4/	4/	mA
			22	3/	4.5 V	0.4 V	4.5 V			"							"	J2	"	"	"
			23							"			3/	GND	0.4 V	4.5 V	"	K2	"	"	"
			24							"			4.5 V	0.4 V	4.5 V	3/	"	J2	"	"	"
	$I_{\text {IL3 }}$	"	25							"			3/	4.5 V	4.5 V	0.4 V	"	CLK2	"	"	"
		"	26	0.4 V	4.5 V	4.5 V	3/			"							"	CLK1	"	"	"
	$I_{\text {IL4 }}$	"	27	4.5 V	4.5 V	4.5 V	0.4 V			"							"	PR1	"	"	"
		"	28										0.4 V	4.5 V	4.5 V	4.5 V	"	PR2	"	"	"
	I_{1+1}	3010	29	GND	2.7 V	GND	GND			"							"	K1		20	$\mu \mathrm{A}$
			30	2/	GND	2.7 V	4.5 V			"							"	J1		"	"
			31							"			4.5 V	2.7 V	GND	2/	"	J2		"	"
			32							"			GND	GND	2.7 V	GND	"	K2		"	"
	$\mathrm{I}_{\mathrm{H} 2}$		33							-			GND	GND	5.5 V	GND	"	K2		100	"
			34							"			4.5 V	5.5 V	GND	2/	"	J2		"	"
			35	2/	GND	5.5 V	4.5 V			"							"	J1		"	"
			36	GND	5.5 V	GND	GND			"							"	K1		"	"

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \hline \text { Cases } 1 /{ }^{1 /} \end{gathered}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit
			$\begin{gathered} \hline \text { Cases } \\ A, B, C, D \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
			Test no.	CLK1	K1	J1	PR1	Q1	Q1	GND	Q2	Q2	PR2	J2	K2	CLK2	V_{cc}		Min	Max	
$\begin{array}{c\|} \hline 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	$\mathrm{I}_{\mathbf{H} 5}$	3010	37	GND	GND	4.5 V	2.7 V	5/		GND							5.5 V	PR1		60	$\mu \mathrm{A}$
			38							"		5/	2.7 V	4.5 V	GND	GND	"	PR2		60	"
	$\mathrm{I}_{\text {H6 }}$	"	39							"		5/	5.5 V	4.5 V	GND	GND	"	PR2		300	"
			40	GND	GND	4.5 V	5.5 V	5/		"							"	PR1		300	"
	I_{1+7}	"	41	2.7 V	GND	GND	GND			"							"	CLK1		80	"
			42							"			GND	GND	GND	2.7 V	"	CLK2		80	"
	I_{1+8}	"	43							"			GND	GND	GND	5.5 V	"	CLK2		400	"
			44	5.5 V	GND	GND	GND			"							"	CLK1		400	"
	los	3011	45				GND	GND		"							"	Q1	-15	-100	mA
			46	$\underline{2}$	4.5 V	GND	4.5 V	GND	GND 6/	"							"	Q1	6/	6/	
			47							"		GND	GND				"	Q2	-15	-100	"
			48							"	GND 6/	GND	4.5 V	GND	4.5 V	$\underline{2} /$	"	Q2	6/	6/	"
	$I_{\text {cc }}$	3005	49	2/	5.5 V	GND	5.5 V			"			5.5 V	GND	5.5 V	2/	"	V_{Cc}		8.0	"
		3005	50	5.5 V	5.5 V	5.5 V	GND			"			GND	5.5 V	5.5 V	5.5 V	"	V_{CC}		8.0	"
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests are omitted																				
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests are omitted																				
7 7/, 8/	Truth table tests	3014 ${ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime}$	51	B	A	B	B	H	L	GND	L	H	B	B	B	B	4.5 V	All		See 9/	
			52	A	"		"	"		"		"	"	"	"	"	"	outputs		"	
			53	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"		"	
			54	B	"	"	A	"	"	"	"	"	"	"	"	"	"	"		"	
			55	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"		"	
			56	B	"	"	"	L	H	"	"	"	"	"	"	"	"	"		"	
			57	B	B	A	"	"	"	"	"	"	"	"	"	"	"	"		"	
			58	A	"	"	"	"	"	"	"	"	"		"	"	"	"		"	
			59	B	"	"	"	H	L	"	"	"	"	"	"	"	"	"		"	
			60	"	"	B	B	"	"	"	"	"	"	"	A	"	"	"		"	
			61	"	"	"	"	"	"	"	"	"	A	"	"	"	"	"		"	
			62	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"	
			63	"	"	"	"	"	"	"	H	L	"	"	"	B	"	"		"	
			64	"	"	"	"	"	"	"	"	"	"	A	B	B	"	"		"	
			65	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"	
			66	"	"	"	"	"	"	"	L	H	"	"	"	B	"	"		"	
			67	"	"	"	"	"	"	"	"	"	B	B	"	"	"	"		"	
			68	"	"	"	A	"	"	"	"	"	A	"	"	"	"	"		"	
			69	A	"	"		"	"	"	"	"		"	"	A	"	"		"	
			70	B	"	"	"	"	"	"	"	"	"	"	"	B	"	"		"	
			71	B	A	A	"	"	"	"	"	"	"	A	A	B	"	"		"	
			72	A	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"	
			73	B	"	"	"	L	H	"	H	L	"	"	"	B	"	"		"	
			74	B	B	B	"	"	"	"	"	"	"	B	B	B	"	"		"	
			75	A	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"	
			76	B	"	"	"	"	"	"	"	"	"	"	"	B	"	"		"	
			77	B	A	A	"	"	"	"		"	"	A	A	B	"	"		"	
			78	A		"	"	"	"	"	"	"	"	,	"	A	"	"		"	
			79	B	"	"	"	H	L	"	L	H	"	"	"	B	"	"		"	
8 5, 71	Repeat subgroup 7 at $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

TABLE III. Group A inspection for device type 04 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

1/ Case X and 2 pins not referenced are NC.
-

3/

2.5 V minumum $/ 5.5 \mathrm{~V}$ maximum

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

4/ IIL limits in mA are as follows:

Min/Max limits for CRT						
Symbol	A	B	C	D and F	E	
$\mathrm{I}_{\mathrm{LL} 1}$	$-.075 /-.250$	$-.03 /-.300$	$-.110 /-.250$	$-.120 /-.360$	$-.120 /-.360$	
$\mathrm{I}_{\mathrm{LL} 2}$	$-.175 /-.550$	$-.060 /-.600$	$-.150 /-.560$	$-.240 /-.720$	$-.280 /-.760$	
$\mathrm{I}_{\mathrm{LL} 3}$	$-.200 /-.800$	$-.060 /-.700$	$-.290 /-.650$	$-.120 /-.720$	$-.320 /-.800$	

5/ Momentary GND, then open.
6/ Ios limits in mA are as follows:

Test no.	A	B	C	D and E	F
46,48	$-7.5 /-50$	$-7.5 /-50$	$-30 /-130$	$-15 /-130$	$-7.5 /-50$
46,48 Q1, Q2	2.25 V	2.25 V	---	--	2.25 V

7/ Input voltages shown are $A=2.0$ volts minimum and $B=0.7$ volts maximum.
8/ Tests shall be performed in sequence, attributes data only.
9/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$.
10/ $f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 05
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	Cases 1/ 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit
			$\begin{gathered} \hline \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
			Test no.	CLR	K1	J1	PR1	Q1	Q1	GND	Q2	Q2	PR2	J2	K2	CLK	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	3006	1	2.0 V	0.7 V	2.0 V	0.7 V	-. 4 mA		GND						2.0 V	4.5 V	Q1	2.5		V
			2	0.7 V			2.0 V		$-.4 \mathrm{~mA}$							2.0 V		Q1			
			3	2.0 V	"	"	"	-. 4 mA		"						$\underline{\text { 2/ }}$	"	Q1	"		"
			4		2.0 V	0.7 V	"		-. 4 mA	"							"	Q1	"		"
			5	"						"	$-.4 \mathrm{~mA}$		2.0 V	0.7 V	2.0 V	"	"	Q2	"		"
			6	"						"		$-.4 \mathrm{~mA}$	"	2.0 V	0.7 V	"	"	Q2	"		"
			7	0.7 V						"	$-.4 \mathrm{~mA}$		"		"	2.0 V	"	Q2	"		"
			8	2.0 V						"		$-.4 \mathrm{~mA}$	0.7 V	"	"	"	"	Q2	"		"
	V_{OL}	3007	9	2.0 V						"	4 mA		0.7 V	"	"	"	"	Q2		0.4	"
			10	0.7 V						"		4 mA	2.0 V	"	"	"	"	Q2		"	"
			11	2.0 V						"	4 mA			"	"	$\underline{1}$	"	Q2		"	"
			12	"						"		4 mA	"	0.7 V	2.0 V	"	"	Q2		"	"
			13	"	0.7 V	2.0 V	2.0 V		4 mA	"						"	"	Q1		"	"
			14	"	2.0 V	0.7 V	2.0 V	4 mA		"						"	"	Q1		"	"
			15	"			0.7 V		4 mA	"						2.0 V	"	Q1		"	"
			16	0.7 V	"	"	2.0 V	4 mA		"						2.0 V	"	Q1		"	"
	V_{10}		17	-18 mA						"							"	CLR		-1.5	"
			18		$-18 \mathrm{~mA}$					"							"	K1			"
			19			-18 mA				"							"	J1		"	"
			20				$-18 \mathrm{~mA}$			"							"	PR1		"	"
			21							"			$-18 \mathrm{~mA}$				"	PR2		"	"
			22							"				$-18 \mathrm{~mA}$			"	J2		"	"
			23							"					$-18 \mathrm{~mA}$		"	K2		"	"
			24							"						$-18 \mathrm{~mA}$	"	CLK		"	"
	IL1	$\begin{gathered} 3009 \\ " " \\ " \end{gathered}$	25	4.5 V	0.4 V	GND	3/			${ }^{\prime}$						4.5 V	5.5 V	K1	4	4	mA
			26	3/	GND	0.4 V	4.5 V			"						"	"	J1			
			27	3/						"			4.5 V	0.4 V	4.5 V	"	"	J2	"	"	"
			28	4.5 V						"			3/	4.5 V	0.4 V	"	"	K2	"	"	"
	1 L 4	"	29							"			0.4 V	4.5 V	4.5 V	"	"	PR2	"	"	"
		"	30		4.5 V	4.5 V	0.4 V			"						"	"	PR1	"	"	"
	$1 / 6$	"	31	3/	"	"	4.5 V			"			4.5 V	4.5 V	4.5 V	0.4 V	"	CLK	"	"	"
			32	4.5 V	"	"	3/			"			3/		4.5 V	0.4 V	"	CLK	"	"	"
	$\frac{l_{117}}{l_{1+1}}$	"	33	0.4 V	4.5 V	4.5 V	4.5 V			"			4.5 V	4.5 V	4.5 V	4.5 V	"	CLR	"	"	"
		$\begin{gathered} \hline 3010 \\ " \\ " \\ " \end{gathered}$	34	GND	2.7 V	GND	GND			"						GND	"	K1		20	$\mu \mathrm{A}$
			35	"	GND	2.7 V	GND			"						"	"	J1		"	\cdots
			36	"						"			GND	$\frac{2.7 \mathrm{~V}}{\text { GND }}$	$\frac{\text { GND }}{\text { 2.7V }}$,	"	J2		"	"

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}$	$\begin{array}{c\|} \hline \text { Cases 1/ } \\ 2, \mathrm{X} \end{array}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Limits		Unit					
			$\begin{gathered} \text { Cases } \\ \text { A,B,C,D } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14									
			Test no.	CLR	K1	J1	PR1	Q1	Q 1	GND	Q2	Q2	PR2	J2	K2	CLK	$\mathrm{V}_{\text {cc }}$		Min	Max						
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	I_{1+2}	3010	38	GND						GND			GND	GND	5.5 V	GND	5.5 V	K2		100	$\mu \mathrm{A}$					
			39	"						"			GND	5.5 V	GND	"	"	J2		"	"					
			40	"	GND	5.5 V	GND			"						"	"	J1		"	"					
			41	"	5.5 V	GND	GND			"						"	"	K1		"	"					
	$\mathrm{I}_{\mathbf{H 5}}$	"	42	"	GND	GND	2.7 V			"						"	"	PR1		60	"					
			43	"						"			2.7 V	GND	GND	"	"	PR2		60	"					
	$\mathrm{I}_{\mathbf{H 6}}$	"	44	"						"			5.5 V	GND	GND	"	"	PR2		300	"					
			45	"	GND	GND	5.5 V			"						"	"	PR1		300	"					
	ІІн9 "		46	2.7 V	"	"	GND			"			GND	GND	GND	"	"	CLR		120	"					
	$\mathrm{I}_{\mathrm{IH9} 10}$	"	47	5.5 V	"	"	"			"			"	"	"	"	"	CLR		600	"					
	$\begin{aligned} & \hline I_{I_{H 11}} \\ & l_{1 H 12} \\ & \hline \end{aligned}$	"	48	GND	"	"	"			"			"	"	"	2.7 V	"	CLK		160	"					
		"	49	"	"	"	"			"			"	"	"	5.5 V	"	CLK		800	"					
	los	3011	50	"			4.5 V		GND	"							"	Q1	-15	-100	mA					
			51	"						"	GND		4.5 V				"	Q2	"	"	"					
			52	4.5 V						"		GND	GND				"	Q2	"	"	"					
			53	4.5 V			GND	GND		"							"	Q1	"	"	"					
	Icc	3005	54	GND	5.5 V	5.5 V	5.5 V			"			5.5 V	5.5 V	5.5 V	GND	"	$\mathrm{V}_{C C}$		8.0	"					
			55	5.5 V	5.5 V	5.5 V	GND			"			GND	5.5 V	5.5 V	GND	"	V_{CC}		8.0	"					
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.																									
3																										
$\begin{gathered} 7 \underline{5} /, \underline{6} / \\ \mathrm{TC}=25^{\circ} \mathrm{C} \end{gathered}$	Truth table tests		56	B	B	A	A	L	H	GND	H	L	A	A	B	A	4.5 V	All		See 71						
			57	"	"	"	"	"	"	"	"	"	"	"	"	B	"	outputs		"						
			58	"	"	"	"	"	"	"	"	"	"	"	"	A	"			"						
			59	A	"	"	"	"	"	"	L	H	B	B	"	A	"	"		"						
			60		"	"	"	H	L	"				"	"	B	"	"		"						
			61	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"						
			62	"	"	B	"	"	"	"	"	"	"	"	"	A	"	"		"						
			63	"	"	"	"	"	"	"	"	"	"	"	"	B	"	"		"						
			64	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"						
			65	"	A	"	"	"	"	"	"	"	"	"	"	A	"	"		"						
			66	"	"	"	"	L	H	"	"	"	"	"	"	B	"	"		"						
			67	"	"	"	"	L	H	"	"	"	"	"	"	A	"	"		"						
			68	"	"	"	B	H	L	"	"	"	"	"	"	A	"	"		"						
			69	"	"	"	B	H	L	"	"	"	"	"	"	B	"	"		"						
			70	B	B	"	A	L	H	"	H	L	A	A	"	A	"	"		"						
			71	A	"	"	B	H	L	"	H	L	"	"	"	A	"	"		"						
			72		"	"		"		"	L	H	"	"	"	B	"	"		"						
			73	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"						
			74	"	"	"	"	"	"	"	"	"	"	B	"	A	"	"		"						
			75	"	"	"	"	"	"	"	"	"	"	"	"	B	"	"		"						

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.

		MIL-STD-	$\begin{gathered} \hline \text { Cases } 1 / \\ 2, \mathrm{X}^{1 /} \\ \hline \end{gathered}$	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	$\begin{aligned} & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \hline \text { Cases } \\ A, B, C, D \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal			Unit
			Test no.	CLR	K1	J1	PR1	Q1	Q1	GND	Q2	Q2	PR2	J2	K2	CLK	V_{Cc}		Min	Max	
10	$\begin{gathered} \mathrm{f}_{\mathrm{MAX}} \\ \underline{8 /} \\ \hline \end{gathered}$	Fig. 9	115-118	Same tests and terminal conditions as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$.															25		MHz
	$\mathrm{tPLH1}$	$\begin{aligned} & \hline 3003 \\ & \text { Fig. } 9 \\ & \hline \end{aligned}$	119-122																5	32	ns
	$\mathrm{t}_{\text {PHL1 }}$	$\begin{aligned} & \hline 3003 \\ & \text { Fig. } 9 \\ & \hline \end{aligned}$	123-126																"	40	"
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{gathered} 3003 \\ \text { Fig. } 10 \\ \hline \end{gathered}$	127-130																"	32	"
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{gathered} 3003 \\ \text { Fig. } 10 \\ \hline \end{gathered}$	131-134																"	42	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																				

1/ Case X and 2 pins not referenced are NC.
$\stackrel{\rightharpoonup}{6}$

4/ $I_{\text {IL }}$ limits in mA are as follows:

TABLE III. Group A inspection for device type 03 and 10.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open). $1 /$

Subgroup	Symbol	$\begin{array}{\|c\|} \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	Cases 1/	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			2, X	** 2	20	5	3	19	18	13	17	14	9	12	15	8	10	4	7				
			$\begin{gathered} \hline \text { Cases } \\ \mathrm{E,F} \end{gathered}$	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
				${ }^{* *} 1$	16	4	2	15	14	10	13	11	7	9	12	6	8	3	5				
			Test no.	CLK1	K1	J1	PR1	Q1	Q1	Q2	GND	Q2	PR2	J2	K2	CLK2	CLR2	CLR1	V_{cc}		Min	Max	
Tc $=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OH }}$	3006	1	2.0 V	2.0 V	2.0 V	2.0 V		$-.4 \mathrm{~mA}$		GND							0.7 V	4.5 V	Q1	2.5		V
			2	2.0 V	"	2.0 V	0.7 V	-. 4 mA			"							2.0 V	"	Q1	"		"
			3	3/	"	0.7 V	2.0 V		$-.4 \mathrm{~mA}$		"								"	Q1	"		"
			4	3/	0.7 V	2.0 V	2.0 V	-. 4 mA			"							"	"	Q1	"		"
			5								"	-. 4 mA	0.7 V	2.0 V	2.0 V	2.0 V	2.0 V		"	Q2	"		"
			6							-. 4 mA	"		2.0 V		2.0 V	2.0 V	0.7 V		"	Q2	"		"
			7								"	-. 4 mA	"	"	0.7 V	$3 /$	2.0 V		"	Q2	"		"
			8							-. 4 mA	"		"	0.7 V	2.0 V				"	Q2	"		"
	VoL	3007	9								"	4 mA	"	0.7 V	2.0 V	"	"		"	Q2		0.4	"
			10							4 mA	"		"	2.0 V	0.7 V	"	"		"	Q2			"
			11								"	4 mA	"	2.0 V	2.0 V	2.0 V	0.7 V		"	Q2		"	"
			12							4 mA	"		0.7 V	2.0 V	2.0 V	2.0 V	2.0 V		"	Q2			"
			13	2.0 V	2.0 V	2.0 V	2.0 V	4 mA			"							0.7 V	"	Q1		"	"
			14	2.0 V	"	2.0 V	0.7 V		4 mA		"							2.0 V	"	Q1		"	"
			15	3/	"	0.7 V	2.0 V	4 mA			"							"	"	Q1		"	"
			16	3/	0.7 V	2.0 V	2.0 V		4 mA		"							"	"	Q1		"	"
	$\mathrm{V}_{\text {IC }}$			$-18 \mathrm{~mA}$							"								"	CLK1		-1.5	"
			18		$-18 \mathrm{~mA}$						"								"	K1			"
			19			$-18 \mathrm{~mA}$					"								"	J1		"	"
			20				$-18 \mathrm{~mA}$				"								"	PR1		"	"
			21								"		-18 mA						"	PR2		"	"
			22								"			$-18 \mathrm{~mA}$					"	J2		"	"
			23								"				$-18 \mathrm{~mA}$					K2		"	"
			24													-18 mA			"	CLK2		"	"
			25								"						-18 mA		"	CLR2		"	"
			26								"							$-18 \mathrm{~mA}$	"	CLR1		"	"
	$I_{\text {LL1 }}$	$\begin{gathered} 3009 \\ " \\ " \\ " \\ \hline \end{gathered}$	27	4.5 V	0.4 V	4.5 V	4/				"							4.5 V	5.5 V	K1	5/	5/	mA
			28	4.5 V	4.5 V	0.4 V	4.5 V				"							4/	"	J1	\cdots		
			29								"		4.5 V	0.4 V	4.5 V	4.5 V	4/		"	J2	"	"	"
			30								"		4/	4.5 V	0.4 V	4.5 V	4.5 V		"	K2	"	"	"
	$1_{\text {IL3 }}$	$"$$"$$"$$"$	31								"		4/	4.5 V	4.5 V	0.4 V	4.5 V		"	CLK2	"	"	"
			32								"		4.5 V	4.5 V	4.5 V	0.4 V	4/		"	CLK2	"	"	"
			33	0.4 V	4.5 V	4.5 V	4.5 V				"							4/	"	CLK1	"	"	"
			34	0.4 V	4.5 V	4.5 V	4/											4.5 V	-	CLK1	"	"	"
	$I_{\text {LL4 }}$	$"$$"$$"$$"$	35	4.5 V	4.5 V	4.5 V	0.4 V				"							4.5 V	"	PR1	"	"	"
			36	4.5 V	4.5 V	4.5 V	4.5 V				"							0.4 V	"	CLR1	"	"	"
			37								"		4.5 V	4.5 V	4.5 V	4.5 V	0.4 V			CLR2	"	"	"
			38								"		0.4 V	4.5 V	4.5 V	4.5 V	4.5 V		"	PR2	"	"	"
	1_{1+1}	$\begin{gathered} \hline 3010 \\ " \\ " \\ " \\ \hline \end{gathered}$	39								"		GND	4.5 V	2.7 V	GND	4.5 V		"	K2		20	$\mu \mathrm{A}$
			40								"		4.5 V	2.7 V	4.5 V	GND	GND		"	J2			,
			41	GND	4.5 V	2.7 V	4.5 V				"							GND	"	J1		"	"
			42	GND	2.7 V	4.5 V	GND				"							4.5 V	"	K1		"	"

See footnotes at end of device types 03 and 10.

TABLE III. Group A inspection for device type 03 and 10.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open). $\frac{1 /}{} /$

Subgroup	Symbol	$\left\lvert\, \begin{gathered} \text { MIL-STD- } \\ 883 \\ \text { method } \end{gathered}\right.$	$\begin{gathered} \text { Cases } 1 / \\ 2, x^{1 /} \end{gathered}$	${ }^{*} \quad 2$	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit						
				** 2	20	5	3	19	18	13	17	14	9	12	15	8	10	4	7										
			$\begin{gathered} \text { Cases } \\ \text { E, F } \end{gathered}$	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16										
				** 1	16	4	2	15	14	10	13	11	7	9	12	6	8	3	5										
			Test no.	CLK1	K1	J1	PR1	Q1	Q1	Q2	GND	Q2	PR2	J2	K2	CLK2	CLR2	CLR1	V_{cc}		Min	Max							
$\begin{array}{c\|} \hline 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	$\mathrm{I}_{\mathbf{H 2}}$	$\begin{gathered} 3010 \\ " \\ " \\ " \\ \hline \end{gathered}$	43	GND	5.5 V	4.5 V	GND				GND							4.5 V	5.5 V	K1		100	$\mu \mathrm{A}$						
			44	GND	4.5 V	5.5 V	4.5 V				"							GND	"	J1									
			45								"		4.5 V	5.5 V	4.5 V	GND	GND		"	J2		"	"						
			46								"		GND	4.5 V	5.5 V	"	4.5 V		"	K2		"	"						
	$\mathrm{I}_{\mathbf{4 5}}$	"	47								"		4/	GND	4.5 V	"	2.7 V		"	CLR2		60	"						
		"	48								"		2.7 V	4.5 V	GND	"	4/		"	PR2		"	"						
		"	49	GND	4.5 V	GND	4/				"							2.7 V	"	CLR1		"	"						
		"	50	GND	GND	4.5 V	2.7 V				"							4/	"	PR1		"	"						
	IH6 $^{\text {¢ }}$	"	51	GND	GND	4.5 V	5.5 V				"							4/	"	PR1		300	"						
		"	52	GND	4.5 V	GND	4/				"							5.5 V	"	CLR1			"						
		"	53								"		5.5 V	4.5 V	GND	GND	4/		"	PR2		"	"						
		"	54								"		4/	GND	4.5 V	GND	5.5 V		"	CLR2		"	"						
	I_{1+7}	"	55								"		GND	GND	GND	2.7 V	GND		"	CLK2		80	"						
		"	56	2.7 V	GND	GND	GND				"							GND	"	CLK1		80	"						
	I'нв $^{\text {I }}$	"	57	5.5 V	GND	GND	GND				"							GND	"	CLK1		400	"						
			58								"		GND	GND	GND	5.5 V	GND		"	CLK2		400	"						
	los	3011	59	GND	GND	GND	GND	GND			"							4.5 V	"	Q1	-15	-100	mA						
			60	GND	GND	GND	4.5 V		GND		"							GND	"	Q1	"								
			61								"	GND	GND	GND	GND	GND	4.5 V		"	Q2	"	"	"						
			62							GND	"		4.5 V	G	G	G	GND		"		"	"	"						
																				Q2									
	$I_{\text {cc }}$	3005	63	GND	GND	GND	GND				"		GND	"	"	"	5.5 V	5.5 V	"	V_{cc}		8.0	"						
		3005	64	GND	GND	GND	5.5 V				"		5.5 V	"	"	"	GND	GND	"	V_{cc}		8.0	"						
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and V_{11} tests are omitted.																												
3																													
$\begin{array}{\|c\|} \hline 76 /, 7 / \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \\ \hline \end{array}$																													
	Truth table tests	3014	66	A	"		"	-	"	"	"	"	"	A	"	A		"	"	outputs		"							
			67	B	"	"	"	"	"	"	"	"	"	"	"	B	"	"	"	"		"							
			68	B	A	B	B	H	L	L	"	H	B	B	A	B	A	A	"	"		"							
			69	A	,		"	"	"	L	"	"				A	,		"	"		"							
			70	B	"	"	"	"	"	"	"	"	"		"	B	"	"	"	"		"							
			71	"	B	"	A	L	H	H	"	L	A	"	B	"	B	B	"	"		"							
			72	"	,	"	"	"	"	"	"	"	"		,	"	A	A	"	"		"							
			73	A	"	"		"	"	"	"	"	"	"	"	A	"	"	"	"		"							
			74	B	"	"	"	"	"	"	"	"	"	"	"	B	"	"	"	"		"							
			75	A	"	"	B	H	L	L	"	H	B	"	"	,	"	"	"	"		"							
			76	"	"	"	A	"	"	"	"	"	A	"	"	"		"	"	"		"							
			77	A	"	"	"	"	"	"	"	"	,	"	"	A		"	"	"		"							
			78	B	"	"	"	"	"	"	"	"	"	"	"	B	"	"	"	"		"							
			79	"	"	A	"	L	${ }^{\mathrm{H}}$	${ }^{\text {H }}$	"	L	"	A	"	${ }^{\prime}$	B	B	"	"		"							
			80														A	A	"										

See footnotes at end of device types 03 and 10.

TABLE III. Group A inspection for device type 03 and 10.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open). $1 /$

See footnotes at end of device types 03 and 10.

* Terminal numbers for device type 03
* Terminal numbers for device type 10

1/ See 6.4 for special applications note
/ Case X and 2 pins not referenced are NC.
3/

5/ IIL limits in mA are as follows:

$\mathrm{I}_{\text {IL }}$	Min/Max limits for CKT					
	A	B	C	D	E	
	$-.075 /-.250$	$-.030 /-.300$	$-.150 /-.560$	$-.120 /-.360$	$-.120 /-.360$	

I $_{\text {L3 }}$	Min/Max limits for CKT					
	A	B	C	D	E	
	$-. .150 /-.500$	$-.060 /-.600$	$-.250 /-.560$	$-.240 /-.720$	$-.280 /-.760$	

$\mathrm{I}_{\mathrm{L} 4}$	Min/Max limits for CKT					
	A	B	C	D	E	
	$-.200 /-.800$	$-.060 /-.700$	$-.290 /-.650$	$-.120 /-.720$	$-.320 /-.800$	

6/ Input voltages shown are $A=2.0$ volts minimum and $B=0.7$ volts maximum.
7/ Tests shall be performed in sequence, attributes data only.
8/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$
9/ $f_{\text {max }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.
10/ These tests may be performed as shown in table III or alternately as follows:

TABLE III. Group A inspection for device type 06.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

See footnotes at end of device types 06.

TABLE III. Group A inspection for device type 06 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	MIL-STD- 883 method	$\begin{gathered} \hline \text { Cases } 1 / \\ 2, X^{1} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			$\begin{gathered} \hline \text { Cases } \\ E, F \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
			Test no.	CLR	Q1	D1	D2	Q2	D3	Q3	GND	CLK	Q4	D4	Q5	D5	D6	Q6	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	los	$\begin{array}{c\|} \hline 3011 \\ " \\ " \\ " \\ " \\ " \\ \hline 3005 \\ \hline \end{array}$	51	4.5 V	GND	4.5 V					GND	4/							5.5 V	Q1	-15	-100	$\mu \mathrm{A}$
			52	"			4.5 V	GND											"	Q2	"		
			53	"					4.5 V	GND	"	"							"	Q3	"	"	"
			54	"							"	"	GND	4.5 V					"	Q4	"	"	"
			55	"							"	"			GND	4.5 V			"	Q5	"	"	"
			56	"							"	"					4.5 V	GND	"	Q6	"	"	"
	I_{cc}		57	5.5 V		5.5 V	5.5 V		5.5 V		"	"		5.5 V		5.5 V	5.5 V		"	V_{cc}		26	"
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																						
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.																						
$\begin{array}{c\|} \hline 7 \mathrm{5} /, \underline{6} / \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{array}$	Truth table tests	3014	58	B	L	A	A	L	A	L	GND	A	L	A	L	A	A	L	4.5 V	All		See 7/	
			59		"	"			"		"	B				"			"	outputs			
			60	"	"	"	"	"	"	"	"	A	"	"	"	"	"	"	"	"		"	
			61	A	"	"	"	"	"	"	"	A	"	"	"	"	"	"	"	"		"	
			62	"	"	"	"	"	"	"	"	B	"	"	"	"	"	"	"	"		"	
			63	"	H	"	"	H	"	H	"	A	H	"	H	"	"	H	"	"		"	
			64	"	,	B	B	,	B	,	"	A	,	B	,	B	B	,	"	"		"	
			65	"	"	B	B	"	B	"	"	B	"	B	"	B	B	"	"	"		"	
			66	-	L	"	"	L	"	L	"	A	L	"	L	"	"	L	"	"		"	
			67	"	L	A	A	L	A	L	"	B	L	A	L	A	A	L	"	"		"	
			68	"	H	"	"	H	"	H	"	A	H	"	H	"	"	H		"		"	
			69	"	H	"	"	H	"	H	"	B	H	"	H	"	"	H	"	"		"	
			70	B	L	"	"	L	"	L	"	B	L	"	L	"	"	L	"	"		"	
8	Repeat subgroup 7 at $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																						
$\begin{gathered} 9 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{f}_{\text {MAX }}$	Fig. 13	71	2.7 V	OUT	IN					GND	IN							5.0 V	Q1	25		MHz
			72	"			IN	OUT			"								V	Q2			
			73	"					IN	OUT	"	"							"	Q3	"		
			74	"							"	"	OUT	IN					"	Q4	"		
			75	"							"	"			OUT	IN			"	Q5	"		
			76	"							"	"					IN	OUT	"	Q6	"		
	$\mathrm{t}_{\text {PHL1 }}$	3003 Fig. 13	77	IN							"	"					2.7 V	OUT	"	CLR to Q6	5	42	ns
			78	"							"	"			OUT	2.7 V			"	CLR to Q5	"		
			79	"							"	"	OUT	2.7 V					"	CLR to Q4	"	"	"
			80	"					2.7 V	OUT	"	"							"	CLR to Q3	"	"	"
			81	"			2.7 V	OUT			"	"							"	CLR to Q2	"	"	"
			82	"	OUT	2.7 V					"	"							"	CLR to Q1	"	"	"
	tpLH2	3003 Fig. 14	83	2.7 V	OUT	IN					"	"							"	CLK to Q1	"	37	"
			84	"			IN	OUT			"	"							"	CLK to Q2	"		"
			85	"					IN	OUT	"	"							"	CLK to Q3	-	"	"
			86	"							"	"	OUT	IN						CLK to Q4	"	-	"
			87	"							"	"			OUT	IN			,	CLK to Q5	"	"	"
			88	"							"	"					IN	OUT		CLK to Q6	"	"	"
	$\mathrm{t}_{\text {PHL2 }}$	3003 Fig. 15	89	"							"	"					IN	OUT	"	CLK to Q6	"	40	"
			90	"							"	"			OUT	IN			"	CLK to Q5	"	"	"
			91	"							"	"	OUT	IN					"	CLK to Q4	"	"	"
			92	"					IN	OUT	"	"							"	CLK to Q3	"	"	"
			93	"			IN	OUT			"	"							"	CLK to Q2	"	"	"
			94	"	OUT	IN					"	"							"	CLK to Q1	"	"	"

See footnotes at end of device types 06 .

TABLE III. Group A inspection for device type 06 - Continued.

Subgroup	Symbol	$\begin{array}{\|l} \text { MIL-STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{aligned} & \text { Cases } 1 / \\ & 2, x^{1} \end{aligned}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
			Test no.	CLR	Q1	D1	D2	Q2	D3	Q3	GND	CLK	Q4	D4	Q5	D5	D6	Q6	V_{cc}		Min	Max	
10	$\begin{gathered} f_{\text {max }} \\ \underline{8 /} \\ \hline \end{gathered}$	Fig. 13	95-100	Same tests and terminal conditions as for subgroup 9, except $\mathrm{T}_{\mathrm{C}} . \mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$																	25		MHz
	$\mathrm{t}_{\text {PHL1 }}$	$\begin{gathered} \hline 3003 \\ \text { Fig. } 13 \\ \hline \end{gathered}$	101-106																		5	52	ns
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{gathered} 3003 \\ \text { Fig. } 14 \\ \hline \end{gathered}$	107-112																		"	47	"
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{gathered} 3003 \\ \text { Fig. } 15 \\ \hline \end{gathered}$	113-118																		"	52	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																						

1/ Case X and 2 pins not referenced are NC.
2/

3/ ILL limits in mA are as follows:

$\mathrm{I}_{\mathrm{LL} 1}$	Min/Max limits for CKT							
	A	B	C	D	E	F	G	
	$-.085 /-.270$	$-.100 /-.340$	$-.075 /-.250$	$-.075 /-.250$	$-.120 /-.360$	$-.160 /-.400$	$-.075 /-.250$	

G

4/

$$
\square \quad 2.5 \mathrm{~V} \text { minumum } / 5.5 \mathrm{~V} \text { maximum }
$$

5/ Input voltages shown are $A=2.0$ volts minimum and $B=0.7$ volts maximum.
6/ Tests shall be performed in sequence, attributes data only.
7/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$.
8/ $f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 07
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

See footnotes at end of device type 07.

TABLE III. Group A inspection for device type 07 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{gathered} \text { Cases } 1 / \\ 2, X^{1} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
			Test no.	CLR	Q1	Q1	D1	D2	Q2	Q2	GND	CLK	Q3	Q 3	D3	D4	Q4	Q4	V_{cc}		Min	Max	
$\begin{array}{c\|} \hline 1 \\ \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C} \end{array}$	I_{1+2}	$\begin{gathered} 3010 \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	43								GND					5.5 V			5.5 V	D4		100	$\mu \mathrm{A}$
			44								"				5.5 V				"	D3			
			45								"	5.5 V							"	CLK		"	"
			46					5.5 V			"								"	D2		"	"
			47				5.5 V				"								"	D1		"	"
			48	5.5 V							"								"	CLR		"	"
	los	3011	49	GND		GND					"								"	Q1	-15	-100	mA
			50	"					GND		"								"	Q2	"	"	"
			51	"							"			GND					"	Q 3	"	"	"
			52	"							"						GND		"	Q4	"	"	"
			53	4.5 V							"	4/				4.5 V		GND	"	Q4	"	"	"
			54	"							"	"	GND		4.5 V				"	Q3	"	"	"
			55	"				4.5 V		GND	"	"							"	Q2	"	"	"
			56	"	GND		4.5 V				"	"							"	Q1	"	"	"
			57	5.5 V			5.5 V	5.5 V			"				5.5 V	5.5 V			"	V_{cc}		18	"
2	Same tes	sts, termina	conditions,	and limits	a for su	roup 1,	cept T_{C}	$+125^{\circ} \mathrm{C}$	V_{10} te	are on													
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.																						
$\begin{gathered} 7 \underline{5} /, \underline{6} / \\ \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$	Truth table tests	3014 $"$ $"$ $"$ $"$ $"$ n n $"$ n n	58	B	L	H	A	A	H	L	GND	B	L	H	A	A	H	L	4.5 V	All		See 7 I	
			59	"	"	"	"	"	"	"	"	A	"		"	"		"	"	outputs			
			60	"	"	"	"	"	"	"	"	B	"	"	"	"	"	"	"	"		"	
			61	A	"	"	"	"	"	"	"	B	"	"	"	"	"	"	"	"		"	
			62	"	H	L	"	"	L	H	"	A	H	L	"	"	L	H	"	"		"	
			63	"	"	"	"	"	"	"	"	B	"	"	"	"	"	"	"	"		"	
			64	"	"	"	B	B	"	"	"	B	"	"	B	B	"	"	"	"		"	
			65	"	L	H			H	L	"	A	L	H		"	H	L	"	"		"	
			66	"	"	"	"	"	"	"	"	B	"	"	"	"	"	"	"	"		"	
			67	"	"	"	A	A	"	"	"	B	"	"	A	A	"	"	"	"		"	
			68	"	H	L	,	,	L	H	"	A	H	L	"	,	L	H	"	"		"	
			69	"	H	L	"	"	L	H	"	B	H	L	"	"	L	H	"	"		"	
			70	B	L	H	"	"	H	L	"	B	L	H	"	"	H	L	"	"		"	
8 4/, 5/	Repeat subgroup 7 at $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																						
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{f}_{\text {max }}$ 8/	Fig. 13	71	2.7 V	OUT		IN				GND	IN							5.0 V	Q1	25		MHz
			72			OUT	IN													Q1			
			73	"				IN	OUT		"	"							"	Q2	"		"
			74	"				IN		OUT	"	"							"	Q2	"		"
			75	"							"	"	OUT		IN				"	Q3	"		"
			76	"							"	"		OUT	IN				"	Q 3	"		"
			77	"							"	"				IN	OUT		"	Q4	"		"
			78	"							"	"				IN		OUT	"	Q4	"		"
	${ }^{\text {PLLH }}$	3003 Fig. 13	79	IN							"	"				2.7 V	OUT		"	CLR to Q4	5	32	ns
			80	"							"	"		OUT	2.7 V					CLR to $\overline{\mathrm{Q}} 3$	"	"	"
			81	"				2.7 V	OUT		"	"							"	CLR to $\overline{\mathrm{Q}} 2$	"	"	"
			82	"		OUT	2.7 V				"	"							"	CLR to $\overline{\mathrm{Q}} 1$	"	"	"

See footnotes at end of device type 07.

TABLE III. Group A inspection for device type 07 - Continued.
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

		MIL-STD-	$\begin{gathered} \text { Cases } 1 / \\ 2, X^{1 /} \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	$\begin{gathered} 883 \\ \text { method } \end{gathered}$	$\begin{gathered} \hline \text { Cases } \\ \text { E, F } \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal			Unit
			Test no.	CLR	Q1	Q 1	D1	D2	Q2	Q2	GND	CLK	Q3	Q 3	D3	D4	Q4	Q4	V_{cc}		Min	Max	
9	$\mathrm{t}_{\text {PLL }}$	3003	83	IN	OUT		2.7 V				GND	IN							5.0 V	CLR to Q1	5	45	ns
$\mathrm{Tc}=25^{\circ} \mathrm{C}$		Fig. 13	84	"				2.7 V		OUT		"								CLR to Q2	"		
		"	85	"							"	"	OUT		2.7 V				"	CLR to Q3	"	"	"
		"	86	"							"	"				2.7 V		OUT	"	CLR to Q4	"	"	"
	$\mathrm{t}_{\text {PLH2 }}$	3003	87	2.7 V							"	"				IN		OUT	"	CLK to Q4	"	35	"
		Fig. 14	88	${ }^{\prime \prime}$							"	"	OUT		IN				"	CLK to Q3	"	"	"
			89	"				IN		OUT	"	"							"	CLK to Q2	"	"	"
		"	90	"	OUT		IN				'	"							"	CLK to Q1	"	"	"
			91	"		OUT	IN				"	"							"	CLK to $\overline{\mathrm{Q}} 1$	"	"	"
		Fig. 15	92	"				IN	OUT		"	"							"	CLK to Q2	"	"	"
		"	93	"								"		OUT	IN				"	CLK to $\overline{\mathrm{Q}} 3$	"	"	"
		"	94	"							"	"				IN	OUT		"	CLK to $\overline{\mathrm{Q}} 4$	"	"	"
	${ }^{\text {tpHL2 }}$		95	"							"	"				IN	OUT		"	CLK to $\overline{\text { Q }} 4$	"	40	"
		Fig. 14	96	"							"	"		OUT	IN				"	CLK to Q 3	"	"	"
		"	97	"				IN	OUT		"	"							"	CLK to $\overline{\mathrm{Q}} 2$	"	"	"
		"	98	"		OUT	IN				"	"							"	CLK to $\overline{\mathrm{Q}} 1$	"	"	"
		3003	99	"	OUT		IN				"	"							"	CLK to Q1	"	"	"
		Fig. 15	100	"				IN		OUT	"	"							"	CLK to Q2	"	"	"
		"	101	"							"	"	OUT		IN				"	CLK to Q3	"	"	"
		"	102	"							"	"				IN		OUT	"	CLK to Q4	"	"	"
10	$\begin{aligned} & f_{\text {MAA }} \\ & \underline{8} \end{aligned}$	Fig. 13	103-110	Same tests and terminal conditions as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$																	25		ns
	$\mathrm{t}_{\text {PLH1 }}$	$\begin{gathered} \hline 3003 \\ \text { Fig. } 13 \\ \hline \end{gathered}$	111-114																		5	51	"
	$\mathrm{t}_{\text {PHL1 }}$	$\begin{gathered} \hline 3003 \\ \text { Fig. } 13 \\ \hline \end{gathered}$	115-118																		"	55	"
	$t_{\text {PLH2 }}$	$\begin{gathered} 3003 \\ \text { Fig. } 14 \\ \hline \end{gathered}$	119-122																		"	46	"
	$\mathrm{tPLH2}$	$\begin{gathered} 3003 \\ \text { Fig. } 15 \\ \hline \end{gathered}$	123-126																		"	46	"
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{gathered} 3003 \\ \text { Fig. } 14 \\ \hline \end{gathered}$	127-130																		"	55	"
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{gathered} \hline 3003 \\ \text { Fig. } 15 \\ \hline \end{gathered}$	131-134																		"	55	"
11	Same tests, terminal conditions, and limits as for subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																						

See footnotes at end of device type 07

1/ Case X and 2 pins not referenced are NC.
 $\underline{2}$

3/ $I_{I L}$ limits in mA are as follows:

$\mathrm{I}_{\mathrm{L} 1}$	Min/Max limits for CKT							
	A	B	C	D	E	F	G	
	$-.075 /-.250$	$-.100 /-.340$	$-.075 /-.250$	$-.075 /-.250$	$-.120 /-.360$	$-.160 /-.400$	$-.075 /-.250$	

$\mathrm{I}_{1 L 2}$	Min/Max limits for CKT						
	A	B	C	D	E	F	G
	$\text { -.085/-. } 270$ for test 35 $\text { -. } 135 /-.400$ for test 36	-.150/-.420	$\text { -. }-125 /-.275$ for test 35 $\text { . } 160 /-.400$ for test 36	$\text { "-.120/-. } 400$ for test 35 $\text { -. } 120 /-.360$ for test 36	-.120/-.400	$\begin{aligned} & \hline-.105 /-.380 \\ & \text { for test } 35 \\ & -.160 /-.400 \\ & \text { for test } 36 \end{aligned}$	$-.075 /-.250$ for test 35 -.120/-. 360 for test 36

4/

5/ Input voltages shown are $A=2.0$ volts minimum and $B=0.7$ volts maximum.
8
6/ Tests shall be performed in sequence, attributes data only.
7/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$.
8/ $f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 09
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	$\begin{aligned} & \text { MIL-STD- } \\ & 883 \\ & \text { method } \end{aligned}$	$\begin{array}{\|c} \hline \text { Cases } 1^{\prime \prime} \\ 2, x^{\prime} \end{array}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
			Test no.	CLR1	J1	$\overline{\mathrm{K}} 1$	CLK1	PR1	Q1	Q1	GND	Q 2	Q2	PR2	CLK2	$\overline{\mathrm{K}} 2$	J2	CLR2	V_{cc}		Min	Max	
$\begin{gathered} 1 \\ \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C} \end{gathered}$	V_{OH}	$\begin{gathered} \hline 3006 \\ " \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	1	0.7 V	0.7 V	0.7 V	GND	2.0 V		$-4 \mathrm{~mA}$	GND								4.5 V	Q1	2.5		V
			2	2.0 V	"	"	GND	0.7 V	-.4 mA		"								"	Q1	"		"
			3	"	"	"	$\underline{1}$	2.0 V		-. 4 mA	"								"	Q1	"		"
			4	"	2.0 V	2.0 V	$\underline{\underline{1}}$	2.0 V	-. 4 mA		"								"	Q1	"		"
			5								"	$-.4 \mathrm{~mA}$		2.0 V	GND	0.7 V	0.7 V	0.7 V	"	Q 2	"		"
			6								"		$-.4 \mathrm{~mA}$	0.7 V	GND	"	"	2.0 V	"	Q2	"		"
			7								"	$-.4 \mathrm{~mA}$		2.0 V	$\underline{2}$	"	"		"	Q2	"		"
			8								"		$-.4 \mathrm{~mA}$	"	$\underline{1 /}$	2.0 V	2.0 V	"	"	Q2	"		"
	$\mathrm{V}_{\text {OL }}$	3007	9								"		4 mA	"	GND	0.7 V	0.7 V	0.7 V	"	Q2		0.4	"
			10								"	4 mA		0.7 V	GND			2.0 V	"	Q2			"
			11								"		4 mA	2.0 V	$\underline{\underline{\prime}}$	"	"	"	"	Q2		"	"
			12								"	4 mA		2.0 V	$\underline{2}$	2.0 V	2.0 V		"	Q 2		"	"
			13	0.7 V	0.7 V	0.7 V	GND	2.0 V	4 mA		"								"	Q1		"	"
			14	2.0 V			GND	0.7 V		4 mA	"								"	Q1		"	"
			15	"	"	"	$\underline{\underline{1}}$	2.0 V	4 mA		"								"	Q1		"	"
			16	"	2.0 V	2.0 V	$\underline{1}$	2.0 V		4 mA	"								"	Q1		"	"
	$\mathrm{V}_{\text {IC }}$		17	-18 mA							"								"	CLR1		-1.5	"
			18		-18 mA						"								"	J1		"	"
			19			$-18 \mathrm{~mA}$					"								"	$\overline{\mathrm{K}} 1$		"	"
			20				$-18 \mathrm{~mA}$				"								"	CLK1		"	"
			21					$-18 \mathrm{~mA}$			"								"	PR1		"	"
			22								"			-18 mA					"	PR2		"	"
			23								"				-18 mA				"	CLK2		"	"
			24								"					$-18 \mathrm{~mA}$			"	$\overline{\mathrm{K}} 2$		"	"
			25								"						$-18 \mathrm{~mA}$		"	J2		"	
			26								"							$-18 \mathrm{~mA}$	"	CLR2		"	"
	$I_{\text {LL2 }}$	3009	27	3/	0.4 V	4.5 V	GND	4.5 V			"								5.5 V	J1	4/	4/	mA
			28	4.5 V	4.5 V	0.4 V	GND	3/			"								"	$\overline{\mathrm{K}} 1$	\cdots	"	
			29								"			3/	GND	0.4 V	4.5 V	4.5 V	"	K 2	"	"	"
			30								"			4.5 V	GND	4.5 V	0.4 V	3/	"	J2	-	"	"
	$I_{\text {LL4 }}$		31								"			4.5 V	0.4 V	"	4.5 V	3/	"	CLK2	-	"	
			32								"			3/	0.4 V	"	"	4.5 V	"	CLK2	"	"	"
			33								"			0.4 V	4.5 V	"	"	GND	"	PR2	"	"	"
			34	GND	4.5 V	4.5 V	4.5 V	0.4 V			"								"	PR1	"	"	"
			35	4.5 V	"	"	0.4 V	3/			"								"	CLK1	"	"	"
			36	3/	"	"	0.4 V	4.5 V			"								"	CLK1	"	"	"
	$I_{1 L 7}$	"	37	0.4 V	"	"	4.5 V	GND			"								"	CLR1	"	"	"
			38								"			GND	4.5 V	4.5 V	4.5 V	0.4 V	"	CLR2	"	"	"

TABLE III. Group A inspection for device type 09
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

Subgroup	Symbol	MIL-STD- 883 method	$\begin{gathered} \text { Cases } 1 / \\ 2, x \end{gathered}$	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit					
			Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16									
			Test no.	CLR1	J1	$\overline{\mathrm{K}} 1$	CLK1	PR1	Q1	Q1	GND	$\overline{\mathrm{Q}} 2$	Q2	PR2	CLK2	$\overline{\mathrm{K}} 2$	J2	CLR2	V_{cc}		Min	Max						
$\begin{gathered} 1 \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$	I_{1+1}	3010	39	GND	2.7 V	GND	4.5 V	4.5 V			GND								5.5 V	J1		20	$\mu \mathrm{A}$					
			40	GND	GND	2.7 V	4.5 V	GND			"									K 1								
			41								"			GND	4.5 V	2.7 V	GND	GND	"	$\overline{\mathrm{K}} 2$		"	"					
			42								"			4.5 V	"	GND	2.7 V	"	"	J2		"	"					
	I_{1+2}		43								"			4.5 V	"	GND	5.5 V	"	"	J2		100	"					
			44								"			GND	"	5.5 V	GND	"	"	K 2			"					
			45	GND	GND	5.5 V	4.5 V	GND			"								"	$\overline{\mathrm{K}} 1$		"	"					
			46	GND	5.5 V	GND	4.5 V	4.5 V			"								"	J1		"	"					
	І $^{\text {+ }}$		47	GND	4.5 V	4.5 V	2.7 V	GND			"								"	CLK1		40	"					
			48	4.5 V	4.5 V	4.5 V	GND	2.7 V			"								"	PR1			"					
			49								"			2.7 V	GND	4.5 V	4.5 V	4.5 V	"	PR2		"	"					
			50								"			GND	2.7 V	"	"	GND	"	CLK2		"	"					
	I_{1+4}		51								"			GND	5.5 V	"	"	GND	"	CLK2		200	"					
			52								"			5.5 V	GND	"	"	4.5 V	"	PR2		"	"					
			53	4.5 V	4.5 V	4.5 V	GND	5.5 V			"								"	PR1		"	"					
			54	GND	4.5 V	4.5 V	5.5 V	GND			"								"	CLK1		"	"					
	I_{1+7}	"	55	2.7 V	4.5 V	4.5 V	GND	4.5 V			"								"	CLR1		80	"					
		"	56								"			4.5 V	GND	4.5 V	4.5 V	2.7 V	"	CLR2		80	"					
	I_{1+8}	"	57								"			4.5 V	GND	4.5 V	4.5 V	5.5 V	"	CLR2		400	"					
		"	58	5.5 V	4.5 V	4.5 V	GND	4.5 V			"								"	CLR1		400	"					
	los	3011	59	GND				4.5 V		GND	"								"	Q1	-15	-100	mA					
			60	4.5 V				GND	GND		"								"	Q1	"	"	"					
			61								"		GND	GND				4.5 V	*	Q2	*	"	"					
			62								"	GND		4.5 V				GND	*	Q 2	"	"	"					
	I_{cc}	3005	63	GND			GND	5.5 V			"			5.5 V	GND			GND	"	$\mathrm{V}_{\text {cc }}$		8.0	"					
		3005	64	5.5 V			GND	GND			"			GND	GND			5.5 V	"	V_{cc}		8.0	"					
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																											
,																												
$\begin{gathered} 7 \underline{5} /, \underline{6} / \\ \mathrm{Tc}=25^{\circ} \mathrm{C} \end{gathered}$																												
	table tests	3014	66	,	"	"	B	A	"	"				A	B	"	"	"	"	outputs		"						
			67	"	"	"	A	"	"	"	"	"	"	"	A	"	"	"	"	"		"						
			68	"	"	B	A	"	"	"	"	,	,	,	A	B	"	"	"	"		"						
			69	"	"	"	B	"	"	"	"	"	"	"	B	"	"	"	"	"		"						
			70	"	"	"	A	"	L	H	"	H	L	"	A	"	"	"	"	"		"						
			71	"	"	"	B	"	"	"	"	"	"	"	B	"	"	"	"	"		"						
			72	B	"	"		"	"	"	"	"	"	"	"	"	"	B	"	"		"						
			73	A	"	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"						
			74	"	-	"	A	"	H	L	"	L	H	"	A	"	"	"	"	"		"						
			75	"	"	"	B	"	H	L	"	L	H	"	B	"	"	"	"	"		"						
			76	"	"	"	A	"	L	H	"	H	L	"	A	"	"	"	"	"		"						
			77	"	"	"	B	"	L	H	"	H	L	"	B	"	"	"	"	"		"						
			78	"	"	"	B	B	H	L	"	L	H	B	B	"	"	"	"	"		"						
			79	"	"	"	A	B			"			B	A	"	"	"	"	"		"						
			80	"	"	"	A	A	"	"	"	"	"	A	A	"	"	"	"	"		"						
			81	"	"	"	B	"	"	"	"	"	"	"	B	"	"	"	"	"		"						
			82	"	"	"	A	"	L	H	"	H	L	"	A	"	"	"	"	"		"						
			83	"	"	"	B	"	"	"	"	"	"	"	B	"	"	"	"	"		"						
			84	B	B	"	"	"	"	"	"	"	"	"	"	"	B	B	"	"		"						
			85	A	"	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"						
			86	"	"	"	A	"	"	"	"	"	"	"	A	"	"	"	"	"		"						

See footnotes at end of device type 09.

TABLE III. Group A inspection for device type 09
Terminal conditions (pins not designated may be high $\geq 2.0 \mathrm{~V}$, low $\leq 0.7 \mathrm{~V}$, or open).

See footnotes at end of device type 09.

TABLE III. Group A inspection for device type 09.

1/ Case X and 2 pins not referenced are NC.
2/

3/ IL limits in mA are as follows:

$\mathrm{I}_{\text {IL2 }}$	Min/Max limits for CKT						
	A	B	C	D	E	F	
	$-.075 /-.250$	$-.030 /-.300$	$-.095 /-.210$	$-.160 /-.400$	$-.135 /-.370$	$-.160 /-.400$	

$\stackrel{8}{8}$

$\mathrm{I}_{1 / 4}$	Min/Max limits for CKT					
	A	B	C	D	E	F
	$\begin{aligned} & -.150 /-.500 \\ & \text { for tests } 31 \text {, } \\ & 32,35,36 \\ & -.200 /-.800 \\ & \text { for tests } 33, \\ & 34 \\ & \hline \end{aligned}$	-.060/-.700	$-.160 /-.400$ for tests 31, 32, 35, 36 -.350/-. 760 for tests 33, 34	-.320/-.800	$\begin{aligned} & -.120 /-.360 \\ & \text { for tests } 31 \text {, } \\ & 32,35,36 \\ & -.350 /-.760 \\ & \text { for tests } 33, \\ & 34 \\ & \hline \end{aligned}$	-.320/-.800

I $_{\text {LT7 }}$	Min/Max limits for CKT						
	A	B	C	D	E	F	
	$-.200 /-.800$	$-.060 /-.700$	$-.350 /-.760$	$-.560 /-1.600$	$-.280 /-.760$	$-.560 /-1.600$	

4

5/ Input voltages shown are $A=2.0$ volts minimum and $B=0.7$ volts maximum.
6/ Tests shall be performed in sequence, attributes data only.
7/ Output voltages shall be $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L}<1.5 \mathrm{~V}$.
8/ $f_{\text {MAX }}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

MIL-M-38510/301E

6. NOTES
6.1 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. Complete part number (see 1.2).
c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
j. Requirements for "JAN" marking.
6.3 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M- 38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

G	Ground zero voltage
	Current flowing into an input terminal
$V_{\text {IC }}$	Input clamp voltage
	Voltage level at an input terminal

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming shall not affect the part number.

MIL-M-38510/301E

6.7 Substitutability. The cross-reference information below is presented for the convenience of users.

Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54 LS 73
02	54 LS 74 A
03	54 LS 112
04	54 LS 113
05	54 LS 114
06	54 LS 174
07	54 LS 175
08	54 LS 107
09	54 LS 109
10	54 LS 76 A

6.8 Manufacturers' designation. Manufacturers' circuits, which form a part of this specification, are designated as shown in table IV herein.

TABLE IV. Manufacturers' designation.

Manufacturers							
Device type	Texas Instruments Inc.	Signetics Corporation	National Semiconductor Corp	Raytheon Company	Motorola Inc	Fairchild Semiconductor	Advanced Micro Devices
01	A	B	C	D	E	---	---
02	A	B	C	D	E	F	---
03	A	B	C	C	D	E	--
04	A	B	C	C	F	E	D
05	A	-- -	C	C	D	E	-- -
06	A	B	C	E	F	G	D
07	A	B	C	E	F	G	D
08	A	B	C	D	E	-- -	-- -
09	A	B	C	-- -	E	F	---
10	A	B	C	C	D	E	-- -

6.9 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	(Project 5962-1946)
Air Force -11	
DLA - CC	

Review activities:
Army - HD, MI, SM
Navy - AS, CG, MC, SH, TD
Air Force-03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks $1,2,3$, and 8 . In block 1 , both the document number and revision letter should be given.
2. The submitter of this form must complete blocks $4,5,6$, and 7 , and send to preparing activity.
3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

I RECOMMEND A CHANGE:	1. DOCUMENT NUMBER MIL-M-38510/301E	2. DOCUMENT DATE (YYYYMMDD)
$2003-02-14$		

5. REASON FOR RECOMMENDATION

6. SUBMITTER	
a. NAME (Last, First Middle Initial)	b. ORGANIZATION
c. ADDRESS (Include Zip Code)	d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (1) Commercial (2) DSN (If applicable)
8. PREPARING ACTIVITY	
a. NAME Defense Supply Center, Columbus	b. TELEPHONE (Include Area Code (1) Commercial 614-692-0536 (2) DSN 850-0536
c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: Defense Standardization Program Office (DLSC-LM) 8725 John J. Kingman Road, Suite 2533 Fort Belvoir, Virginia 22060-6221 Telephone (703)767-6888 DSN 427-6888

[^0]: 1/ Must withstand the added P_{D} due to short-circuit test (e.g., los).
 $\underline{\underline{2} /}$ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

