

PART NUMBER 54LS113FMB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

INCH-POUND

MIL-M-38510/301E

14 February 2003

SUPERSEDING

MIL-M-38510/301D

8 April 1988

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, flip-flops, bistable logic gate microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part number. The part number shall be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types</u>. The device types shall be as follows:

Device type	<u>Circuit</u>
01	Dual J-K flip-flop with clear
02	Dual D type flip-flop with clear and preset
03	Dual J-K flip-flop with clear and preset
04	Dual J-K flip-flop with preset
05	Dual J-K flip-flop with preset and common clear and common clock
06	Hex D type flip-flop with common clear and common clock
07	Quad D type flip-flop with common clear and common clock
08	Dual, J-K flip-flop with clear
09	Dual, J-K flip-flop with clear and preset
10	Dual, J-K flip-flop with clear and preset

1.2.2 <u>Device class</u>. The device class shall be the product assurance level as defined in MIL-PRF-38535.

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A FSC 5962

1.2.3 <u>Case outlines.</u> The case outlines shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
A B C D E F X 2	GDFP5-F14 or CDFP6-F14 GDFP4-14 GDIP1-T14 or CDIP2-T14 GDFP1-F14 or CDFP2-F14 GDIP1-T16 or CDIP2-T16 GDFP2-F16 or CDFP3-F16 CQCC2-N20 CQCC1-N20	14 14 14 14 16 16 20 20	Flat pack Flat pack Dual-in-line Flat pack Dual-in-line Flat pack Square leadless chip carrier Square leadless chip carrier
1.3 Absolute maximu	m ratings.		
Input voltage rang Storage temperatu Maximum power of Lead temperature Thermal resistance Cases A, B, C, D Junction temperature	25 mW 300°C (See MIL-STD-1835)		
Minimum high leve Maximum low leve Case operating tel Input set up time: Device types: 01, 03, 04, 05, 0 02, 06, and 07. Input hold time: Device types: 01, 03, 04, 05, 0			0.7 V dc -55° to +125°C 25 ns minimum 20 ns minimum 0 ns minimum

^{1/} Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).
2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements.</u> The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
 - 3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Logic diagrams. The logic diagrams shall be as specified on figure 2.
 - 3.3.3 Truth tables. The truth tables and logic equations shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 10 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with, MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.
 - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI).</u> Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
 - 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions 1/		Device	Li	mits	Unit
1000	- Cynnbon	-55°C ≤ T _C ≤ +125°C		types	Min	Max	01
		unless otherwise specif		1,7,200			
High level output	V _{OH}	$V_{CC} = 4.5 \text{ V},$		All	2.5		V
voltage	1011	$I_{OH} = -400 \mu A$		7			•
Low level output	V _{OL}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 4 \text{ mA}$		All		0.4	V
voltage	102	1 50 110 1, 102 1 11		7			•
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA},$		All		-1.5	V
		T _C = +25°C					
Low level input	I _{IL1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	<u>2</u> /	01, 03, 04,	030	360	mA
current				05, 08, 10			
			<u>2</u> /	06, 07	075	400	
	I _{IL2}		<u>3</u> /	02, 09	030	400	
			<u>3</u> /	06	075	420	
			<u>3</u> /	07	075	420	
	I_{IL3}		<u>4</u> /	01, 08	060	720	
			<u>4</u> /	03, 04, 10	060	760	
	I _{IL4}		<u>5</u> /	01, 02, 03,	060	800	
				04, 05, 08,			
				09, 10			
	I _{IL5}		<u>6</u> /	02	060	-1.20	
	I _{IL6}		<u>4</u> /	05	12	-1.52	
	I _{IL7}		<u>6</u> /	05	120	-1.60	
			<u>6</u> /	09	060	-1.60	
High level input	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	<u>7</u> /	All		20	μΑ
current			-,			100	-
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	<u>7</u> /	All		100	
		$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	0/	02.00		40	1
	I _{IH3}	VCC = 5.5 V, VIN = 2.7 V	<u>8</u> /	02, 09		40	
	I _{IH4}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	8/	02, 09		200	1
	IH4	VCC = 0.5 V, VIN = 0.5 V	<u>o</u> ,	02, 03		200	
	I _{IH5}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	9/	01, 02, 03,		60	1
	יוויט	VCC = 3.3 V, VIIV = 2.1 V	<u>u</u> ,	04, 05, 08,			
				10			
	I _{IH6}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	<u>9</u> /	01, 02, 03,		300	
			_	04, 05, 08,			
				10			
	I _{IH7}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	<u>10</u> /	01, 03, 04,		80	
				08, 09, 10]
	I _{IH8}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	<u>10</u> /	01, 03, 04,		400	
				08, 09, 10			1
	I _{IH9}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	<u>6</u> /	05		120	
		.,	- ·				-
	I _{IH10}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	<u>6</u> /	05		600	
	-	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	4 /	0.5		160	4
	I _{IH11}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	<u>4</u> /	05		160	
	I _{IH12}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	<u>4</u> /	05		800	1
	UH12	VCC - 0.0 V, VIN = 0.0 V	<u>++</u> /	03		000	
See footnotes at end		<u> </u>		1		1	l

See footnotes at end of table.

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions 1/	Device	Li	mits	Unit
		-55°C ≤ T _C ≤ +125°C	types	Min	Max	
		unless otherwise specified				
Short circuit output	los	V _{CC} = 5.5 V <u>11</u> /	01, 02, 03,	-15	-100	mA
current		$V_{IN} = 0 V$	05, 06, 07,			
			08, 09			
			04, 10	-15	-130	
Supply current	Icc	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	01, 02, 03,		8	mA
			04, 05, 08			
			09, 10			
			06		26	
			07		18	
Maximum clock	f_{MAX}	$V_{CC} = 5.0 \text{ V}$	01, 03, 04	25		MHz
frequency		$C_L = 50 \text{ pF} \pm 10\%$	05, 06, 07			
		$R_L = 2k\Omega \pm 5\%$	08, 10			
			02, 09	20		
Propagation delay to	t _{PLH1}		01, 03, 04,	5	32	ns
high logic level			05, 08, 10			
(clear or preset			02, 09	5	39	1
to output)			07	5	51	
Propagation delay to	t _{PHL1}		01, 03, 04,	5	40	ns
low logic level			05, 08, 10			
(clear or preset			02, 09	5	59	1
to output)			06	5	52	1
			07	5	55	1
Propagation delay to	t _{PLH2}		01, 03, 04,	5	32	ns
high logic level			05, 08, 10			
(clock to output)			02, 09	5	39	
			06	5	47	
			07	5	46	
Propagation delay to	t _{PHL2}	1	01, 03, 04,	5	42	ns
low logic level			05, 08, 10			
(clock to output)			02, 09	5	59	1
. , ,			06	5	52	1
			07	5	55	1

- 1/ See table III for complete terminal conditions.
- 2/ Input condition J or K (device types 01, 03, 04, 05, 08, and 10); and D (device types 06 and 07).
- $\underline{3}$ / Input condition D (device type 02); clock or clear (device types 06 and 07); and J or \overline{K} (device type 09).
- 4/ Input condition Clock.
- 5/ Input condition Clear or preset (device types 03 and 10); clear (device types 01 and 08); preset or clock (device types 02 and 09); and preset (device types 04 and 05).
- 6/ Input condition Clear.
- 7/ Input condition J or K (device types 01, 03, 04, 05, 08, and 10); D (device type 02); J or K (device type 09); and D, clear, clock (device types 06 and 07).
- 8/ Input condition Preset or clock.
- 9/ Input condition Clear or preset (device types 03 and 10); clear (device types 01, 02, and 08); and preset (device types 04 and 05).
- 10/ Input condition Clock (device type 01, 03, 04, 08, and 10); and clear (device type 09).
- $\underline{11}/$ Not more than one output should be shorted at a time.

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11
Group C end-point electrical parameters	1, 2, 3, 9, 10, 11	1, 2, 3
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

		ymbols type 01		mbols type 02		mbols type 03		ymbols type 04		ymbols type 05
Pin	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases
number	2, X	A, B, C, and D	2, X	A, B, C, and D	2, X	E, F	2, X	A, B, C, and D	2, X	A, B, C, and D
1	NC	CLK1	NC	CLR1	NC	CLK1	NC	CLK1	NC	CLR1
2	CLK1	CLR1	CLR1	1D	CLK1	1K	CLK1	1K	CLR	1K
3	CLR1	1K	1D	CLK1	1K	1J	1K	1J	1K	1J
4	1K	V_{CC}	CLK1	PS1	1J	PS1	1J	PS1	1J	PS1
5	NC	CLK2	NC	1Q	PS1	1Q	NC	1Q	NC	1Q
6	Vcc	CLR2	PS1	1 Q	NC	1 Q	PS1	1 Q	PS1	1 Q
7	NC	2J	NC	GND	1Q	2 Q	NC	GND	NC	GND
8	CLK2	2 \overline{Q}	1Q	2 Q	1 Q	GND	1Q	2 Q	1Q	2 \(\overline{Q} \)
9	CLR2	2Q	1 Q	2Q	2 Q	2Q	1 Q	2Q	1 Q	2Q
10	2J	2K	GND	PS2	GND	PS2	GND	PS2	GND	PS2
11	NC	GND	NC	CLK2	NC	2J	NC	2J	NC	2J
12	2 \overline{Q}	1Q	2 \overline{Q}	2D	2Q	2K	2 Q	2K	2 \overline{Q}	2K
13	2Q	1 Q	2Q	CLR2	PS2	CLK2	2Q	CLK2	2Q	CLK
14	2K	1J	PS2	V _{CC}	2J	CLR2	PS2	V _{CC}	PS2	V _{CC}
15	NC		NC		2K	CLR1	NC		NC	
16	GND		CLK2		NC	V_{CC}	2J		2J	
17	NC		NC		CLK2		NC		NC	
18	1Q		2D		CLR2		2K		2K	
19	1 Q		CLR2		CLR1		CLK2		CLK	
20	1J		V _{CC}		V _{CC}		V _{CC}		V _{CC}	

FIGURE 1. <u>Terminal connections</u>.

	1		I		I		1		1	
		ymbols		/mbols		/mbols		/mbols		ols device
	device	type 06	device	type 07	device			device type 09		e 10
Pin	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases	Cases
number	2, X	E, F	2, X	E, F	2, X	A, B, C,	2, X	E, F	2, X	E, F
						and D				
1	NC	CLR	NC	CLR	NC	1J	NC	1CLR	NC	1CLK
2	CLR	1Q	CLR	1Q	1J	1 Q	1CLR	1J	1CLK	1PS
3	1Q	1D	1Q	1 Q	1 Q	1Q	1J	1 K	1PS	1CLR
4	1D	2D	1 Q	1D	1Q	1K	1 K	1CLK	1CLR	1J
5	2D	2Q	1D	2D	NC	2Q	1CLK	1PS	1J	V _{CC}
6	NC	3D	NC	2 Q	1K	2 Q	NC	1Q	NC	2CLK
7	2Q	3Q	2D	2Q	NC	GND	1PS	1 Q	V _{cc}	2PS
8	3D	GND	2 \(\overline{Q} \)	GND	2Q	2J	1Q	GND	2CLK	2CLR
9	3Q	CLK	2Q	CLK	2 Q	2CLK	1 Q	2 Q	2PS	2J
10	GND	4Q	GND	3Q	GND	2CLR	GND	2Q	2CLR	2Q
11	NC	4D	NC	3 Q	NC	2K	NC	2PS	NC	2Q
12	CLK	5Q	CLK	3D	2J	1CLK	2 Q	2CLK	2J	2K
13	4Q	5D	3Q	4D	2CLK	1CLR	2Q	2 K	2 Q	GND
14	4D	6D	3 Q	4 Q	2CLR	V _{CC}	2PS	2J	2Q	1 Q
15	5Q	6Q	3D	4Q	NC		2CLK	2CLR	2K	1Q
16	NC	V _{CC}	NC	V _{CC}	2K		NC	V _{CC}	NC	1K
17	5D		4D		NC		2K		GND	
18	6D		4 Q		1CLK		2J		1 Q	
19	6Q		4Q		1CLR		2CLR		1Q	
20	V _{CC}		V _{CC}		V _{CC}		V _{CC}		1K	

FIGURE 1. <u>Terminal connections</u> - Continued.

DEVICE TYPE 01

DEVICE TYPE 02

DEVICE TYPE 03

FIGURE 2. Logic Diagrams.

DEVICE TYPE 05

FIGURE 2. Logic Diagrams - Continued.

DEVICE TYPE 06

2D 4 CLEAR 3D <u>6</u> CLEAR 4D 11 CLEAR 5D <u>13</u> 0 12 50 CLEAR > CK

FIGURE 2. Logic Diagrams - Continued.

DEVICE TYPE 08

FIGURE 2. Logic Diagrams - Continued.

DEVICE TYPE 09

DEVICE TYPE 10

FIGURE 2. Logic Diagrams - Continued.

DEVICE TYPE 01

	OUT	PUTS			
CLEAR	CLOCK	7	K	Q	IØ
L	Х	Х	Х	L	Н
Н	↓	L	L	Q_0	\overline{Q}_0
Н	\downarrow	Н	L	Н	L
Н	\downarrow	┙	Н	┙	Ι
Н	\downarrow	Η	TOG	GLE	
Н	Н	Х	Х	Q_0	Q ₀

H = high level (steady state)

L = low level (steady state)

X = irrelevant

 \downarrow = transition from high to low level

 Q_0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each ↓ clock transition.

DEVICE TYPE 02

	INPUTS					
PRESET	CLEAR	CLOCK	D	Q	Q	
L	Н	X	Х	Н	L	
Н	L	Χ	Χ	L	Н	
L	L	Χ	Χ	H*	H*	
Н	Н	1	Η	Н	L	
Н	Н	1	L	L	Н	
Н	Н	L	Χ	Q_0	\overline{Q}_0	

H = high level (steady state)

L = low level (steady state)

X = irrelevant

 \uparrow = transition from low to high level

Q₀ = the level of Q before the indicated steady state input conditions were established.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

FIGURE 3. Truth tables.

DEVICE TYPES 03 AND 10

		OUTF	PUTS			
PRESET	CLEAR	CLOCK	J	K	Q	Q
L	Н	Х	Х	Х	Н	L
Н	L	Χ	X	Χ	L	Н
L	L	Χ	X	Χ	H*	H*
Н	Н	↓	L	┙	Q_0	$\overline{\overline{Q}}_0$
Н	Н	\downarrow	Η	┙	Н	L
Н	Н	\downarrow	L	Η	L	Н
Н	Н	↓	Н	Н	TOGGLE	
Н	Н	Н	Х	Х	Q_0	$\overline{\overline{Q}}_0$

H = high level (steady state)

L = low level (steady state)

X = irrelevant

↓ = transition from high to low level

Q₀ = the level of Q before the indicated steady state input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each ↓ clock transition.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

DEVICE TYPE 04

	OUT	PUTS			
PRESET	CLOCK	J	K	Q	IQ
L	Н	Х	Х	Н	L
Н	\downarrow	L	L	Q_0	\overline{Q}_0
Н	\downarrow	Н	L	Н	L
Н	\downarrow	┙	Н	L	Η
Н	\downarrow	Н	Н	TOG	GLE
Н	Н	Χ	Χ	Q_0	\overline{Q}_{0}

H = high level (steady state)

L = low level (steady state)

X = irrelevant

↓ = transition from high to low level

Q₀ = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each ↓ clock transition.

FIGURE 3. <u>Truth tables</u> - Continued.

DEVICE TYPES 05

		OUTF	PUTS			
PRESET	CLEAR	CLOCK	J	K	Q	Q
L	Н	Х	Х	Х	Н	L
Н	Ш	Χ	X	Χ	L	Н
L	┙	Χ	X	Χ	H*	H*
Н	Н	↓	L	L	Q_0	\overline{Q}_0
Н	Н	\downarrow	Н	L	Н	L
Н	Η	\downarrow	L	Η	L	Н
Н	Η	\downarrow	Η	Η	TOGGLE	
Н	Н	Н	Х	X	Q_0	\overline{Q}_0

H = high level (steady state)

L = low level (steady state)

X = irrelevant

↓ = transition from high to low level

 \dot{Q}_0 = the level of Q before the indicated steady state input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each ↓ clock transition.

* This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

DEVICE TYPE 06

	OUTPUT		
CLEAR	CLOCK	D	Q
L	Х	Х	L
Н	1	Н	Н
Н	1	L	L
Н	L	Х	Q_0

H = high level (steady state)

L = low level (steady state)

X = irrelevant

↑ = transition from low to high level

Q₀ = the level of Q before the indicated steady state input conditions were established.

FIGURE 3. Truth tables - Continued.

DEVICE TYPE 07

	OUTPUT					
CLEAR	CLOCK	D	Q	IQ		
L	Х	Х	L	Н		
Н	↑	Η	Ι	┙		
Н	↑	L	L	L		
Н	Ĺ	Х	Q_0	Q ₀		

H = high level (steady state) L = low level (steady state)

X = irrelevant

 \uparrow = transition from low to high level

 Q_0 = the level of Q before the indicated steady state input conditions were established.

DEVICE TYPE 08

	OUTPUTS					
CLEAR	CLOCK	٦	K	Q	IØ	
L	Х	Х	Х	L	Н	
Н	1	L	L	Q_0	\overline{Q}_0	
Н	1	Н	L	Н	L	
Н	1	Ĺ	Н	L	Н	
Н	↑	Н	Н	TOG	GLE	

H = high level (steady state) L = low level (steady state)

X = irrelevant

↑ = transition from low to high level

 Q_0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each clock transition.

FIGURE 3. Truth tables - Continued.

DEVICE TYPE 09

		OUTPUTS				
PRESET	CLEAR	CLOCK	J	K	Q	Ια
L	Н	Χ	Χ	Χ	Н	L
Н	L	Χ	Χ	Χ	L	Ι
L	L	Χ	Χ	Χ	H*	H*
Н	Н	↑	L	L	L	Ι
Н	Н	↑	Ι	Ц	TOG	GLE
Н	Н	1	L	Η	Q_0	Q 0
Н	Н	1	Н	Н	Н	Ĺ
Н	Н	L	X	Х	Q_0	\overline{Q}_0

H = high level (steady state)

TOGGLE: Each output changes to the complement of its previous level on each ↑ clock transition.

FIGURE 3. <u>Truth tables</u> - Continued.

L = low level (steady state)

X = irrelevant

 $[\]uparrow$ = transition from low to high level

 $[\]dot{Q}_0$ = the level of Q before the indicated steady state input conditions were established.

^{*} This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

- 1. Clear inputs dominate regardless of the state of clock or J-K inputs.
- 2. Clear input pulse characteristics: V_{gen} = 3 V, $t_1 \le 15$ ns, $t_0 \le 6$ ns, t_p (clear) = 30 ns, PRR ≤ 1 MHz.
- 3. All diodes are 1N3064, or equivalent.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.
- 6. Clock input pulse characteristics: V_{gen} = 3 V, $t_p(clock)$ = 25 ns, PRR \leq 1 MHz.

FIGURE 4. Clear switching time test circuit and waveforms for device types 01 and 08.

- 1. Clock input characteristics for t_{PLH} , t_{PHL} (clock to output), $V_{gen} = 3$ V, $t_1 \le 15$ ns, $t_0 \le 6$ ns, t_p (clock) = 25 ns, PRR ≤ 1 MHz. When testing f_{MAX} the clock input characteristics are $V_{gen} = 3$ V, $t_1 = t_0 \le 6$ ns, t_p (clock) ≤ 25 ns, and PRR = see table III.
- 2. All diodes are 1N3064, or equivalent.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_L = 2 k\Omega \pm 5\%$.

FIGURE 5. Synchronous switching test circuit for device types 01 and 08.

- 1. Clear and preset inputs dominate regardless of the state of clock or D inputs.
- 2. All diodes are 1N3064, or equivalent.
- 3. Clear or preset input pulse characteristics: $V_{\text{gen}} = 3 \text{ V}$, $t_0 \le 6 \text{ ns}$, t_p (clear) = t_p (preset) = 35 ns, PRR $\le 1 \text{ MHz}$.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_1 = 2 k\Omega \pm 5\%$.
- 6. When testing clear to output switching, preset input shall have a logical "1" voltage applied. When testing preset to output switching, clear input shall have a logical "1" voltage applied (see table III).

FIGURE 6. Clear and preset switching test circuit and waveforms for device type 02.

- 1. Clock input pulse has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_1 \le 15 \text{ ns}$, $t_0 \le 6 \text{ ns}$, t_p (clock) = 30 ns, PRR $\le 1 \text{ MHz}$. When testing f_{MAX} , PRR = see table III, t_p (clock) $\le 30 \text{ ns}$, and $t_0 = t_1 \le 6 \text{ ns}$.
- 2. D input has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_1 \le 15 \text{ ns}$, $t_0 \le 6 \text{ ns}$, $t_{setup} = 20 \text{ ns}$, $t_{hold} = 5 \text{ ns}$, $t_p = 25 \text{ ns}$, and PRR is 50% of the clock PRR. For f_{MAX} , $t_0 = t_1 \le 6 \text{ ns}$.
- 3. All diodes are 1N3064, or equivalent.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.

FIGURE 7. Synchronous switching test circuit (high-level data) for device type 02.

- 1. Clock input pulse has the following characteristics: $V_{gen}=3$ V, $t_1 \le 15$ ns, $t_0 \le 6$ ns, t_p (clock) = 30 ns, PRR ≤ 1 MHz. 2. D input has the following characteristics: $V_{gen}=3$ V, $t_1 \le 15$ ns, $t_0 \le 6$ ns, $t_{setup}=20$ ns, $t_{hold}=5$ ns, $t_p=25$ ns, and PRR is 50% of the clock PRR.
- 3. All diodes are 1N3064, or equivalent.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.

FIGURE 8. Synchronous switching test circuit (low-level data) for device type 02.

VOLTAGE WAVEFORM

t_p (CLOCK)

^tPHL1

۷он

NOTES:

1. Clear or preset inputs dominate regardless of the state of clock or J-K inputs.

^tPHL1

v_{oH}

- 2. Clear or preset input has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_1 \le 15 \text{ ns}$, $t_0 \le 6 \text{ ns}$, $t_p(\text{clear}) = t_p(\text{preset}) = 30 \text{ ns}$, $\text{PRR} \le 1 \text{ MHz}$, and $Z_{out} \approx 50\Omega$.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).

t_p (CLOCK)

4. $R_L = 2 k\Omega \pm 5\%$.

Q OUTPUT

Q OUTPUT

- 5. All diodes are 1N3064, or equivalent.
- 6. When testing clear to output switching, preset input shall have a logical "1" voltage applied. When testing preset to output switching, clear input shall have a logical "1" voltage applied. (see table III).
- 7. Clock input pulse characteristics: $t_p(clock) \ge 25$ ns, $V_{gen} = 3$ V, PRR ≤ 1 MHz.

FIGURE 9. Clear and preset switching test circuit and waveforms for device types 03, 05, and 10.

- 1. Clock input characteristics for t_{PLH} , t_{PHL} (clock to output), $V_{gen} = 3$ V, $t_0 \le 6$ ns, $t_1 \le 15$ ns, $t_p(clock) = 25$ ns, PRR ≤ 1 MHz. When testing t_{MAX} the clock input characteristics are $V_{gen} = 3$ V, $t_1 = t_0 \le 6$ ns, t_p (clock) ≤ 25 ns, and PRR = see table III.
- 2. All diodes are 1N3064, or equivalent.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_L = 2 k\Omega \pm 5\%$.

FIGURE 10. Synchronous switching test circuit for device types 03, 05, and 10.

- 1. Preset inputs dominate regardless of the state of clock or J-K inputs.
- 2. Preset input pulse characteristics: $V_{gen} = 3 \text{ V}, t_0 \le 15 \text{ ns}, t_1 \le 6 \text{ ns}, t_p \text{ (preset)} = 30 \text{ ns}, PRR \le 1 \text{ MHz}.$
- 3. All diodes are 1N3064, or equivalent.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.
- 6. Clock input pulse characteristics: V_{gen} = 3 V, $t_p(clock) \ge 25$ ns, PRR ≤ 1 MHz.

FIGURE 11. Preset switching test circuit and waveforms for device type 04.

- 1. Clock input characteristics for t_{PLH} , t_{PHL} (clock to output), $V_{gen} = 3$ V, $t_0 \le 6$ ns, $t_1 \le 15$ ns, $t_p(clock) = 25$ ns, PRR ≤ 1 MHz. When testing t_{MAX} the clock input characteristics are $V_{gen} = 3$ V, $t_1 = t_0 \le 6$ ns, t_p (clock) ≤ 25 ns, and PRR = see table III.
- 2. All diodes are 1N3064, or equivalent.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_L = 2 k\Omega \pm 5\%$.

FIGURE 12. Synchronous switching test circuit for device type 04.

- 1. Clear input dominates regardless of the state of clock or D inputs.
- 2. All diodes are 1N3064, or equivalent.
- 3. Clear input pulse characteristics: $V_{gen} = 3 \text{ V}, t_0 \le 6 \text{ ns}, t_1 \le 15 \text{ ns}, t_p(clear) = 35 \text{ ns}, PRR \le 1 \text{ MHz}.$
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.
- 6. \overline{Q} output applies to device type 07 only.
- 7. Clock input pulse characteristics: t_p (clock) \geq 25 ns, V_{gen} = 3 V, PRR \leq 1 MHz.

FIGURE 13. Asynchronous switching test circuit for device types 06 and 07.

- 1. Clock input pulse has the following characteristics: V_{gen} = 3 V, t_1 ≤ 15 ns, t_0 ≤ 6 ns, t_p (clock) = 30 ns, and PRR ≤ 1 MHz. When testing f_{MAX} , PRR = see table III, t_p (clock) ≤ 30 ns, and t_0 = t_1 ≤ 6ns.
- 2. D input has the following characteristics: $V_{gen}=3$ V, $t_1 \le 15$ ns, $t_0 \le 6$ ns, $t_{setup}=20$ ns, $t_{hold}=5$ ns, $t_p=25$ ns, and PRR is 50% of the clock PRR. For f_{MAX} , $t_0=t_1 \le 6$ ns.
- 3. All diodes are 1N3064, or equivalent.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.
- 6. \overline{Q} output applies to device type 07 only.

FIGURE 14. Synchronous switching test circuit (high-level data) for device types 06 and 07.

VOLTAGE WAVEFORM

- 1. Clock input pulse has the following characteristics: V_{gen} = 3 V, t_1 ≤ 15 ns, t_0 ≤ 6 ns, t_p (clock) = 30 ns, and PRR ≤ 1 MHz.
- 2. D input has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_1 \le 15 \text{ ns}$, $t_0 \le 6 \text{ ns}$, $t_{setup} = 20 \text{ ns}$, $t_{hold} = 5 \text{ ns}$, $t_p = 25 \text{ ns}$, and PRR is 50% of the clock PRR.
- 3. All diodes are 1N3064, or equivalent.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 5. $R_L = 2 k\Omega \pm 5\%$.
- 6. \overline{Q} output applies to device type 07 only.

FIGURE 15. Synchronous switching test circuit (low-level data) for device types 06 and 07.

- 1. Clock input characteristics for t_{PLH} , t_{PHL} (clock to output), $V_{gen} = 3$ V, $t_0 \le 6$ ns, $t_1 \le 15$ ns, t_p (clock) = 25 ns, and PRR ≤ 1 MHz. When testing t_{MAX} , the clock input characteristics are $t_{gen} = 3$ V, $t_0 = t_1 \le 6$ ns, t_p (clock) ≤ 25 ns, and PRR = see table III,.
- 2. All diodes are 1N3064, or equivalent.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_L = 2 k\Omega \pm 5\%$.

FIGURE 16. Synchronous switching test circuit for device type 09.

- 1. Clear or preset inputs dominate regardless of the state of clock or $J-\overline{K}$ inputs.
- 2. Clear or preset input has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_1 \le 15 \text{ ns}$, $t_0 \le 6 \text{ ns}$, $t_p(\text{clear}) = t_p(\text{preset}) = 30 \text{ ns}$, $\text{PRR} \le 1 \text{ MHz}$, and $Z_{out} \approx 50\Omega$.
- 3. $C_L = 50 \text{ pF} \pm 10\%$ (including jig and probe capacitance).
- 4. $R_L = 2 k\Omega \pm 5\%$.
- 5. All diodes are 1N3064, or equivalent.
- 6. When testing clear to output switching, preset input shall have a logical "1" voltage applied. When testing preset to output switching, clear input shall have a logical "1" voltage applied. (see table III).
- 7. Clock input pulse characteristics: $t_p(clock) \ge 25$ ns, $V_{gen} = 3$ V, PRR ≤ 1 MHz.

FIGURE 17, Clear and preset switching test circuit and waveforms for device type 09.

TABLE III. Group A inspection for device type 01 and 08. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

			Cases 1/	* 2	3	4	6	8	9	10	12	13	14	16	18	19	20				
		MIL-STD-	2, X	** 18	19	6	20	13	14	12	9	8	16	10	4	3	2				ł
Subgroup	Symbol	883	Case	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Lin	nits	Unit
J 9	- ,	method	A,B,C,D	** 12	13	4	14	9	10	8	6	5	11	7	3	2	1	terminal			
			Test no.	CLK1	CLR1	K1	V _{cc}	CLK2	CLR2	J2	_ Q2	Q2	K2	GND	Q1	_ Q1	J1		Min	Max	
1	V _{OH}	3006	1	2.0 V	0.7 V	2.0 V	4.5 V							GND		4 mA	2.0 V	_ Q1	2.5		V
Tc = 25°C		н	2	<u>2</u> /	2.0 V	2.0 V	"							"		4 mA	0.7 V	_ Q1			"
		"	3	<u>2</u> /	2.0 V	0.7 V	"							-	4 mA		2.0 V	Q1	"		"
		"	4				"	2.0 V	0.7 V	2.0 V	4 mA		2.0 V	"				_ Q2	-		"
		"	5				"	<u>2</u> /	2.0 V	0.7 V	4 mA		2.0 V					_ Q2	=		"
			6				"	"	-	2.0 V		4 mA	0.7 V	-				Q2	"		
	V _{OL}	3007	7				"	"	"	2.0 v	4 mA		0.7 V	"				_ Q2		0.4	"
		"	8				"	"	-	0.7 V		4 mA	2.0 V	-				Q2		"	"
		"	9				"	2.0 V	0.7 V	2.0 V		4 mA	2.0 V	-				Q2		"	"
		"	10	2.0 V	0.7 V	2.0 V	"							-	4 mA		2.0 V	Q1		"	"
		"	11	<u>2</u> /	2.0 V	2.0 V	"							"	4 mA		0.7 V	Q1		"	
			12	<u>2</u> /	2.0 V	0.7 V	"							"		4 mA	2.0 V	_ Q1		"	
	V_{IC}		13	-18 mA			"							"				CLK1		-1.5	"
			14		-18 mA		"							"				CLR1		"	"
			15			-18mA	"							"				K1		"	"
			16				"	-18mA						"				CLK2		"	
			17				"		-18mA					"				CLR2		"	
			18				"			-18mA				"				J2		"	
			19				"						-18mA	- "				K2		"	"
			20	2.1	4 = 17	0.414								- "			-18mA	J1		"	<u> </u>
	I _{IL1}	3009	21	<u>3</u> /	4.5 V	0.4 V	5.5 V							- "			4.5 V	K1	<u>4</u> /	<u>4</u> /	mA
			22	4.5 V	<u>3</u> /	4.5 V	- "	4.5.1/	0/	0.41/			451/				0.4 V	J1 J2		- "	-
			23					4.5 V	<u>3</u> /	0.4 V			4.5 V					K2	-	-	
	-	"	24 25	0.4 V	3/	4.5 V	"	<u>3</u> /	4.5 V	4.5 V			0.4 V	"			4.5 V	CLK1	"		"
	I _{IL3}	"	26	0.4 V	<u>3</u> /	4.5 V		0.4 V	3/	4.5 V			4.5 V	"			4.5 V	CLK1			"
	lu .	"	27	4.5 V	0.4 V	4.5 V	"	U.4 V	<u>J</u> /	4.5 V	 		4.5 V	"			4.5 V	CLR2 CLR1	"	"	"
	I _{IL4}		28	7.J V	∪. + V	7.5 V	"	4.5 V	0.4 V	4.5 V	 		4.5 V	"			7.5 V	CLR1	"	"	"
	I _{IH1}	3010	29	GND	GND	2.7 V	"	7.5 V	U.7 V	7.0 V			7.5 V	"			4.5 V	K1		20	μΑ
	'IHI	"	30	GND	GND	4.5 V	"							"			2.7 V	J1		"	μΛ
			31	0.10	CIAD	7.0 V	"	GND	GND	2.7 V			4.5 V	"			Z.1 V	J2			"
		"	32				"	GND	GND	4.5 V			2.7 V	"				K2		"	"
	I _{IH2}		33				"	GND	GND	4.5 V			5.5 V	"				K2		100	"
	-1172	"	34				"	GND	GND	5.5 V			4.5 V	"				J2		"	"
			35	GND	GND	5.5 V	"							"			4.5 V	K1		"	"
		"	36	GND	GND	4.5 V	"							"			5.5 V	J1		"	"
	I _{IH5}	"	37	GND	2.7 V	4.5 V	"							"			GND	CLR1		60	"
		"	38				"	GND	2.7 V	GND			4.5 V	"				CLR2		60	"
	I _{IH6}	"	39				"	GND	5.5 V	GND			4.5 V	"				CLR2		300	"
		"	40	GND	5.5 V	4.5 V	"							"			GND	CLR1		300	"

See footnotes at end of device types 01 and 08.

TABLE III. Group A inspection for device type 01 and 08 – Continued. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

	1		0 1/	1* 0							be high 2					40	00	1			
		MIL OTD	Cases <u>1</u> /	* 2	3	4	6	8	9	10	12	13	14	16	18	19	20				
0.1		MIL-STD-	2, X	** 18	19	6	20	13	14	12	9	8	16	10	4	3	2	اا			
Subgroup	Symbol	883	Case	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Lim	its	Unit
		method	A,B,C,D	** 12	13	4	14	9	10	8	6	5	11 K2	7	3	2	1	terminal	N 4:	N.4	
			Test no.	CLK1	CLR1	K1	V _{CC}	CLK2	CLR2	J2	_ Q2	Q2	K2	GND	Q1	_ Q1	J1		Min	Max	
1	I_{IH7}	3010	41	2.7 V	GND	GND	5.5 V							GND			GND	CLK1		80	μΑ
$Tc = 25^{\circ}C$		=	42				"	2.7 V	GND	GND			GND	"				CLK2		80	"
	I _{IH8}	"	43				"	5.5 V	GND	GND			GND	"				CLK2		400	"
			44	5.5 V	GND	GND	"							"			GND	CLK1		400	"
	los	3011	45	GND	GND	4.5 V	"							"		GND	GND	Q1	-15	-100	mA
		"	46	<u>2</u> /	4.5 V	GND	"							"	2.25 V	GND	4.5 V	Q1	<u>5</u> /	<u>5</u> /	"
		"	47				"	GND	GND	GND	GND		4.5 V	"				_ Q2	-15	-100	"
		"	48				"	2/	4.5 V	4.5 V	GND	2.25 V	GND	"				Q2	<u>5</u> /	<u>5</u> /	"
	I _{C C}	3005	49	GND	GND	GND	"	GND	GND	GND			GND	"			GND	Vcc		8.0	"
	I _C C	3005	50	<u>2</u> /	5.5 V	GND	"	<u>2</u> /	5.5 V	5.5 V			GND	"			5.5 V	Vcc		8.0	"
2	Same tes	sts, terminal o	conditions a	nd limits as	s for subg	roup 1, ex	cept T _C =	+125° C,	and V _{IC}	tests are	omitted.										
3		sts, terminal o																			
7	Truth	3014	51	В	В	В	4.5 V	В	В	В	Н	L	В	GND	L	Н	Α	All		See <u>8</u> /	-
<u>6</u> /, <u>7</u> /	table	"	52	A	"	"	"	"	"	"	"	"	"	"	-	"	"	outputs		"	
<u>s</u> , <u></u>	tests		53	В	"	"	"	"	"	"	"	"	"	"	"	"	"	"		"	
	10313		54	В	Α		"	"	"	"	"	"	"	"		"	"	"		"	
			55	A	"		"	"	"	"	"	"	"	"	"	"	"	"	"		
			56	В	"		"	"	"	"	"	"	"	"	Н	1	"	"	"		
			57	В	"	A	"	"	"	"	"	"		"	- ''	-	В	"			
			58	A	"		"	"	"	"	"	"		"		"	"	"		"	
			59	В	"		"	"	"	"	"	"		"	-	Н	"	"			
			60	"	В	В		"	"	"	"	"				"		"			
			61	"	"	"	"	"	Α	Α	"	"	"	"		"	"	"		"	
			62					Α	"	"	"	"	"					"			
			63				"	В	"	"		Н	,,	"							
			64	"				В	"	В	"	"	^	"		"					
			65						"	В "		"	A			"					
				"	"		"	A	"	"				"				"			
			66				"	B "			H	L		"		"	"			"	
			67	"			"	"	В		"	"	B	"		"	"	"		"	
			68		Α "	-	"		A	- "	- "	"	"	"		- "	- "				
			69	A			"	A	"	"	"	"	"		"		"				
		"	70	В	"	"		В			- "			"		"		"			
			71	В	"	Α "	"	В	"	A	"	"	Α "	"	-	- "	Α "	"		"	
			72 <u>9</u> /	Α	"	=		Α		- "		"		"		"		"		"	
			73	В	"	-	"	В	"		L	Н		"	Н	L	"	"		"	
			74	В	"	В	"	В	"	В	"	"	В	"	"	"	В	"		"	
		"	75	Α	"	"	"	Α	"	"	"	"	"	"	"	"	"	"		"	
		"	76	В	"	"	"	В	"	"	"	"	"	"	"	"	"	"		"	
		"	77	В	"	Α	"	В	"	Α	"	"	Α	"	"	"	Α	"		"	
		"	78 <u>9</u> /	Α	"	=	"	Α	"	"	"	"	"	"	"	"	"	"		"	
			79	В	"		"	В	"	"	Н	L	"	"	L	Н	"	"		"	
8 <u>6</u> /, <u>7</u> /	Repeat s	ubgroup 7 at	$T_C = +125^{\circ}$	C and T _C =	= -55° C.																

See footnotes at end of device types 01 and 08.

35

TABLE III. Group A inspection for device type 01 and 08 – Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open).

						IIIIIai coi															
			Cases <u>1</u> /	* 2	3	4	6	8	9	10	12	13	14	16	18	19	20				l
		MIL-STD-		** 18	19	6	20	13	14	12	9	8	16	10	4	3	2				l
Subgroup	Symbol	883	Case	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Lim	nits	Unit
		method		** 12	13	4	14	9	10	8	6	5	11	7	3	2	1	terminal			l
			Test no.	CLK1	CLR1	K1	V _{CC}	CLK2	CLR2	J2	_ Q2	Q2	K2	GND	Q1	_ Q1	J1		Min	Max	
9	f _{MAX}	Fig. 4	80	IN	2.7 V	2.7 V	5.0 V							GND	OUT		2.7 V	Q1	25		MHz
Tc = 25°C	<u>10</u> /	"	81	IN	2.7 V	2.7 V	=							"		OUT	2.7 V	_ Q1	=		"
		"	82				=	IN	2.7 V	2.7 V	OUT		2.7 V	"				- Q2	=		
		"	83				=	IN	2.7 V	2.7 V		OUT	2.7 V	"				Q2	=		=
	t _{PLH1}	3003	84				=	IN	IN	2.7 V	OUT		GND	"				CLR2 to Q2	5	21	ns
		Fig.4	85	IN	IN	GND	"							"		OUT	2.7 V	CLR1 to Q1	"	21	"
	t _{PHL1}	"	86	IN	IN	GND	"							"	OUT		2.7 V	CLR1 to Q1		28	"
		"	87				=	IN	IN	2.7 V		OUT	GND	"				CLR2 to Q2		28	"
	t _{PLH2}	3003	88				=	IN	2.7 V	2.7 V		OUT	2.7 V	"				CLK2 to Q2	=	22	=
		Fig.5	89					IN	2.7 V	2.7 V	OUT		2.7 V	"				CLK2 to Q2	"	"	
		"	90	IN	2.7 V	2.7 V	"							"	OUT		2.7 V	CLK1 to Q1	"	"	"
		"	91		"		-							"		OUT	2.7 V	CLK1 to Q1	-		
	t _{PHL2}	3003	92	"	"	"	"							"		OUT	2.7 V	CLK1 to Q1	"	30	"
		Fig.5	93	"	"		"							"	OUT		2.7 V	CLK1 to Q1		"	"
		"	94				"	IN	2.7 V	2.7 V	OUT		2.7 V	"				CLK2 to Q2	"	"	"
		"	95				=	IN	2.7 V	2.7 V		OUT	2.7 V	"				CLK2 to Q2	=		
10 Tc = +125°C	f _{MAX} 10/	Fig. 4	96 - 99																25		MHz "
1.200	t _{PLH1}	3003	100 - 101	Same tes	ts and teri	minal cond	ditions as	for subgro	oup 9, exc	ept T _C = +	-125°C								5	32	ns
		Fig. 4	100 100																	40	
	t _{PHL1}	3003 Fig. 4	102 - 103																5	40	
	t _{PLH2}	3003 Fig. 5	104 - 107																5	32	"
	t _{PHL2}	3003	108 - 111																5	42	"
		Fig. 5																			
11	Same tes	sts, terminal	conditions, a	and limits a	as for sub	group 10,	except T ₀	_c = -55°C													

^{*} Terminal numbers for device type 01.

TABLE III. <u>Group A inspection for device type 01 and 08</u> – Continued. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

$\underline{4}$ / I_{IL} limits in mA are as follows:

		Min/	Max limits for	CKT	
I _{IL1}	Α	В	С	D	E
	075/250	03/30	11/25	12/36	12/36

		Min/	Max limits for	CKT	
I _{IL3}	Α	В	С	D	E
	15/60	06/60	15/56	29/72	24/72

		Min/	Max limits for	CKT	
I _{IL4}	Α	В	С	D	E
	16/70	06/70	29/65	20/80	12/72

 $\underline{5}$ / I_{OS} limits are as follows:

37

Test nos. 46 and 48: CKT's A, B, C - -7.5/-50 CKT D - -15/-100

- $\underline{6}$ / Input voltages shown are A = 2.0 volts minimum and B = 0.7 volts maximum.
- 7/ Tests shall be performed in sequence, attributes data only.
- <u>8</u>/ Output voltages shall be H ≥ 1.5 V and L < 1.5 V.
- 9/ These tests may be performed as shown in table III or alternately as follows:

Test no.	CLK1	CLR1	K1	V _{CC}	CLK2	CLR2	J2	_ Q2	Q2	K2	GND	Q1	_ Q1	J1
72A	Α	Α	Α	4.5 V	В	Α	Α	Н	L	Α	GND	L	Н	Α
72B	В	"	=	=	В	=	=	Ι	L	=	=	Ι	L	"
72C	В	"	"	"	Α	"	"	Н	L	"	"	Н	L	"
78A	Α	"	=	=	В	=	=	L	Н	=	"	Н	L	"
78B	В	"	=	=	В	=	=	L	Н	=	=	L	Ι	"
78C	В	"	"	"	Α	"	"	L	Н	"	"	L	Н	"

10/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

					rei	minai co	nailions	(pins no	caesigna		/ be high										
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	883 method	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lim	nits	Unit
			Test no.	CLR1	D1	CLK1	PR1	Q1	- Q1	GND	_ Q2	Q2	PR2	CLK2	D2	CLR2	V _{cc}		Min	Max	
1	V _{OH}	3006	1	0.7 V	2.0 V	GND	2.0 V		4 mA	GND							4.5 V	_ Q1	2.5		V
Tc = 25°C		"	2	2.0 V	"	GND	0.7 V	4 mA		"							"	Q1	-		=
		"	3	"	"	2/	2.0 V	4 mA		"							"	Q1	"		
		"	4	"	0.7 V	2/	2.0 V		4 mA	"							"	_ Q1			"
		"	5							"		4 mA	0.7 V	GND	2.0 V	2.0 V	"	Q2	"		=
		n n	6							"	4 mA		2.0 V	GND	2.0 V	0.7 V	"	Q2	"		"
		"	7							"	4 mA		"	<u>2</u> /	0.7 V	2.0 V	"		"		"
		"	8							"		4 mA	"	2/	2.0 V	2.0 V	"	Q2	"		=
	V _{OL}	3007	9	2.0 V	0.7 V	2/	2.0 V	4 mA		"				_=		2.0 .	"	Q1		0.4	"
	· OL	"	10	"	2.0 V	2/	2.0 V		4 mA	"							"	Q1		"	"
		"	11	"	"	GND	0.7 V		4 mA	"							"	Q1		"	"
			12	0.7 V	"	GND	2.0 V	4 mA		"							-	Q1			
		"	13	0.7 V		GND	2.0 V	4 IIIA		"		4 mA	2.0 V	<u>2</u> /	0.7 V	2.0 V		Q2		"	
		н	14							"	4 mA	4111/4	2.0 V	<u>2</u> /	2.0 V	2.0 V	"	Q2		"	
		"	15							"	4 mA		0.7 V	GND	"	"	"	Q2		"	"
		"	16							"		4 mA	2.0 V	GND	"	0.7 V	"	Q2		"	
	V _{IC}		17	-18 mA						"		7111/	2.0 V	OND		0.7 V	"	CLR1		-1.5	"
	- 10		18		-18 mA					"							"	D1		"	=
			19			-18 mA				"							"	CLK1		"	"
			20				-18 mA			"							"	PR1		"	"
			21							"			-18 mA				"	PR2		"	=
			22											-18 mA				CLK2			=
			23							"					-18 mA		"	D2		"	"
			24							"						-18 mA	"	CLR2		"	"
	I_{IL2}	3009	25	4.5 V	0.4 V	4.5 V	GND			"							5.5 V	D1	<u>3</u> /	<u>3</u> /	mA
		"	26							"			GND	4.5 V	0.4 V	4.5 V		D2		"	-
	I_{IL4}	"	27	4.5 V	GND	0.4 V	GND			"								CLK1	- "		- "
			28	GND	GND	GND	0.4 V			"			0.41/	CND	CND	CND		PR1	"	"	-
		"	29 30					1		"	1		0.4 V GND	GND 0.4 V	GND GND	GND 4.5 V	-	PR2 CLK2	"	-	"
<u> </u>			30	l	l					l		l	GND	U.4 V	GND	4.5 V	l	ULN2			

See footnotes at end of device type 02.

TABLE III. <u>Group A inspection for device type 02</u> - Continued.

Terminal conditions (pins not designated may be high > 2.0 V, low < 0.7 V, or open).

					Ter	rminal co	nditions	(pins no	t designa	ated may	be high	≥ 2.0 V,	$low \leq 0$.	7 V, or o	pen).						
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol		Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lim	nits	Unit
			Test no.	CLR1	D1	CLK1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	CLK2	D2	CLR2	V _{CC}	-	Min	Max	
1	I _{IL5}	3009	31	0.4 V	4.5 V	4.5 V	GND			GND							5.5 V	CLR1	3/	3/	mA
Tc = 25°C		"	32							"			GND	4.5 V	4.5 V	0.4 V	"	CLR2	3/	3/	mA
	I _{IH1}	3010	33	GND	2.7 V	4.5 V	4.5 V			"								D1		20	μΑ
		"	34							"			4.5 V	4.5 V	2.7 V	GND	"	D2		20	"
	I _{IH2}		35							"			4.5 V	4.5 V	5.5 V	GND	"	D2		100	"
		=	36	GND	5.5 V	4.5 V	4.5 V			-							-	D1		100	=
	I _{IH3}	"	37	GND	4.5 V	2.7 V	4.5 V			-							-	CLK1		40	"
		"	38	4.5 V	4.5 V	<u>4</u> /	2.7 V			-							"	PR1		"	"
		"	39							-			2.7 V	<u>4</u> /	4.5 V	4.5 V	"	PR2			"
		=	40							-			4.5 V	2.7 V	4.5 V	GND	-	CLK2		-	"
	I_{1H4}		41							-			4.5 V	5.5 V	4.5 V	GND	-	CLK2		200	"
		"	42							-			5.5 V	<u>4</u> /	4.5 V	4.5 V	"	PR2			"
		"	43	4.5 V	4.5 V	<u>4</u> /	5.5 V			-							"	PR1		"	"
		=	44	GND	4.5 V	5.5 V	4.5 V			-							-	CLK1		=	=
	I _{IH5}		45	2.7 V	GND	4/	4.5 V			-							-	CLR1		60	=
		=	46							-			4.5 V	<u>4</u> /	GND	2.7 V	-	CLR2		60	-
	I _{IH6}		47							-			4.5 V	<u>4</u> /	GND	5.5 V	-	CLR2		300	=
		=	48	5.5 V	GND	<u>4</u> /	4.5 V			-							-	CLR1		300	=
	los	3011	49	GND					GND	"							"	_ Q1	-15	-100	mA
		"	50				GND	GND		"							"	Q1	"	"	"
		"	51							"		GND	GND				"	Q2	"	"	
		"	52							"	GND					GND	"	- Q2	"	"	"
	I _{cc}	3005	53	5.5 V	GND	GND	GND			"			GND	GND	GND	5.5 V	"	V _{CC}		8.0	"
	00	3005	54	GND	GND	GND	5.5 V			"			5.5 V	GND	GND	GND		V _{CC}		8.0	
2	Same tes	sts, terminal o	conditions. a	and limits a			xcept T _C =	+125°C	and V _{IC} te	sts are on	nitted.										
3		sts, terminal o																			
7 <u>5</u> /, <u>6</u> /	Truth	3014	55	В	В	В	В	Н	Н	GND	Н	Н	В	В	В	В	4.5 V	All outputs		See 7/	
Tc = 25°C	table	"	56	В	"	"	A	L	"	"	"	L	A	"	"	В	"	"		"	
	tests	"	57	A	"	"	A	L	"	"	"	L	Α	"	"	A	"	"		"	
		"	58	"	"	"	В	H	L	"	L	H	В	"	"	"	"	"		"	
		"	59	"	"	Α	"	"	L	"	L	"	"	Α	"	"	"	"		"	
		"	60	В	"	"	"	"	H	"	H	"	"	"	"	В	"	"		"	
		"	61	В	Α	"	"	"	Н	"	Н	"	"	"	Α	В	"	"		"	

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.7 V, or open).

						iiiiiiai cc	mailions	(piris rio						7 V, or op							
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol		Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lim	ts	Unit
		metriod	Test no.	CLR1	D1	CLK1	PR1	Q1	_ Q1	GND		Q2	PR2	CLK2	D2	CLR2	V _{CC}	terminar	Min	Max	
7 <u>5</u> /, <u>6</u> /	Truth	3014	62	В	Α	Α	Α	L	Н	GND	Н	L	Α	Α	Α	В	4.5 V	All outputs	,	See 7/	
Tc = 25°C	table	"	63	A	"	"	A	L	H	"	H	L	A	"	"	A	"	" "		"	
10 - 20 0	tests		64	"	"		В	H	i	"	L	H	В	"	"	"		"			
	10313		65		"		A		-		-	"	A	ıı .	"	"		"			
			66		"	В	"		"		"		"	В	"	"		"			
			67	"	В	В	"	"	"		"	"	"	В	В	"		"		"	
			68	"	"	A	"	L	Н		Н	L	"	A	"	"		"		"	
		"	69	"	"	"	В	H	i	"	L.	H	В	"	"	"	"	"		"	
		"	70	В	Α	"	"	"	H	"	H	"	"	п	Α	В		"		"	
		"	71	"	В	"	"	"	"	"	"	"	"	п	В	"		"		"	
		"	72	"	"	"	Α	L	"	"	"	L	Α	"	"	"	"	"		"	
		"	73	Α	"	"	"	"	"	"	"	"	"	"	"	Α	"	"		"	
		"	74	"	Α	В	"	"	"	"	"	"	"	В	Α	"	"	"		"	
		"	75	"	"	Α	"	Н	L	"	L	Н	"	Α	"	"	"	"		"	
		"	76	"	"	"	В	"	"	"	"	"	В	"	"	"	"	"		"	
		"	77	"	"	"	Α	"	"	"	"	"	Α	"	"	"	"	"		"	
		"	78	В	"	"	"	L	Н	"	Н	L	"	"	"	В	"	"		"	
		"	79	Α	"	"	"	L	Н	"	Н	L	"	"	"	Α	"	"		"	
		"	80	"	В	"	В	Н	L	"	L	Н	В	"	В	"	"	"		"	
		"	81		В	"	Α	Н	L	"	L	Н	Α	"	В	"	"	"		"	
8 <u>4</u> /, <u>5</u> /	Repeat s	ubgroup 7 at	$T_{\rm C} = +125^{\circ}$	C and T _c =	= -55°C																
9	f _{MAX}	Fig. 8	82	2.7 V	IN	IN	2.7 V	OUT		GND							5.0 V	Q1	20		MHz
Tc = 25°C		<u>8</u> /	83	2.7 V	IN	IN	2.7 V		OUT	"							"	- Q1	"		"
		"	84							"	OUT		2.7 V	IN	IN	2.7 V	"	_ Q2	"		"
		"	85							"		OUT	2.7 V	IN	IN	2.7 V	"	Q2	"		"
	t _{PLH1}	3003	86							"		OUT	IN			IN	"	PR2 to Q2	5	30	ns
		Fig. 6	87							"	OUT		IN			IN	"	CLR2 to Q2	"		"
		"	88	IN			IN		OUT	"							"	CLR1 to Q1	"	"	"
		"	89	IN			IN	OUT		"								PR1 TO Q1	"	"	"
	t _{PHL1}	"	90	IN			IN	OUT		"							"	CLR1 to Q1	"	46	"
		"	91	IN			IN		OUT	"							"	PR1 to Q1	"		"
		"	92							"	OUT		IN			IN	"	PR2 to Q2	"	"	"
		"	93							"		OUT	IN	 		IN		CLR2 to Q2	-	"	"
	t _{PLH2}	3003 Fig. 7	94							"		OUT	2.7 V	IN	IN	2.7 V		CLK2 to Q2		30	"
1	PLH2	3003 Fig. 8	95							"	OUT	001	2.7 V	IN	IN	2.7 V				"	"
1											001		Z., V			Z.1 V		CLK2 to Q2			
1		3003 Fig. 7	96	2.7 V	IN	IN	2.7 V	OUT		"							"	CLK1 to Q1	"	"	"
		3003 Fig. 8	97	2.7 V	IN	IN	2.7 V		OUT	"							"	CLK1 to Q1	"	"	"
	t _{PHL2}	3003 Fig. 7	98	2.7 V	IN	IN	2.7 V		OUT	"							"	CLK1 to Q1	"	46	"
		3003 Fig. 8	99	2.7 V	IN	IN	2.7 V	OUT		"							"	CLK1 to Q1	"	"	"
		3003 Fig. 7	100							"	OUT		2.7 V	IN	IN	2.7 V	"	CLK2 to Q2	"	"	"
İ		3003 Fig. 8	101							"		OUT	2.7 V	IN	IN	2.7 V	"	CLK2 to Q2	"		"

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

Terminal conditions (pins not designated may be high > 2.0 V. low < 0.7 V. or open).

		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	883 method	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Liı	mits	Unit
			Test no.	CLR1	D1	CLK1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	CLK2	D2	CLR2	V _{CC}		Min	Max	
10	f _{MAX} 8/	Fig. 8	102-105						•				•	•					20		MHz
	t _{PLH1}	3003 Fig.6	106-109																5	39	ns
	t _{PHL1}	3003 Fig. 6	110-113																"	59	"
		3003 Fig. 7	114																"	39	"
		3003 Fig. 8		Same tes	ts and ter	minal con	ditions as	for subgr	oup 9, exc	$ept T_C = +$	+125°C								- "	- "	-
		3003 Fig. 7 3003 Fig. 8	116 117																		-
		3003 Fig. 7	118																"	59	"
		3003 Fig. 8																	"	"	"
		3003 Fig. 7	120																"	=	"
		3003 Fig. 8	121	1																"	"

1/ Case X and 2 pins not referenced are NC.

- - - 2.5 V minumum/5.5 V maximum

3/ I_{IL} limits in mA are as follows:

			Min/Ma	x limits for CKT		
I _{IL2}	Α	В	С	D	Е	F
	075/250	030/300	095/210	097/207	135/370	-160/400

			Min/Ma	x limits for CKT		
I _{IL4}	Α	В	С	D	Е	F
	150/500 for tests 27, 30 200/800 for tests 28, 29	060/700	160/400 for tests 27, 30 350/760 for tests 28, 29	160/400 for tests 27, 30 355/759 for tests 28, 29	120/360 for tests 27, 30 280/760 for tests 28, 29	320/800 (All)

			Min/Ma:	x limits for CKT		
I _{IL5}	Α	В	С	D	E	F
	200/800	060/700	350/760	480/-1.200	280/760	480/-1.200

- $\underline{5}/$ Input voltages shown are A = 2.0 volts minimum and B = 0.7 volt maximum. $\underline{6}/$ Tests shall be performed in sequence, attributes data only.

- Output voltages shall be $H \ge 1.5$ V and L < 1.5 V. g/f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open).

					rei	minai cc	mailions			ated may	/ be high	≥ 2.0 V,	10W ≤ 0.	7 V, OI O	ben).						
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	883 method	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lin	nits	Unit
			Test no.	CLK1	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK2	V _{cc}	1	Min	Max	
1	V _{OH}	3006	1	2.0 V	2.0 V	2.0 V	0.7 V	4 mA		GND							4.5 V	Q1	2.5		V
Tc = 25°C		"	2	<u>2</u> /	2.0 V	0.7 V	2.0 V		4 mA	"							"	_ Q1	"		=
			3	2/	0.7 V	2.0 V	2.0 V	4 mA		"							"	Q1	"		"
		"	4							"	4 mA		2.0 V	0.7 V	2.0 V	<u>2</u> /	"	_ Q2	"		=
		"	5							"		4 mA	2.0 V	2.0 V	0.7 V	2/	"	Q2	"		"
		"	6							"		4 mA	0.7 V	-	2.0 V	2.0 V	"	Q2	"		"
	V _{OL}	3007	7							"	4 mA		0.7 V	"	2.0 V	2.0 V	"	_ Q2		0.4	"
		"	8							"	4 mA		2.0 V	"	0.7 V	<u>2</u> /	"	_ Q2		"	"
			9							"		4 mA	2.0 V	0.7 V	2.0 V	2/	"	Q2		"	"
		"	10	2.0 V	2.0 V	2.0 V	0.7 V		4 mA	"						_	"	_ Q1		"	"
		"	11	<u>2</u> /	0.7 V	2.0 V	2.0 V		4 mA	"							"	_ Q1		"	"
			12	2/	2.0 V	0.7 V	2.0 V	4 mA		"							"	Q1		"	
	V _{IC}		13	-18 mA	2.0 1	01.7	2.0 .			"							"	CLK1		-1.5	"
	10		14		-18 mA					"							"	K1		"	"
			15			-18 mA				"							"	J1		"	"
			16				-18 mA			ı							"	PR1		"	-
			17							"			-18 mA				"	PR2		"	-
			18							"				-18 mA			"	J2		"	
			19							"					-18 mA		"	K2		"	-
		2222	20		0.414	0110				"						-18 mA		CLK2			
	I _{IL1}	3009	21 22	4.5 V 3/	0.4 V 4.5 V	GND 0.4 V	<u>3</u> / 4.5 V			- "							5.5 V	K1 J2	<u>4</u> /	<u>4</u> /	mA "
			23	<u>3</u> /	4.5 V	0.4 V	4.5 V			"			3/	GND	0.4 V	4.5 V		K2			
			24							"			4.5 V	0.4 V	4.5 V	3/		J2			
	I _{IL3}	"	25							"			3/	4.5 V	4.5 V	0.4 V		CLK2	"	"	"
	ILS	"	26	0.4 V	4.5 V	4.5 V	3/			"			<u> </u>	1.0 V	1.0 1	0.1 0	"	CLK1	"	"	"
	I _{IL4}	"	27	4.5 V	4.5 V	4.5 V	0.4 V			"							"	PR1	"	"	"
		"	28							"			0.4 V	4.5 V	4.5 V	4.5 V	"	PR2	"	"	"
	I _{IH1}	3010	29	GND	2.7 V	GND	GND			"							"	K1		20	μΑ
		"	30	<u>2</u> /	GND	2.7 V	4.5 V			"							"	J1		"	
		"	31							"			4.5 V	2.7 V	GND	2/	"	J2		"	"
		"	32							"			GND	GND	2.7 V	GND	"	K2		"	
	I _{IH2}	"	33							"			GND	GND	5.5 V	GND	"	K2		100	=
		"	34							"			4.5 V	5.5 V	GND	<u>2</u> /		J2		"	-
			35	<u>2</u> /	GND	5.5 V	4.5 V			"							- "-	J1		"	- "
			36	GND	5.5 V	GND	GND		l							<u> </u>		K1			

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open).

					lei	rminal co	nditions	(pins no	t designa	ated may	be high	≥ 2.0 V,	$low \leq 0$.	/ V, or o	pen).						
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	883 method	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lim	iits	Unit
			Test no.	CLK1	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK2	V _{cc}		Min	Max	
1	I _{IH5}	3010	37	GND	GND	4.5 V	2.7 V	<u>5</u> /		GND							5.5 V	PR1		60	μΑ
Tc = 25°C		"	38							"		<u>5</u> /	2.7 V	4.5 V	GND	GND	"	PR2		60	- "
	I _{IH6}		39							"		<u>5</u> /	5.5 V	4.5 V	GND	GND	"	PR2		300	"
		"	40	GND	GND	4.5 V	5.5 V	<u>5</u> /		"							"	PR1		300	"
	I _{IH7}	"	41	2.7 V	GND	GND	GND	_		"							"	CLK1		80	"
		"	42				_			"			GND	GND	GND	2.7 V	"	CLK2		80	"
	I _{IH8}	-	43							"			GND	GND	GND	5.5 V	"	CLK2		400	-
	1110		44	5.5 V	GND	GND	GND			"			_				"	CLK1		400	-
	los	3011	45				GND	GND		"							"	Q1	-15	-100	mA
	-00	"	46	<u>2</u> /	4.5 V	GND	4.5 V	GND	GND <u>6</u> /	"							"	Q1	<u>6</u> /	<u>6</u> /	"
			47							"		GND	GND				"	Q2	-15	-100	"
		н	48							"	GND <u>6</u> /	GND	4.5 V	GND	4.5 V	<u>2</u> /	"	Q2	<u>6</u> /	<u>6</u> /	"
	I _{CC}	3005	49	2/	5.5 V	GND	5.5 V			"			5.5 V	GND	5.5 V	2/	"	V _{CC}		8.0	-
	-00	3005	50	5.5 V	5.5 V	5.5 V	GND			"			GND	5.5 V	5.5 V	5.5 V	"	V _{CC}		8.0	-
2	Same tes	sts, terminal						+125°C	and Vic te	ests are o	mitted						l .	1 00			
3	Same tes	sts, terminal	conditions a	and limits a	s for subc	roup 1, e	xcent To =	55°C ar	nd V ₁₀ tes	ts are om	itted										
7 <u>7</u> /, <u>8</u> /	Truth	3014	51	В	A	В	B	H	1 1	GND	L	Н	В	В	В	В	4.5 V	All		See <u>9</u> /	
. <u>., ., .</u>	table	"	52	A	"	"	"		-	"	-		"	-	"	"	"	outputs		"	
	tests		53	В	"	"	"		"		"	"	"			"	"	"			
	10313	"	54	В	"		Α		"	"	"	"				"		"			
			55	A	"	"	"	"	"	"	"	"	"	"	"		"	"			
			56	В	"	"	"	-	Н		"	"	"			"	"	"			
			57	В	В	Α	"	-	"		"	"	"			"	"	"			
			58	A	"	"	"		"		"	"	"			"	"	"			
			59	В	"		"	Н	L	"	"	"			"		"	"			
			60	"	"	В	В	- ;;	-	"	"	"	"	"	Α		"	"			
			61	"	"	-	"		"		"	"	Α		"	"	"	"			
			62	"	"	"	"		"		"	"	"			Α	"	"			
			63	"	"	"	"	"	"		Н	L	"		"	В	"	"			
			64	"	"	"	"	"	"		"	"	"	Α	В	В	"	"			
			65	"	"	"	"	"	"	"	"	"	"	"	"	A	"	"			
			66	"	"	"	"	"	"		L	Н	"		"	В	"	"			
			67	"	"	"	"	"	"	"	"	"	В	В	"	"	"	"		"	
			68	"	"	"	Α	"	"	"	"	"	A	"	"		"	"		"	
			69	Α	"	-	"	"	"	"	"	"	"	"	"	Α	"	"		"	
		"	70	В	"	"	"		"	"	"	"	"		"	В	"	"			-
			71	В	Α	Α	"	"	"	"	"	"	"	Α	Α	В	"	"		"	
			72	A	"	"	"	"	"	"	"	"	"	"	"	A	"	"		"	
			73	В	"	"	"	1	Н	"	Н	L	"	"	"	В	"	"		"	
			74	В	В	В	"	"	"	"	"	"	"	В	В	В	"	"		"	
			75	A	"	"	"	"	"	"	"	"	"	"	ı ı	A	"	"		"	
		"	76	В	"		"		"	"	"	"				В		"		-	
		"	77	В	Α	Α	"		"	"	"	"		Α	A	В		"		-	
			78		A	A	-		-	-	"	"	-	A	A		-	"			
		"	78	A B	"			Н	-	"	1	Н				A B		"		-	
0.5.7/	D					L	<u> </u>	17		<u> </u>	_ L	11	L	<u> </u>	l	_ 0	L	l			
0 <u>0</u> , <u>//</u>	kepeat s	ubgroup 7 at	$I_{C} = +125^{\circ}$	∪ and I _C =	= -55°U.																

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open).

					ı eı	minai co	nditions	(pins no	t designa	ated may	be nigh	≥ 2.0 V,	$low \leq 0$.	7 V, or o	pen).						
			Cases <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
		MIL-STD-	2, X																		l
Subgroup	Symbol	883	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Lim	nits	Unit
		method	A,B,C,D															terminal			1
			Test no.	CLK1	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK2	V _{CC}		Min	Max	l
9	f_{MAX}	Fig. 11	80	IN	2.7 V	2.7 V	2.7 V	OUT		GND							5.0 V	Q1	25		MHz
Tc = 25°C	<u>8</u> /	"	81	IN	2.7 V	2.7 V	2.7 V		OUT	"							"	_ Q1	"		"
		"	82							"	OUT		2.7 V	2.7 V	2.7 V	IN	"	_ Q2	"		"
			83							"		OUT	2.7 V	2.7 V	2.7 V	IN	"	Q2	"		"
	t _{PLH1}	3003	84							"		OUT	IN	GND	2.7 V	IN	"	PR2 to Q2	5	21	ns
		Fig. 11	85	IN	2.7 V	GND	IN	OUT		"							"	PR1 to Q1	"	21	"
	t _{PHL1}	"	86	IN	2.7 V	GND	IN		OUT	"							"	PR1 to Q1	=	28	"
		"	87							"	OUT		IN	GND	2.7 V	IN	"	PR2 to Q2	"	"	"
	t _{PLH2}	3003	88							"		OUT	2.7 V	2.7 V	2.7 V	IN	"	CLK2 to Q2	"	22	"
	1 2112	Fig. 12	89							"	OUT		2.7 V	2.7 V	2.7 V	IN	"	CLK2 to Q2	"	"	"
			90	IN	2.7 V	2.7 V	2.7 V		OUT	"							"		"	"	
									001									CLK1 to Q1			
		"	91	"	"		"	OUT		"							"	CLK1 to Q1	=	"	"
	t _{PHL2}		92	"	"	"	"	OUT		"							"	CLK1 to Q1	"	30	"
		"	93	"	. "	"	"		OUT	"							"	CLK1 to Q1	"		"
		"	94							"	OUT		2.7 V	2.7 V	2.7 V	IN	"	CLK2 to Q2	"	"	"
		"	95							"		OUT	2.7 V	2.7 V	2.7 V	IN	"	CLK2 to Q2	"	"	"
	f _{MAX} 10/	Fig. 11	96-99																25		MHz
	t _{PLH1}	3003	100-101																5	32	ns
		Fig. 11									_									igsquare	
	t _{PHL1}	3003	102-103	Same tes	ts and ter	minal con	ditions, ar	nd limits a	s for subg	roup 9, ex	cept T _C =	+125°C.							"	40	i "
		Fig. 11	404 407																		-
	t _{PLH2}	3003 Fig. 12	104-107																.,	32	1
	t _{PHL2}	3003	108-111																"	42	"
	-1 1162	Fig. 12																			<u> </u>
11	Same tes	sts, terminal	conditions, a	and limits a	as for subo	group 10,	except T _C	= -55°C.													

45

MIL-M-38510/301E

TABLE III. <u>Group A inspection for device type 04</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.7 V, or open).

$\underline{4}/\ I_{IL}$ limits in mA are as follows:

		Min	/Max limits for 0	CRT	
Symbol	Α	В	С	D and F	Е
I _{IL1}	075/250	03/300	110/250	120/360	120/360
I _{IL2}	175/550	060/600	150/560	240/720	280/760
I _{IL3}	200/800	060/700	290/650	120/720	320/800

- 5/ Momentary GND, then open.
- 6/ Ios limits in mA are as follows:

Test no.	А	В	С	D and E	F
46, 48	-7.5/-50	-7.5/-50	-30/-130	-15/-130	-7.5/-50
46, 48	2.25 V	2.25 V			2.25 V
Q1, Q2					

- $\overline{2}$ / Input voltages shown are A = 2.0 volts minimum and B = 0.7 volts maximum.
- 8/ Tests shall be performed in sequence, attributes data only.
- $\underline{9}$ / Output voltages shall be H \geq 1.5 V and L < 1.5 V.
- 10/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. <u>Group A inspection for device type 05</u>. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

						rminal co															
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	883 method	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lim	nits	Unit
			Test no.	CLR	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK	V _{cc}		Min	Max	1
1	V _{OH}	3006	1	2.0 V	0.7 V	2.0 V	0.7 V	4 mA		GND						2.0 V	4.5 V	Q1	2.5		V
Tc = 25°C		"	2	0.7 V	"	"	2.0 V		4 mA	"						2.0 V	"	_ Q1	"		"
		"	3	2.0 V	"	"	-	4 mA		"						<u>2</u> /	"	Q1	"		"
		"	4	"	2.0 V	0.7 V	"		4 mA	"						"	"	_ Q1	"		"
		"	5	"						=	4 mA		2.0 V	0.7 V	2.0 V	=	=	_ Q2	"		"
		"	6	"						"		4 mA	-	2.0 V	0.7 V	"	"	Q2	"		"
		"	7	0.7 V						"	4 mA		"			2.0 V	"	_ Q2	"		"
			8	2.0 V						"		4 mA	0.7 V	=	=	"	"	Q2	"		"
	V _{OL}	3007	9	2.0 V						"	4 mA		0.7 V	"	"	"	"	_ Q2		0.4	"
		"	10	0.7 V						"		4 mA	2.0 V	"	"	"	"	Q2		"	"
		"	11	2.0 V						"	4 mA		"	"	"	<u>2</u> /	"	_ Q2		"	"
		"	12	"						"		4 mA	"	0.7 V	2.0 V	"	"	Q2			"
		"	13	"	0.7 V	2.0 V	2.0 V		4 mA	"						"	"	_ Q1		"	"
		"	14	"	2.0 V	0.7 V	2.0 V	4 mA		"						"	"	Q1		"	"
		"	15	"	"	"	0.7 V		4 mA	"						2.0 V	"	_ Q1		"	"
		"	16	0.7 V	"	"	2.0 V	4 mA		"						2.0 V	"	Q1		"	"
	V _{IC}		17	-18 mA						"							"	CLR		-1.5	"
			18		-18 mA					"							"	K1		"	"
			19			-18 mA				"							"	J1		"	"
			20				-18 mA			ı							"	PR1		"	"
			21							"			-18 mA				"	PR2		-	-
			22							-				-18 mA			"	J2		"	=
			23							"					-18 mA		"	K2		"	"
			24							"						-18 mA	"	CLK		"	"
	I _{IL1}	3009	25	4.5 V	0.4 V	GND	<u>3</u> /			"						4.5 V	5.5 V	K1	<u>4</u> /	<u>4</u> /	mA
		"	26	<u>3</u> /	GND	0.4 V	4.5 V			"						"	"	J1		"	
		"	27	<u>3</u> /						"			4.5 V	0.4 V	4.5 V	"	"	J2	"	"	"
		"	28	4.5 V						"			<u>3</u> /	4.5 V	0.4 V	"	"	K2	"	"	"
	I_{1L4}	"	29		4 = 1 :	4 = 1 :	0.411			"			0.4 V	4.5 V	4.5 V	"	"	PR2	"	- "	-
	.	"	30	0/	4.5 V	4.5 V	0.4 V			"			451	451/	451/	0.417		PR1	- "		- "
	I _{IL6}	"	31	<u>3</u> /		"	4.5 V			- "			4.5 V	4.5 V	4.5 V	0.4 V		CLK	- "		- "
	<u> </u>	- "	32	4.5 V	45)		<u>3</u> /			"	-	-	<u>3</u> /	451/	4.5 V	0.4 V	"	CLK			- "
	I _{IL7}		33	0.4 V	4.5 V	4.5 V	4.5 V			- "	-	-	4.5 V	4.5 V	4.5 V	4.5 V	"	CLR			
	I _{IH1}	3010	34	GND "	2.7 V	GND	GND			,,						GND "		K1		20	μA "
			35	"	GND	2.7 V	GND			"			OND	0.71/	OND	-	"	J1		- "	"
			36 37	"		 				-	1	-	GND "	2.7 V GND	GND	-	- "	J2 K2		- "	-
			31	ļ	ļ		ļ	ļ	ļ	ļ		L	ļ	GND	2.7 V		<u> </u>	n∠		ļ	<u> </u>

See footnotes at end of device type 05.

TABLE III. <u>Group A inspection for device type 05</u> - Continued.

Terminal conditions (pins not designated may be high > 2.0 V, low < 0.7 V, or open).

					Te	rminal co	onditions	(pins no	t designa	ated may	, be high	≥ 2.0 V,	low ≤ 0 .	7 V, or o _l	pen).						
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
Subgroup	Symbol	883 method	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lin	nits	Unit
		mounou	Test no.	CLR	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK	V _{CC}	tomma	Min	Max	
1	I _{IH2}	3010	38	GND						GND			GND	GND	5.5 V	GND	5.5 V	K2		100	μΑ
Tc = 25°C			39	"						"			GND	5.5 V	GND	"	"	J2		"	"
			40	"	GND	5.5 V	GND			"						"	"	J1		"	"
		"	41	"	5.5 V	GND	GND			"						"	"	K1		"	"
	I _{IH5}	"	42	"	GND	GND	2.7 V			"						"	"	PR1		60	"
		=	43	"						"			2.7 V	GND	GND	"	=	PR2		60	"
	I _{IH6}	-	44	"						=			5.5 V	GND	GND	"	-	PR2		300	"
		=	45		GND	GND	5.5 V			-						"	"	PR1		300	"
	I _{IH9}	-	46	2.7 V	"	"	GND			"			GND	GND	GND	"	"	CLR		120	"
	I _{IH10}	"	47	5.5 V	"	"	"			"			"	"	"	"	"	CLR		600	"
	I _{IH11}	=	48	GND	"	"	"			"			"	"	"	2.7 V	"	CLK		160	
	I _{IH12}	=	49	"	"	"	"			"			"	"	"	5.5 V	"	CLK		800	
	los	3011	50	"			4.5 V		GND	"							"	_ Q1	-15	-100	mA
		"	51	"						"	GND		4.5 V				"	_ Q2	"	"	"
			52	4.5 V						"		GND	GND				"	Q2	"	"	"
		"	53	4.5 V			GND	GND		"							"	Q1		"	"
	I _{cc}	3005	54	GND	5.5 V	5.5 V	5.5 V			"			5.5 V	5.5 V	5.5 V	GND	"	V _{cc}		8.0	"
			55	5.5 V	5.5 V	5.5 V	GND			"			GND	5.5 V	5.5 V	GND	"	V _{cc}		8.0	"
2	Same tes	sts, terminal	conditions, a	and limits a	as for sub	group 1, e	xcept T _C =	+125°C	and V _{IC} te	ests are or	nitted.										
3	Same tes	sts, terminal	conditions, a	and limits a	as for sub	group 1, e	xcept T _C =	= -55°C ar	nd V _{IC} test		tted.										
7 <u>5</u> /, <u>6</u> /	Truth	3014	56	В	В	Α	Α	L	Н	GND	Н	L	Α	Α	В	Α	4.5 V	All		See <u>7</u> /	
Tc = 25°C	table	"	57	"	"	"	"	=	"	=	"	-	-	"	-	В	-	outputs		"	
	tests	"	58	"	-	-	"	=	"	=	"	-	-	"	=	Α	-	"		"	
		"	59	Α	"	"	"	-	"	-	L	Н	В	В	"	Α	"	"			
		"	60	"	"	"	"	Н	L	-	"	"	"	-	"	В	"	"			
			61	"	"	"	"	"	"	"	"	"	"	"	"	Α	"	"		"	
		"	62	"	"	В	"	"	"	"	"	"	"	"	"	Α	"	"		"	
			63	"	"	"	"	"	"	"	"	"	"	"	"	В	"	"		"	
			64	"		"	"	"	"	"	"	"	"	"	"	Α	"	"		"	
			65	"	Α	"	"		"	"	"		"	"	"	Α	"	"		"	
			66	"		"	"	Ļ	Н	"	"	- :-	- "	"	- "	В	- "			"	
			67	"	- "	"		L	H	- "	"	-		"		A				- "	
			68			"	В	Н	L	- "	"		- "	"		A	- "			- "	
			69			<u> </u>	В	Н.	L	- "		<u> </u>	" A			В	<u> </u>	- "			
			70 71	B	B "	"	A B	H	H	- "	H	L	A	A		A	- "				
				Α "		"	В	H	L "		H	L	- "			A	-				
			72 73	"	- "	"	"		- "		L "	H	- "	"		B A	- "	- "			
			74	"	"	"	"		"		"		"	В	"	A		"		-	
			75	,	"	"			"		"	"	"	D #	"	В		"			
L			15	l	I	1	1		1	1	1	1	l	1	l	ט	l				

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.

Terminal conditions (nine not decian	ated may be high	> 2 0 1/	low $\leq 0.7 \text{ V}$, or open).
reminal conditions (oms not design	iated may be nigh	∠ ∠.U V,	$10W \ge 0.7 \text{ V, Of Open)}$.

Subgroup \$ 7 <u>5</u> /, <u>6</u> /	Symbol	MIL-STD-	Cases <u>1</u> / 2, X Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
	Symbol	883	Cases	4																	l.
7.5/.6/		method	A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lin	nits	Unit
7.5/.6/			Test no.	CLR	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK	V _{CC}	-	Min	Max	
, <u>u, u</u>	Truth	3014	76	Α	В	В	В	Н	L	GND	L	Η	Α	В	В	Α	4.5 V	All		See <u>7</u> /	
Tc = 25°C	table	"	77	=	"	=	"	"	"	"	=	"	"	"	Α	Α	"	outputs		"	
	tests	"	78	=	"	=	"	"	"	-	Η	L	"	"	=	В	"	"		"	
		"	79	=	"	=	"	"	"	-	Η	L	"	"	=	Α	"	"		"	
		"	80	-		=		"	"	=	L	Н	В		=	Α	-	"		"	
		"	81	"		=	"	"	"	"	L	"	"	"	=	В	"	"		"	
		"	82	В	Α	Α	"	"	Н	"	Н	"	"	Α	=	Α	"	"		"	
		"	83	В	В	В	Α	L	"	"	=	L	Α	В	В	"	"	"		"	
		"	84	Α	"	"	"	"	"	"	"	"	"	"	"	"	"	"		"	
		"	85	"	"	=	"	"	"	"	-	"	"	"	"	В	"	"		"	
		"	86	"	Α	Α	"	"	"	"	"	"	"	Α	Α	В	"	"			
		"	87	"	"	"	"	"	"	"	"	"	"	"	-	Α	"	"		"	
		"	88	"	"		"	Н	L	"	L	Н	"	"		В	"	"		"	
		"	89	"	В	В	"	"	"	"	"	"		В	В	В		"			
		"	90	"	"	"	"	"	"	"	"	"		"		Α		"		-	
		"	91		"		"	- "	"	"	- :	- "	- "		-	В					
			92		A	A	"		"	"				Α	Α "	В		"			
		".	93	- "	"	"	"			"	"		"		-	A	- "	"			
		. "	94			. "	. "	L	Н		Н	L	. "	"		В	. "	"			
		ubgroup 7 at							1				1								
9	f _{MAX}	Fig. 9	95	5.0 V	2.7 V	2.7 V	2.7 V	OUT		GND						IN	5.0 V	Q1	25		MHz
Tc = 25°C	<u>7</u> /		96	- "	2.7 V	2.7 V	2.7 V		OUT	"							"	_ Q1			
			97	"						"	OUT		2.7 V	2.7 V	2.7 V		"	Q2			
		"	98		0115	0 = 17	0 = 1/		O			OUT	2.7 V	2.7 V	2.7 V	- "	- "-	Q2			
	t _{PLH1}	3003	99	IN	GND	2.7 V	2.7 V		OUT								"	CLR to Q1	5	21	ns
		Fig. 9	100	IN						"	OUT		2.7 V	2.7 V	GND	"	"	CLR to Q2		"	
			101	2.7 V						"		OUT	IN	GND	2.7 V			PR2 to Q2		"	
		"	102		2.7 V	GND	IN	OUT		"								PR1 to Q1		"	
	t _{PHL1}	"	103	"	2.7 V	GND	IN		OUT	"						"	"	PR1 to Q1		28	
		"	104	"						"	OUT		IN	GND	2.7 V	"	"	PR2 to Q2	"	"	"
		"	105	IN						"		OUT	2.7 V	2.7 V	GND	-	"	CLR to Q2	"	"	"
		"	106	IN	GND	2.7 V	2.7 V	OUT		"						-	"	CLR to Q1	"	"	"
	t _{PLH2}	3003	107	2.7 V	2.7 V	2.7 V	2.7 V	OUT		"						-	"	CLK to Q1	"	22	"
		Fig. 10	108		2.7 V	2.7 V	2.7 V		OUT	"						-	"	CLK to Q1	"	"	"
		"	109	"						"	OUT		2.7 V	2.7 V	2.7 V	"	"	CLK to Q2	"	"	"
		"	110	"						"		OUT	2.7 V	2.7 V	2.7 V	"	"	CLK to Q2	"	"	"
	t _{PHL2}	"	111	=						"		OUT	2.7 V	2.7 V	2.7 V	-	"	CLK to Q2	"	30	"
1 1		"	112	"						"	OUT		2.7 V	2.7 V	2.7 V	"	"	CLK to Q2	"	"	"
														_			 	1			
		"	113	"	2.7 V	2.7 V	2.7 V		OUT	"						"	"	CLK to Q1		"	

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$. low $\leq 0.7 \text{ V}$. or open).

			Cases 1/	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
		MIL-STD-	2, X																		
Subgroup	Symbol		Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Lin	nits	Unit
		method	A,B,C,D															terminal			
			Test no.	CLR	K1	J1	PR1	Q1	_ Q1	GND	_ Q2	Q2	PR2	J2	K2	CLK	V _{CC}		Min	Max	
10	f_{MAX}	Fig. 9	115-118			•	•		•	•	•		•	•		•	•		25		MHz
	<u>8</u> /																				
	t _{PLH1}	3003	119-122																5	32	ns
		Fig. 9		Same tes	ts and ter	minal con	ditions as	for subgre	oup 9, exc	$ept T_C = -$	⊦125°C.										
	t _{PHL1}	3003	123-126																"	40	"
		Fig. 9																			
	t _{PLH2}	3003	127-130																"	32	"
		Fig. 10																			
1	t _{PHL2}	3003	131-134																"	42	"
		Fig. 10																			
11	Same tes	sts, terminal o	conditions, a	and limits a	as for sub	group 10,	except T _C	= -55°C.													

1/ Case X and 2 pins not referenced are NC.

4/ IIL limits in mA are as follows:

•	IL	1111 1 41 0 40 1011				
				Min/Max limits	for CKT	
	I_{IL1}	Α	В	С	D	E
		075/250	030/300	110/250	120/360	120/360

			Min/Max limits	for CKT	
I_{IL4}	Α	В	С	D	Ш
	200/800	060/700	290/650	120/720	320/800

			Min/Max limits	for CKT	
I_{IL6}	Α	В	С	D	E
	300/-1.000	120/-1.000	300/-1.120	240/-1.440	560/-1.520

			Min/Max limits	for CKT	
I_{IL7}	Α	В	С	D	E
	450/-1.300	120/-1.000	580/-1.300	120/-1.500	640/-1.600

- $\underline{5}/$ Input voltages shown are A = 2.0 volts minimum and B = 0.7 volt maximum. $\underline{6}/$ Tests shall be performed in sequence, attributes data only.

- 7/ Output voltages shall be H \geq 1.5 V and L < 1.5 V. 8/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. <u>Group A inspection for device type 03 and 10</u>. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open). <u>1</u>/

		1											nign ≥ 2										
		MIL-STD-	Cases <u>1</u> /	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
			2, X	** 2	20	5	3	19	18	13	17	14	9	12	15	8	10	4	7				
Subgroup	Symbol		Cases	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lin	nits	Unit
		method	E, F	** 1	16	4	2	15	14	10	13	11	7	9	12	6	8	3	5	terminal			
			Test no.	CLK1	K1	J1	PR1	Q1	Q1	_ Q2	GND	Q2	PR2	J2	K2	CLK2	CLR2	CLR1	V _{CC}		Min	Max	
1	V _{OH}	3006	1	2.0 V	2.0 V	2.0 V	2.0 V		4 mA		GND							0.7 V	4.5 V	Q1	2.5		V
Tc = 25°C		"	2	2.0 V	"	2.0 V	0.7 V	4 mA										2.0 V	"	Q1			"
		"	3	<u>3</u> /	"	0.7 V	2.0 V		4 mA		"								"	Q1	"		
		"	4	3/	0.7 V	2.0 V	2.0 V	4 mA										"	"	Q1			"
		"	5								"	4 mA	0.7 V	2.0 V	2.0 V	2.0 V	2.0 V		"	Q2			
		"	6							4 mA	"		2.0 V	"	2.0 V	2.0 V	0.7 V		"	_ Q2			"
		"	7								"	4 mA	"	"	0.7 V	3/	2.0 V		"	Q2			
		"	8							4 mA	"		"	0.7 V	2.0 V	-	"		"	_ Q2			
	V _{OL}	3007	9								"	4 mA		0.7 V	2.0 V					Q2		0.4	"
	- OL	"	10							4 mA	"		"	2.0 V	0.7 V		"		"	- Q2		"	"
		"	11								"	4 mA	"	2.0 V	2.0 V	2.0 V	0.7 V		"	Q2		"	"
		"	12							4 mA	"	71117	0.7 V	2.0 V	2.0 V	2.0 V	2.0 V		"			"	
						11								-						Q2			
			13	2.0 V	2.0 V	2.0 V	2.0 V	4 mA	4 4									0.7 V		Q1			- ;
			14	2.0 V		2.0 V	0.7 V		4 mA		"							2.0 V		Q1			
		"	15	<u>3</u> /	"	0.7 V	2.0 V	4 mA			"							"	"	Q1		"	
		"	16	<u>3</u> /	0.7 V	2.0 V	2.0 V		4 mA											Q1			
	V _{IC}		17	-18 mA							"								"	CLK1		-1.5	
			18		-18 mA														- "	K1			
			19			-18 mA	40 4				-								<u> </u>	J1		- "	-:-
			20 21				-18 mA				- "		-18 mA							PR1 PR2			-
			22								"		-18 MA	-18 mA						J2			-
			23								"			-10 IIIA	-18 mA					K2		"	
			24								"				1011111	-18 mA				CLK2			
			25								"					101111	-18 mA		"	CLR2		"	"
			26								"							-18 mA	"	CLR1		"	
	I _{IL1}	3009	27	4.5 V	0.4 V	4.5 V	<u>4</u> /				"							4.5 V	5.5 V	K1	<u>5</u> /	<u>5</u> /	mA
		"	28	4.5 V	4.5 V	0.4 V	4.5 V				"							<u>4</u> /	"	J1	"	"	"
		"	29								"		4.5 V	0.4 V	4.5 V	4.5 V	<u>4</u> /		"	J2	-	"	-
		"	30								"		<u>4</u> /	4.5 V	0.4 V	4.5 V	4.5 V		"	K2	"	"	"
	I _{IL3}		31								- "		<u>4</u> /	4.5 V	4.5 V	0.4 V	4.5 V			CLK2		"	
			32	0.41/	451/	451/	45)						4.5 V	4.5 V	4.5 V	0.4 V	<u>4</u> /	4/		CLK2	-:-		-
			33	0.4 V	4.5 V	4.5 V	4.5 V				- "							4/ 4.5 V	-	CLK1	-		-
	-		34 35	0.4 V 4.5 V	4.5 V 4.5 V	4.5 V 4.5 V	<u>4</u> / 0.4 V					1				-		4.5 V 4.5 V	"	CLK1 PR1		"	- "
	I_{IL4}		36	4.5 V	4.5 V	4.5 V	4.5 V	1				1		1				0.4 V	"	CLR1		"	"
		"	37	4.5 V	4.5 V	4.5 V	4.5 V				"		4.5 V	4.5 V	4.5 V	4.5 V	0.4 V	U.4 V	"	CLR1		"	"
		"	38	1							"	1	0.4 V	4.5 V	4.5 V	4.5 V	4.5 V		"	PR2		"	
	I _{IH1}	3010	39								"		GND	4.5 V	2.7 V	GND	4.5 V		"	K2		20	μА
		"	40								"		4.5 V	2.7 V	4.5 V	GND	GND		"	J2		"	"
		"	41	GND	4.5 V	2.7 V	4.5 V				"	1				1		GND	"	J1		"	"
		"	42	GND	2.7 V	4.5 V	GND				"							4.5 V	"	K1		"	"

See footnotes at end of device types 03 and 10.

TABLE III. Group A inspection for device type 03 and 10. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open). 1/

															V ≤ U.7 V								
			Cases 1/	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
		MIL-STD-	2, X	** 2	20	5	3	19	18	13	17	14	9	12	15	8	10	4	7				
Subgroup	Symbol		Cases	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lim	iits	Unit
		method	E, F	** 1	16	4	2	15	14	10	13	11	7	9	12	6	8	3	5	terminal			
			Test no.	CLK1	K1	J1	PR1	Q1	_ Q1	_ Q2	GND	Q2	PR2	J2	K2	CLK2	CLR2	CLR1	V _{CC}		Min	Max	
1	I _{IH2}	3010	43	GND	5.5 V	4.5 V	GND				GND							4.5 V	5.5 V	K1		100	μΑ
Tc = 25°C		"	44	GND	4.5 V	5.5 V	4.5 V											GND	"	J1		"	=
			45								"		4.5 V	5.5 V	4.5 V	GND	GND		"	J2		"	=
			46								"		GND	4.5 V	5.5 V		4.5 V		"	K2		=	"
	I _{IH5}		47								"		<u>4</u> /	GND	4.5 V	-	2.7 V		"	CLR2		60	"
		"	48								"		2.7 V	4.5 V	GND	"	<u>4</u> /		"	PR2		"	"
		"	49	GND	4.5 V	GND	<u>4</u> /				"							2.7 V	"	CLR1		"	"
			50	GND	GND	4.5 V	2.7 V											<u>4</u> /		PR1		"	
	I _{IH6}		51	GND	GND	4.5 V	5.5 V											<u>4</u> /	"	PR1		300	
			52	GND	4.5 V	GND	<u>4</u> /				- "							5.5 V		CLR1		- :	
			53										5.5 V	4.5 V	GND	GND	<u>4</u> /			PR2		- :	
			54								- "		<u>4/</u>	GND	4.5 V	GND	5.5 V		-	CLR2			
	I _{IH7}		55	071/	OND	OND	OND				- "		GND	GND	GND	2.7 V	GND	ONE	-	CLK2		80	
			56 57	2.7 V 5.5 V	GND GND	GND GND	GND GND											GND GND	"	CLK1 CLK1		80 400	-
	I _{IH8}		58	5.5 V	GND	GND	GND						GND	GND	GND	5.5 V	GND	GND	-	CLK1		400	
	-	3011	59	GND	GND	GND	GND	GND					GND	GND	GND	5.5 V	GND	4.5 V	"	Q1	-15	-100	mA
	los	3011	60	GND	GND	GND	4.5 V	GIND	GND		"							GND			-13	-100	IIIA "
			60	GIND	GND	GND	4.5 V		GIND									שוא		_ Q1			
		"	61								"	GND	GND	GND	GND	GND	4.5 V		"	Q2	"	"	"
		"	62							GND	"		4.5 V	"	"	"	GND		"	_ Q2	"		"
	Icc	3005	63	GND	GND	GND	GND						GND	"			5.5 V	5.5 V	"	V _{CC}		8.0	
	00	3005	64	GND	GND	GND	5.5 V				"		5.5 V	"	"	"	GND	GND	"	V _{CC}		8.0	"
2	Same te	sts, termina	l conditions	, and limits	as for sub	ogroup 1, e	except T _C =	+125°C	and V _{IC} tes	sts are om	itted.						•				•		
3	Same te	sts, termina	I conditions	, and limits	as for sub	ogroup 1, e	except T _C =	= -55°C ar	nd V _{IC} tests	are omitt	ed.												
7 <u>6</u> /, <u>7</u> /	Truth	3014	65	В	В	A	A	L	Н	Н	GND	L	Α	Α	В	В	В	В	4.5 V	All		See <u>8</u> /	
Tc = 25°C	table		66	Α							"			"		Α			"	outputs		"	
	tests		67	В	"								"	"		В			"	"		"	
		"	68	В	Α	В	В	Н	L	L	"	Н	В	В	Α	В	Α	Α	"	"			
		"	69	Α	-	"	"	"	"	"	"				-	Α	-	-		"			
		"	70	В	-	"	"	"	"	"	"	-		"	-	В			"	"		"	
		"	71	"	В	"	Α	L	Н	Н	"	L	Α	"	В		В	В	"	"		"	
		"	72	"	"	"	"	"	"	"	"			"	"	"	Α	Α	"	"		"	
		"	73	Α	"	"	"	"	"	"	"			"	"	Α	"		"	"		"	
			74	В	"	"	"				"			"		В	"		"	"		-	
1			75	"	"	"	В	H	L	L	-	Н	В	"		-	"		"	"		"	
			76		"		A	- "	- "	- "	- "	-	<u>A</u>	"	-		- "	-	- "	- "		-:-	
1			77	A				- "				-	-		-	A							
1			78	В	"		"				- "					В	-	-	-	"			
1			79 80	-		A		<u>L</u>	H	H		L	-	A	-	-	В	B A	-				
			60		L				L	L	L					L	Α	А	<u> </u>	L	L		

See footnotes at end of device types 03 and 10.

TABLE III. Group A inspection for device type 03 and 10.

						Ter	minal co	nditions	s (pins r	not design	gnated i	nay be	high ≥ 2	.0 V, lov	v ≤ 0.7 V	, or ope	n). 1/						
			Cases 1/	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
		MIL-STD-	2, X	** 2	20	5	3	19	18	13	17	14	9	12	15	8	10	4	7				
Subgroup	Symbol	883	Cases	* 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lim	nits	Unit
	1	method	E, F	** 1	16	4	2	15	14	10	13	11	7	9	12	6	8	3	5	terminal			
			Test no.	CLK1	K1	J1	PR1	Q1	_ Q1	_ Q2	GND	Q2	PR2	J2	K2	CLK2	CLR2	CLR1	V _{cc}		Min	Max	
7 <u>6</u> /, <u>7</u> /	Truth	3014	81	Α	В	Α	Α	L	Н	Н	GND	L	Α	Α	В	Α	Α	Α	4.5 V	All		See <u>8</u> /	
Tc = 25°C	table		82	В				Н	L	L		Н		"	"	В				outputs		"	
	tests	"	83		Α	В	В	-		-		-	В	В	Α		-	-	"	"		"	
		"	84	-	"	"	Α	"	"	"	"		Α	"	"	-		"	-	"		"	
		"	85	Α	"	"	"	"	"	"	"			"	"	Α	"	"	"	"			
			86	В	- "	- "		L	H	H	- "	L	-	"	- '	В	"		<u> </u>	"		-:-	
			87	A	- "	A	В	Η.	- "			Η.	В	A	-	A	B B	B B	-				
		,,	88 89	B B	"	"	A		"	"	"	L	A	"		B B	A	A		"			
		"	90	A			"	"	"		"			"		A	A	A		"			
		"	91	В	"	"	"	Н	L	L		Н		"		В	"			"		-	
		"	92	Ā	"	"	"	Н	L	Ē		Н		"	"	A			"	"			
		"	93	В	"	"	"	L	Н	Н	"	L	"	"	"	В	"	"		"		-	
8 <u>6</u> /, <u>7</u> /	Repeat	subgroup 7	at T _C = +12	5°C and T	c = -55°C.																		
9	f _{MAX}	Fig. 9	94	IN	2.7 V	2.7 V	2.7 V	OUT			GND							2.7 V	5.0 V	Q1	25		MHz
Tc = 25°C	<u>9</u> /	"	95	IN	2.7 V	2.7 V	2.7 V		OUT		"							2.7 V	"	_ Q1	"		
		"	96							OUT	"		2.7 V	2.7 V	2.7 V	IN	2.7 V		"	_ Q2	"		
		"	97								"	OUT	2.7 V	2.7 V	2.7 V	IN	2.7 V		"	Q2	"		"
	t _{PLH1}	3003	98 <u>10</u> /	IN	GND	2.7 V	2.7 V		OUT									IN	"	CLR1 to Q1	5	21	ns
		Fig. 9	99	IN	2.7 V	GND	IN	OUT										2.7 V	"	PR1 to Q1	"	"	"
		"	100							OUT	"		2.7 V	2.7 V	GND	IN	IN		"	CLR2 to Q2	"	"	-
		"	101								"	OUT	IN	GND	2.7 V	IN	2.7 V		"	PR2 to Q2		"	"
	t _{PHL1}	"	102 10/								"	OUT	2.7 V	2.7 V	GND	IN	IN		"	CLR2 to Q2	"	28	"
		"	103							OUT	"		IN	GND	2.7 V	IN	2.7 V		"	PR2 to Q2	"	"	-
			404	15.1	OND	0.71/	0.71/	OUT										15.1				—	
			104	IN	GND	2.7 V	2.7 V	OUT	OUT							ļ		IN 2.7 V	- :-	CLR1 to Q1			
			105	IN	2.7 V	GND	IN													PR1 to Q1			
	t _{PLH2}	3003	106	IN	2.7 V	2.7 V	2.7 V		OUT									2.7 V		CLK1 to Q1		22	
		Fig. 10	107	IN	2.7 V	2.7 V	2.7 V	OUT										2.7 V	"	CLK1 to Q1	"	"	"
		"	108							OUT	"		2.7 V	2.7 V	2.7 V	IN	2.7 V		"	CLK2 to Q2		"	-
		"	109								"	OUT	2.7 V	2.7 V	2.7 V	IN	2.7 V		"	CLK2 to Q2	"	"	"
	t _{PHL2}	"	110								"	OUT	2.7 V	2.7 V	2.7 V	IN	2.7 V		"	CLK2 to Q2	"	30	"
		"	111							OUT	"		2.7 V	2.7 V	2.7 V	IN	2.7 V		"	CLK2 to Q2	"	"	
		"	112	IN	2.7 V	2.7 V	2.7 V	OUT										2.7 V	"	CLK1 to Q1		"	"
		"	113	IN	2.7 V	2.7 V	2.7 V	001	OUT									2.7 V	"			"	-
																				CLK1 to Q1			
10	f _{MAX}	Fig. 9	114-117																		25		MHz
	t _{PLH1}	3003 Fig. 9	118-121					Same	e tests and	d terminal	conditions	as for sul	ogroup 9, ex	cept T _C =	+125°C						5	32	ns
	t _{PHL1}	3003	122-125																	}	"	40	"
	t _{PLH2}	Fig. 9 3003	126-129																	}		32	
	t _{PHL2}	Fig. 10 3003	130-133																	}		42	"
		Fig. 10																				72	
11	ISame to	ests and terr	ninal conditi	ons as for	subaroup	excep	$t T_c = -55^{\circ}$	С															

See footnotes at end of device types 03 and 10.

TABLE III. Group A inspection for device type 03 and 10.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open). $1/\sqrt{100}$

- * Terminal numbers for device type 03.
- ** Terminal numbers for device type 10.

5/ I_{IL} limits in mA are as follows:

		Mir	/Max limits for C	KT	
I _{IL1}	Α	В	С	D	Е
	075/250	030/300	150/560	120/360	120/360

		Min	/Max limits for C	CKT	
I _{IL3}	Α	В	С	D	E
	150/500	060/600	250/560	240/720	280/760

		Min	/Max limits for C	KT	
I_{IL4}	Α	В	С	D	E
	200/800	060/700	290/650	120/720	320/800

- $\underline{6}$ / Input voltages shown are A = 2.0 volts minimum and B = 0.7 volts maximum.
- 7/ Tests shall be performed in sequence, attributes data only.
- $\underline{8}/$ Output voltages shall be H \geq 1.5 V and L < 1.5 V.
- g/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.
- 10/ These tests may be performed as shown in table III or alternately as follows:

Test no.	CLK1	K1	J1	PR1	Q1	_ Q1	_ Q2	GND	Q2	PR2	J2	K2	CLK2	CLR2	CLR1	V _{CC}
98A	2.7 V	2.7 V	2.7 V	<u>2</u> /		OUT		GND							IN	5.0 V
99A	2.7 V	2.7 V	2.7 V	IN	OUT										2/	"
100A							OUT	"		<u>2</u> /	2.7 V	2.7 V	2.7 V	IN		"
101A								"	OUT	IN	2.7 V	2.7 V	2.7 V	<u>2</u> /		"
102A								"	OUT	<u>2</u> /	2.7 V	2.7 V	2.7 V	IN		"
103A							OUT	"		IN	2.7 V	2.7 V	2.7 V	<u>2</u> /		=
104A	2.7 V	2.7 V	2.7 V	<u>2</u> /	OUT			"							IN	"
105A	2.7 V	2.7 V	2.7 V	IN		OUT		"							<u>2</u> /	"

MIL-M-38510/301E

TABLE III. Group A inspection for device type 06. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

Subgroup						16	Hillinai	Jonattio					e nign ≥											
Templand E, F Templand			MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Te = 25°C	Subgroup	Symbol		Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Lim	iits	Unit
Te = 25°C Vis. 3006				Test no	CLR	01	D1	D2	Ω2	D3	Ω 3	GND	CLK	04	DΔ	05	D5	D6	06	Vac		Min	May	
TC = 25°C	- 1	1/	2006					DZ	QZ	DS	QJ			Q4	D4	QJ		DO	QU		01		IVIAA	W
Vo. 30		VOH	3006			4 MA	2.0 V	0.01/	4 4			GIND								4.5 V				
	1 c = 25°C							2.0 V	4 MA															
No.									2.0 V	4 mA														
Vo. 3007 7														4 mA	2.0 V									
Vo. 3007 9												"				4 mA	2.0 V							
					"							"												
10		V_{OL}	3007		"							"						0.7V	4 mA				0.4	"
Note			"	8								"				4 mA	0.7 V						"	
11			"	9	"							"		4 mA	0.7 V					"	Q4		"	
12			"	10	"					0.7 V	4 mA									"	Q3			"
13 0.7			"	11	"			0.7 V	4 mA											"	Q2		"	"
14			"	12	"	4 mA	0.7 V													"	Q1			"
14			"	13	0.7 V	4 mA														"	Q1		"	
15					"				4 mA			"								"				
16					"						4 mA													
17			"		"							"		4 mA										
No. 18 18 18 18 18 18 18 1					"							"				4 mA				"				
19					"							"							4 mA					
18 mA		V			-18 m∆														71101				-1.5	
Part		A IC			-1011174		-18 m/\																"	
Part							-1011114	10 m/																
1								-10 IIIA		10 m/														
The second color of the										-10 IIIA			10 m/											
1													-16 IIIA		10 m A								-	
Record R												-			-10 IIIA		40 4							
												-					-18 MA	40 4					-	
28			2000																			0/	0/	^
1		I _{IL1}	3009														0.417	0.4 V		5.5 V			<u>3</u> /	mA "
1															0.417		0.4 V							
1															0.4 V									
1										0.4 V										"				
I								0.4 V												"				
He							0.4 V													"			"	
He		I _{IL2}			0.4 V															"			"	
36												"	0.4 V										"	
1		I _{IH1}	3010		2.7 V							"											20	μΑ
1			"				2.7 V					"								"			"	"
1	1		"					2.7 V				"								"			"	"
40			"							2.7 V										"			"	
He			"									"	2.7 V							"			"	
	1		"									"			2.7 V					"				"
H ₁				41								"					2.7 V			"	D5		"	
44			"	42								"						2.7 V		"	D6		"	
44	1	I _{IH2}	"									"						5.5 V					100	"
45			"	44								"					5.5 V			"	D5		"	"
46			"									"			5.5 V					"			"	
47	1		"									"	5.5 V							"			"	
" 48			"	47						5.5 V										"	D3		"	
" 49 5.5 V " " D1 " "			"					5.5 V				"								"			"	"
			"				5.5 V													"				
	1		"	50	5.5 V															"	CLR		"	

See footnotes at end of device types 06.

TABLE III. <u>Group A inspection for device type 06</u> - Continued.

Terminal conditions (pins not designated may be high > 2.0 V, low < 0.7 V, or open).

						Τe	erminal o	conditio	ns (pins	not des	signated	l may b	e high ≥	2.0 V, lo	0.7°	V, or op	en).						
			Cases 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
		MIL-STD-	2, X																				l
Subgroup	Symbol	883	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lim	nits	Unit
		method	E, F																	terminal			l
			Test no.	CLR	Q1	D1	D2	Q2	D3	Q3	GND	CLK	Q4	D4	Q5	D5	D6	Q6	V _{CC}		Min	Max	l
1	Ios	3011	51	4.5 V	GND	4.5 V					GND	4/						-,-	5.5 V	Q1	-15	-100	μА
Tc = 25°C	00	"	52	"			4.5 V	GND			"	-							"	Q2		"	"
			53	"					4.5 V	GND	"								"	Q3			
		"	54	"							"		GND	4.5 V					"	Q4		"	
		"	55	"							"	"			GND	4.5 V			"	Q5	"	"	"
		"	56	"							"						4.5 V	GND	"	Q6		"	"
	Icc	3005	57	5.5 V		5.5 V	5.5 V		5.5 V		"			5.5 V		5.5 V	5.5 V		"	V _{CC}		26	"
2		ests, termina	I conditions,		as for sub	group 1, e		= +125°C	and V _{IC} tes	ts are omi	itted.					•	•						
		ests, termina																					
7 <u>5</u> /, <u>6</u> /	Truth	3014	58	В	L	A	A	L	A	L	GND	Α	L	Α	L	Α	Α	L	4.5 V	All		See <u>7</u> /	
Tc = 25°C	table		59	"	"	"		"	"		"	В		"		"	"		"	outputs		"	
	tests		60					"			"	Α		"		"	"		"	,			
		"	61	Α		"	"	"	"	"	"	Α		"		"	"		"	"			
		"	62	"	"	"	"	"	"	"	"	В		"		"	"		"	"		"	
		"	63	"	Н	"	"	Н	"	Н	"	Α	Н	"	Н	"	"	Н	"	"		"	
		"	64	"	"	В	В	"	В	"	"	Α	"	В		В	В		"			"	
		"	65	"	"	"	"	"	"	"	"	В		"		"	"		"			"	
		"	66	"	L	"	"	L	"	L	"	Α	L	"	L	"	"	L	"	"		"	
		"	67	"	L	Α	Α	L	Α	L	"	В	L	Α	L	Α	Α	L	"	"		"	
		"	68	"	Н	"	=	Н	"	Η	"	Α	Н	"	Η	"	"	Η	"	"		"	
		"	69	"	Н	"	=	Н	"	Η	"	В	Н	"	Ι			I	"				
		"	70	В	L	"	=	L	"	L	"	В	L	"	L	"	"	L	"			"	
8	Repeat	subgroup 7	at T _c = +125																				
9	f_{MAX}	Fig. 13	71	2.7 V	OUT	IN					GND	IN							5.0 V	Q1	25		MHz
$Tc = 25^{\circ}C$		"	72	"			IN	OUT			"								"	Q2			L
		"	73	"					IN	OUT	"								"	Q3			L
		"	74	"							"	-	OUT	IN					"	Q4	"		<u></u>
		"	75	"							"				OUT	IN			"	Q5	-		
		"	76	"							"						IN	OUT	"	Q6	-		
	t _{PHL1}	3003	77	IN							"						2.7 V	OUT		CLR to Q6	5	42	ns
		Fig. 13	78	"							"				OUT	2.7 V				CLR to Q5	"	"	
			79	"					2 - 17		"		OUT	2.7 V					- "	CLR to Q4		"	
	1		80	"			0.71/	OUT	2.7 V	OUT	"								- "-	CLR to Q3	-	"	
			81		01.17	071/	2.7 V	OUT												CLR to Q2			
	<u> </u>	0000	82	0.71/	OUT	2.7 V													<u> </u>	CLR to Q1	-		
	t _{PLH2}	3003	83	2.7 V	OUT	IN	INI	OUT			-	-							-	CLK to Q1	-	37	
		Fig. 14	84				IN	OUT	INI	OUT									<u> </u>	CLK to Q2			
			85						IN	OUT	- "		OLIT.	IN					-	CLK to Q3	-		
			86	"							- "		OUT	IN	OUT	INI				CLK to Q4	-	-	-
			87 88	"							"	-			OUT	IN	IN	OUT		CLK to Q5 CLK to Q6			-
	-	3003	88								"	-					IN	OUT	-	CLK to Q6		40	"
	t _{PHL2}	3003 Fig. 15	90												OUT	IN	IIN	001	"	CLK to Q6		40	"
		Fig. 15	90	"							"		OUT	IN	001	IIN				CLK to Q5			-
			91	"					IN	OUT	"		001	IIN						CLK to Q4			
			93	"			IN	OUT	IIN	001	"									CLK to Q3			"
			93	"	OUT	IN	IIN	001			"								-	CLK to Q2			
L		1	34	l	001	IIN		1	l		l			l		l	l		1	OLN IO Q1			

See footnotes at end of device types 06.

TABLE III. Group A inspection for device type 06 - Continued.

Terminal conditions (pins not designated may be high > 2.0 V, low < 0.7 V, or open).

		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
			Test no.	CLR	Q1	D1	D2	Q2	D3	Q3	GND	CLK	Q4	D4	Q5	D5	D6	Q6	V _{cc}		Min	Max	
10	f _{MAX} 8/	Fig. 13	95-100																		25		MHz
	t _{PHL1}	3003 Fig. 13	101-106	Same tes	sts and ter	minal cond	ditions as fo	or subarou	p 9. excer	ot To. To =	= +125°C										5	52	ns
	t _{PLH2}	3003 Fig. 14	107-112						,												"	47	"
	t _{PHL2}	3003 Fig. 15	113-118																		"	52	"

1/ Case X and 2 pins not referenced are NC. 2/ - - - 2.5 V minumum/5.5 V maximum

3/ I_{IL} limits in mA are as follows:

56

			Mi	n/Max limits for	CKT		
I _{IL1}	Α	В	С	D	Е	F	G
	085/270	100/340	075/250	075/250	E F (075/250

			Mi	n/Max limits for	CKT		
I_{IL2}	Α	В	С	D	Е	F	G
	115/350	150/420	125/275 for test 33 160/400 for test 34	120/360	120/360	150/380 for test 33 160/400 for test 34	075/250 for test 33 120/360 for test 34

- 5/ Input voltages shown are A = 2.0 volts minimum and B = 0.7 volts maximum.
- 6/ Tests shall be performed in sequence, attributes data only.
- $\underline{7}/$ Output voltages shall be H \geq 1.5 V and L < 1.5 V.
- 8/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 07. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

			Casas 1/	2	_		5		8 8			1111ay D	e nign ≥ 13		JW ≤ 0.7 15	17		10	20	1			
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
			Test no.	CLR	Q1	Q1	D1	D2	Q2	Q2	GND	CLK	Q3	_ Q 3	D3	D4	Q4	Q4	V _{CC}		Min	Max	
1	V _{OH}	3006	1	0.7 V		4 mA					GND								4.5 V	Q1	2.5		V
Tc = 25°C		"	2	"					4 mA		"								"	_ Q2	-		=
		"	3	"							"			4 mA					"	_ Q 3	-		=
		"	4	"							"						4 mA		"	_ Q4			
			5	2.0 V							"	<u>2</u> /			0.01/	2.0 V		4 mA	"	Q4	-		"
			6					0.01/					4 mA		2.0 V				-:-	Q3			
		,	7 8		4 mA		2.0 V	2.0 V		4 mA	- "									Q2 Q1			
			9	"	4 MA	4 mA	0.7 V				"												
			10	"		4 111/4	0.7 V	0.7 V	4 mA		"									Q1			
			11					0.7 V	4 IIIA					1 == 1	0.7 V					Q2			
				"										4 mA	0.7 V	0.71/				Q 3			
	.,		12													0.7 V	4 mA			Q4			
	V _{OL}	3007	13	0.7 V	4 mA						"								-	Q1		0.4 V	- "
			14							4 mA	"								-:-	Q2		- "	
		,	15 16	- "							"	2/	4 mA					4 mA	-	Q3 Q4			
			17	2.0 V							"	<u>Z</u> /				2.0 V	4 mA	4 IIIA				"	
			18	2.0 V							"			4 mA	2.0 V	2.0 V	7111/5		,	Q4		"	-
			19	"				2.0 V	4 mA					4 IIIA	2.0 V					Q 3			
							0.01/	2.0 V	4 MA											_ Q2			
			20	-		4 mA	2.0 V													Q1			
			21		4 mA		0.7 V	0.71/		Α Α		-							- "	Q1		- "	-
			22 23	"				0.7 V		4 mA	"		4 mA		0.7 V	-			"	Q2 Q3		"	
			23	"							"		4 IIIA		0.7 V	0.7 V		4 mA	"	Q3 Q4		"	
	V _{IC}		25	-18 mA												0.7 V		7111/5		CLR		-1.5 V	
	- 10		26				-18 mA				"								"	D1		"	
			27					-18 mA			"								"	D2		"	
			28								"	-18 mA							"	CLK		-	
			29								"				-18 mA				"	D3		"	"
			30								- "			ļ		-18 mA			"	D4		"	
	I _{IL1}	3009	31											ļ	0.411	0.4 V			5.5 V	D4	<u>3</u> /	<u>3</u> /	mA
			32 33					0.4 V			- "			ļ	0.4 V				"	D3 D2		- "	- :
			33				0.4 V	U.4 V			-			1		 			-	D2 D1		-	
	I _{IL2}	"	35	0.4 V			U.4 V					-							"	CLR		"	
	IL2	"	36	∪. + v							"	0.4 V		1					"	CLK		"	
	I _{IH1}	3010	37	2.7 V							"								"	CLR		20	μА
		"	38				2.7 V				"								"	D1		"	
			39					2.7 V			"	0 = 17		ļ					- "	D2		"	-
			40								- "	2.7 V			271/				- "	CLK			- :
		,	41 42								"			 	2.7 V	271/			"	D3 D4			
			42		<u> </u>	<u> </u>	<u> </u>							<u> </u>		2.7 V				D4			-

MIL-M-38510/301E

See footnotes at end of device type 07.

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open).

						Te	erminal c	condition	ns (pins	not des	signated	l may b	e high ≥	2.0 V, Id	0.7	V, or op	en).						
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	its	Unit
			Test no.	CLR	Q1	Q1	D1	D2	Q2	Q2	GND	CLK	Q3	Q 3	D3	D4	Q4	Q4	V _{CC}		Min	Max	
1	I _{IH2}	3010	43								GND					5.5 V			5.5 V	D4		100	μА
Tc = 25°C		"	44								"				5.5 V				"	D3		"	"
		"	45								"	5.5 V							"	CLK		"	"
		"	46					5.5 V			"								"	D2		"	"
		"	47				5.5 V				"								"	D1		"	"
		"	48	5.5 V							"								"	CLR		"	"
	Ios	3011	49	GND		GND					"								"	_ Q1	-15	-100	mA
		"	50	"					GND		"								"	_ Q2	"	"	"
		"	51	"							"			GND					"	Q 3	"	"	"
		"	52	"							"						GND			_ Q4	"	"	"
		"	53	4.5 V							"	<u>4</u> /				4.5 V		GND	"	Q4	"	"	"
		"	54	"							"		GND		4.5 V				"	Q3	"	"	"
		"	55	"				4.5 V		GND	"								"	Q2	"	"	"
			56	"	GND		4.5 V												"	Q1		"	
	Icc	3005	57	5.5 V			5.5 V	5.5 V			"				5.5 V	5.5 V			"	V _{CC}		18	"
		ests, termina																					
3		ests, termina								are omitt	ed.												
7 <u>5</u> /, <u>6</u> /	Truth	3014	58	В	L	Н	Α	Α	Н	L	GND	В	L	Н	Α	Α	Н	L	4.5 V	All		See <u>7</u> /	
$T_C = 25^{\circ}C$			59				"					Α		"					"	outputs		"	
	tests		60				"					В	"	"				"	"	"			
			61	Α			"	"			"	В		"					"	"			
			62	"	Н	L	"	"	L	H	"	Α	Н	L			L	Н	"				
			63	- :							- "	В		- "									
		ı .	64	- "			В	B "				В	:		В	В			<u> </u>				
			65		L	H			H	L		A	<u> </u>	H			H	L					
			66									В											
			67				A	A			- "	В	<u>.</u>	- "	A	A							
			68		H	_ <u> </u>		-	L.	H		A	H	<u> </u>		-	_ <u> </u>	H					
			69 70	D	H	H	-		L	H-		B B	<u>H</u>	_ L	-		H	H		,		-	
0.4/.5/	D 1			B	L	п			Н	L		Ь	L	Н			П						
8 <u>4</u> /, <u>5</u> / 9		subgroup 7 Fig. 13	at 1 _c = +12t	2.7 V	OUT		IN				GND	IN							5.0 V	Q1	25		MHz
T _C = 25°C	f _{MAX} <u>8</u> /	rig. 13	72	Z.7 V	001	OUT	IN				"	"							5.0 V	Q1	Z3 "		IVIDZ "
		"	73	"				IN	OUT		"	"							"	- Q2	"		
			74	"				IN		OUT	"									Q2			
			74 75	"				IIN		001	"		OUT	1	IN				-	Q2 Q3	-		
			75 76	"							,		001	OUT	IN				-		-		
											,,			001	1111	INI	OUT			Q 3			
			77													IN	OUT	OUT		Q4			
	-	3003	78 79	IN							-	-		-		IN 2.7 V	OUT	OUT	-	Q4 -	5	32	nc
	t _{PLH1}			IIN "							"			OUT	271	2.1 V	001			CLR to Q4	5	32	ns
		Fig. 13	80					0.717	OL IT					OUT	2.7 V					CLR to Q 3		-	
			81			01:-	0 = 1.	2.7 V	OUT											CLR to Q2		-	
			82	"		OUT	2.7 V				"									CLR to Q1		"	

See footnotes at end of device type 07.

Terminal conditions (n	ine not decianated	may be high $> 2.0 \text{ V}$	low < 0.7 V or open

						16	erminal	conditio	ns (pins	not des	signated		e high ≥	2.0 V, I	$5w \le 0.7$	v, or op							
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
			Test no.	CLR	Q1	_ Q1	D1	D2	Q2	Q2	GND	CLK	Q3	_ Q 3	D3	D4	_ Q4	Q4	V _{CC}		Min	Max	ĺ
9	t _{PHL1}	3003	83	IN	OUT		2.7 V				GND	IN							5.0 V	CLR to Q1	5	45	ns
Tc = 25°C		Fig. 13	84	"				2.7 V		OUT	"	"							"	CLR to Q2	"	"	"
		"	85	"							"	"	OUT		2.7 V				"	CLR to Q3		"	"
		"	86	"							"	"				2.7 V		OUT	"	CLR to Q4	"	"	"
	t _{PLH2}	3003	87	2.7 V							"	"				IN		OUT	"	CLK to Q4	"	35	"
		Fig. 14	88									"	OUT		IN				"	CLK to Q3	-	"	"
		"	89	"				IN		OUT	"								"	CLK to Q2		"	
			90	- "	OUT		IN												- "	CLK to Q1			<u> </u>
		3003	91			OUT	IN													CLK to Q1		"	
		Fig. 15	92					IN	OUT											CLK to Q2		"	. "
		"	93	"							"	"		OUT	IN				"	CLK to Q 3		"	"
		"	94	"							"	"				IN	OUT		"	CLK to Q4	"	"	"
	t _{PHL2}	3003	95	"								"				IN	OUT		"	CLK to Q4	"	40	"
		Fig. 14	96								"			OUT	IN				"	CLK to Q 3		"	"
		"	97	"				IN	OUT		"												-
			98	"		OUT	IN				"									CLK to Q2		"	-
		3003	99		OUT	001	IN												"	CLK to Q1		"	
		Fig. 15	100		001		IIN	IN		OUT									"	CLK to Q1		"	"
		1 ig. 13	101	"				111		001	"		OUT		IN					CLK to Q3		"	"
		"	102	"							"		001			IN		OUT		CLK to Q4		"	"
10	f _{MAX} 8/	Fig. 13	103-110												I						25		ns
	t _{PLH1}	3003	111-114	1																	5	51	"
	t _{PHL1}	Fig. 13 3003	115-118	Same te	sts and ter	minal cond	ditions as f	for subgro	up 9. exce	ot Tc = +1	25°C										"	55	-
		Fig. 13		340	0.10 101			oazgioi	0, 000														<u> </u>
	t _{PLH2}	3003 Fig. 14	119-122																			46	1
	t _{PLH2}	3003 Fig. 15	123-126																		"	46	"
	t _{PHL2}	3003	127-130																		"	55	"
	t _{PHL2}	Fig. 14 3003	131-134																			55	-
		Fig.15		L																			<u> </u>
11	Same to	ests, termina	al conditions	, and limits	s as for su	ogroup 10	except To	$_{\rm S} = -55^{\circ}{\rm C}$.															

See footnotes at end of device type 07.

3/ I_{IL} limits in mA are as follows:

			Mi	n/Max limits for	CKT		
I _{IL1}	Α	В	С	D	Е	F	G
	075/250	100/340	075/250	075/250	120/360	160/400	075/250

		Mi	n/Max limits for (CKT		
Α	В	С	D	ш	F	G
085/270 for test 35	150/420	125/275 for test 35	120/400 for test 35	120/400	105/380 for test 35	075/250 for test 35
135/400 for test 36		160/400 for test 36	120/360 for test 36		160/400 for test 36	120/360 for test 36
f	or test 35	.085/270150/420 or test 35135/400	A B C .085/270150/420125/275 or test 35135/400160/400	A B C D .085/270150/420125/275 for test 35135/400 for test 35 for test 35160/400120/360	.085/270	A B C D E F .085/270

- 5/ Input voltages shown are A = 2.0 volts minimum and B = 0.7 volts maximum.
- 6/ Tests shall be performed in sequence, attributes data only.
- $\underline{7}/$ Output voltages shall be H \geq 1.5 V and L < 1.5 V.
- g/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 09.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, low $\leq 0.7 \text{ V}$, or open).

		ı	Cases 1/	2	3	4	5	7	8	9	10	1111ay D	e high ≥ 13	14	15	17	18	19	20				
		MIL-STD-	2, X	2	3	4	5	,	0	9	10	12	13	14	13	17	10	19	20				
bgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
			Test no.	CLR1	J1		CLK1	PR1	Q1	Q1	GND	_ Q 2	Q2	PR2	CLK2		J2	CLR2	V _{CC}		Min	Max	
1	V _{OH}	3006	1	0.7 V	0.7 V	0.7 V	GND	2.0 V		-4 mA	GND								4.5 V	_ Q1	2.5		V
= 25°C			2	2.0 V	"	"	GND	0.7 V	4 mA		"									Q1			"
		"	3	"	"	"	<u>2</u> /	2.0 V		4 mA	"								"	_ Q1	"		"
			4	"	2.0 V	2.0 V	2/	2.0 V	4 mA		"									Q1			
			5		2.0 1	2.0		2.0 1			"	4 mA		2.0 V	GND	0.7 V	0.7 V	0.7 V	"	Q 2			
			6								"		4 mA	0.7 V	GND		"	2.0 V	"	Q2			"
			7								"	4 mA		2.0 V	2/		"	"		Q 2			
			8								"		4 mA	"	2/	2.0 V	2.0 V			Q2			
	V _{OL}	3007	9								"		4 mA		GND	0.7 V	0.7 V	0.7 V	"	Q2		0.4	"
	OL.	"	10								"	4 mA		0.7 V	GND	"	"	2.0 V	"	Q 2		"	
			11								"		4 mA	2.0 V	2/					Q2			
			12								"	4 mA	7 110 (2.0 V	2/	2.0 V	2.0 V	"	"	Q 2		"	
			13	0.7 V	0.7 V	0.7 V	GND	2.0 V	4 mA										"	Q1		"	,
		"	14	2.0 V	"	"	GND	0.7 V		4 mA	"								"	Q1		"	
			15	"	"	"	2/	2.0 V	4 mA		"									Q1		"	
		"	16	"	2.0 V	2.0 V	2/	2.0 V		4 mA	"								"	Q1		"	
	V _{IC}		17	-18 mA							"									CLR1		-1.5	
	10		18		-18 mA						"									J1		"	
			19			-18 mA					"								"	- 1			
			20				-18 mA				"									CLK1		"	"
			21					-18 mA			"								"	PR1			
			22 23								"			-18 mA	-18 mA				-	PR2 CLK2			
			24								"				-10 IIIA	-18 mA				K 2			
			25								"						-18 mA			J2			
			26								"						-10 IIIA	-18 mA		CLR2			
	I_{IL2}	3009	27	<u>3</u> /	0.4 V	4.5 V	GND	4.5 V			"								5.5 V	J1	<u>4</u> /	4/	m/
		"	28	4.5 V	4.5 V	0.4 V	GND	<u>3</u> /			"									_ K 1			
		"	29								"			<u>3</u> /	GND	0.4 V	4.5 V	4.5 V	"			"	
		"	30								"			4.5 V	GND	4.5 V	0.4 V	<u>3</u> /	"	J2		"	"
	I _{IL4}		31								"			4.5 V	0.4 V		4.5 V	3/		CLK2			"
			32 33		-	-	-				"			<u>3</u> / 0.4 V	0.4 V 4.5 V	-		4.5 V GND	"	CLK2 PR2		-	- "
		"	34	GND	4.5 V	4.5 V	4.5 V	0.4 V			"			U.4 V	4.5 V			GIND	"	PR1		"	"
		"	35	4.5 V	"	"	0.4 V	3/			"									CLK1		"	
	L.	"	36	<u>3</u> /	"	"	0.4 V	4.5 V	_	_	"								"	CLK1	"	"	"
	I_{IL7}		37 38	0.4 V	"	- "	4.5 V	GND			"			GND	4.5 V	4.5 V	4.5 V	0.4 V		CLR1 CLR2		- "	- "

See footnotes at end of type 09.

MIL-M-38510/301E

TABLE III. Group A inspection for device type 09.

Τe	erminal o	conditio	ns (pins	not des	ignated	may b	e high ≥∶	2.0 V, Id	$\overline{\text{ow}} \leq 0.7$	V, or op	en).
4	5	7	8	9	10	12	13	14	15	17	18

															<u>w ≥ 0.7</u>								
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lin	nits	Unit
			Test no.	CLR1	J1		CLK1	PR1	Q1	_ Q1	GND	_ Q 2	Q2	PR2	CLK2		J2	CLR2	V _{CC}		Min	Max	
1	I _{IH1}	3010	39	GND	2.7 V	GND	4.5 V	4.5 V			GND								5.5 V	J1		20	μА
Tc = 25°C		"	40	GND	GND	2.7 V	4.5 V	GND			"								"	_ K 1		"	"
		,,	41								"			GND	4.5 V	2.7 V	GND	GND					-
															4.5 V			טאט		_ K 2			
		"	42								"			4.5 V		GND	2.7 V		"	J2		"	"
	I _{IH2}		43								"			4.5 V	- "	GND	5.5 V			J2		100	
		"	44								"			GND		5.5 V	GND			_ K 2			
		"	45	GND	GND	5.5 V	4.5 V	GND			"								"			"	"
			46	GND	5.5 V	GND	4.5 V	4.5 V											-	J1			
	I _{IH3}	"	46	GND	4.5 V	4.5 V	2.7 V	GND												CLK1		40	
	'IH3		48	4.5 V	4.5 V	4.5 V	GND	2.7 V											"	PR1		"	"
		"	49	7.0 1	4.0 V	7.0 0	OND	Z.7 V			"			2.7 V	GND	4.5 V	4.5 V	4.5 V	"	PR2		"	"
		"	50								"			GND	2.7 V	"	"	GND	"	CLK2		"	"
	I _{IH4}	"	51								"			GND	5.5 V		"	GND	"	CLK2		200	"
		"	52								"			5.5 V	GND		"	4.5 V	"	PR2		"	"
		"	53	4.5 V	4.5 V	4.5 V	GND	5.5 V			"								"	PR1		"	"
		"	54	GND	4.5 V	4.5 V	5.5 V	GND											"	CLK1		"	"
	I _{IH7}		55	2.7 V	4.5 V	4.5 V	GND	4.5 V											"	CLR1		80	
	<u> </u>	- "	56								- "			4.5 V	GND	4.5 V	4.5 V	2.7 V	"	CLR2		80	
	I _{IH8}		57 58	5.5 V	4.5 V	4.5 V	GND	4.5 V			- "			4.5 V	GND	4.5 V	4.5 V	5.5 V	- "	CLR2 CLR1		400 400	
	—	3011	59	GND	4.5 V	4.5 V	GND	4.5 V		GND											-15	-100	mA
	los		33	GND				4.5 V		GND										Q1	-13	-100	ША
		"	60	4.5 V				GND	GND										"	Q1	-	"	"
		"	61								"		GND	GND				4.5 V	"	Q2		"	"
		"	62								"	GND		4.5 V				GND	"	Q 2			
	Icc	3005	63	GND			GND	5.5 V			"			5.5 V	GND			GND	"	V _{CC}		8.0	
	100	3005	64	5.5 V			GND	GND			"			GND	GND			5.5 V	"	V _{CC}		8.0	
2	Same te	ests, termina			s as for sul	baroup 1. e			and V _{IC} tes	sts are om	itted.	l .		0.15	0.10		l	0.0 1	ı	• 66	l	0.0	
3		ests, termina																					
7 <u>5</u> /, <u>6</u> /	Truth	3014	65	Α	Α	A	В	В	H	L	GND	L	Н	В	В	Α	Α	Α	4.5 V	All		See <u>7</u> /	
Tc = 25°C	table		66			"	В	Α	"	"	"	-	"	Α	В			"	"	outputs		"	
	tests	"	67	"	"	"	Α		"	"	"	"		"	Α		"	"	"	"		"	
		"	68	"	"	В	Α	"	"	"	"	"	"	"	Α	В	"	"	"	"		"	
		<u>"</u>	69	"	- "	- "	В	"	- "		"			- "	В	- "			- "	"			
			70	- "	- "	- "	A		L L	H	- "	H	L	- "	A	- :		-		- "		-	
			71 72	В		"	B		"	"				"	B "	-		В	-	"			
		"	73	A	"	"	"		"	"	"			"				A		"			
		"	74		"	"	Α	"	Н	L	"	L	Н	"	Α					"			
		"	75	"	"	"	В	"	Н	L	"	L	H	"	В		"			"			
		"	76	"	"	"	A	"	L	H	"	H	Ĺ	"	A		"	"	"	"			
		"	77	"	"	"	В	"	L	Н	"	Н	L	"	В		"		"	"			
		"	78	"	"	"	В	В	Н	L	"	L	Н	В	В	"	"	"	"	"			
		"	79	"	"	"	Α	В	"	"	"		-	В	Α	"	"	"	"	"		"	
		"	80	"	"	"	Α	Α	"	"	"	"	"	Α	Α	"	"		"	"			
			81				В				"				В		- "			"			
			82		- "		A	"	L L	H		H	Ļ	- "	A	<u> </u>	- "		<u> </u>	- "			
			83			"	B "			"	"		-	"	В	-						-	
		,,	84 85	B A	B	- "			"	"	"			-		-	B	B A	-	"		-	
		"	86	* "	"	"	Α	"	"	"	"			"	Α			- "		"			
	ı	•		1	1	1	_ ^	i .			1		i e	1		1	1			1			

See footnotes at end of device type 09.

TABLE III. <u>Group A inspection for device type 09</u>. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.7 V, or open).

						16	eminai o	conditio	ns (pins	not des	signated		e nign ≥	2.0 V, I	$5W \le 0.7$		en).						
		MIL-STD-	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20				
Subgroup	Symbol	883 method	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lir	nits	Unit
			Test no.	CLR1	J1	- 1	CLK1	PR1	Q1	_ Q1	GND	_ Q 2	Q2	PR2	CLK2		J2	CLR2	V _{CC}	1	Min	Max	
7 <u>5</u> /, <u>6</u> /	Truth	3014	87	Α	Α	В	Α	Α	L	Н	GND	Н	L	Α	Α	В	Α	Α	4.5 V	All		See 7/	
Tc = 25°C	table	"	88			"	В	"	"	"	"			"	В	"	"		"	outputs		"	
	tests	"	89	-	"			В	Н	L	"	L	Η	В	-			-		"			
		"	90	"	"	"	"	Α	Н	L	"	L	Н	Α	"		-	-	"	"		"	
		"	91	"	"	"	Α	"	L	Н	"	Н	L	"	Α	"	"	"	"	"			
			92			-	В	- "	- "	- "			-		В					"			
			93	В	- "	- "	В	- "	- "	<u> </u>	- "			- "	B A			В	- "				
			94 95	B A	"	"	A A	"	- "	"	- "	-		"	A			B A		"			
		"	96	A		"	В	"	"	"	"				В			- A		"			
			97	"	В	Α	В	"	"	"	"			"	В	Α	В			"		"	
			98	"	В	"	A	"	"	"	"			"	A	"	В			"			
		"	99	"	Ā	"	"	В	Н	L	"	L	Н	В	"		Ā			"			
		"	100	"	"	"	"	Α	Н	L	"	L	Н	Α	"	"	"	"	"	"			
		"	101	В	"	"	"	Α	L	Н	"	Н	L	Α	"		"	В	"	"			
		"	102	Α	В	В	В	В	Н	L	"	L	Н	В	В	В	В	Α		"			
		"	103	Α	"	"	"	Α	Н	L	"	L	Н	Α	"	"	"	Α	"	"			
		"	104	В	"	"	"	Α	L	Н	"	Н	L	Α	"	"	"	В	"	"			
8			at T _C = +125			OND		0.7.1	OUT		OND						1		501/				
9	f _{MAX}	Fig. 16	105	2.7 V	2.7 V	GND	IN	2.7 V	OUT	OUT	GND								5.0 V	Q1	20		MHz "
Tc = 25°C	<u>8</u> /	-	106	2.7 V	2.7 V	GND	IN	2.7 V		001										_ Q1			
		"	107								"	OUT		2.7 V	IN	GND	2.7 V	2.7 V	"	_ Q 2			"
		"	108								"		OUT	2.7 V	IN	GND	2.7 V	2.7 V	"	Q2			"
	t _{PLH1}	3003	109	IN	2.7 V	2.7 V	IN	2.7 V		OUT	"								"	CLR1 to Q1	5	20	ns
		Fig. 17	110	2.7 V	GND	GND	IN	IN	OUT										"	PR1 to Q1	"	"	"
		"	111								"		OUT	IN	IN	GND	GND	2.7 V	"	PR2 to Q2		"	"
		"	112								"	OUT		2.7 V	IN	2.7 V	2.7 V	IN		CLR2 to Q 2			"
	t _{PHL1}	"	113								"		OUT	2.7 V	IN	2.7 V	2.7 V	IN	"	CLR2 to Q2		32	"
		"	114								"	OUT		IN	IN	GND	GND	2.7 V	"	PR2 to Q 2		"	"
		"	115	2.7 V	GND	GND	IN	IN		OUT	"								"	PR1 to Q1		"	"
		"	116	IN	2.7 V	2.7 V	IN	2.7 V	OUT		"								"	CLR1 to Q1		"	"
	t _{PLH2}	3003	117	2.7 V	2.7 V	GND	IN	2.7 V	OUT		"								"	CLK1 to Q1		24	"
		Fig. 16	118	2.7 V	2.7 V	GND	IN	2.7 V		OUT	"								"	CLK1 to Q1		"	"
		"	119								"	OUT		2.7 V	IN	GND	2.7 V	2.7 V	"	CLK2 to Q 2		"	"
		"	120								"		OUT	2.7 V	IN	GND	2.7 V	2.7 V	"	CLK2 to Q2	"	"	"
	t _{PHL2}	"	121								"		OUT	2.7 V	IN	GND	2.7 V	2.7 V	"	CLK2 to Q2		35	"
		"	122								"	OUT		2.7 V	IN	GND	2.7 V	2.7 V	"	CLK2 to Q 2	"	"	"
		"	123	2.7 V	2.7 V	GND	IN	2.7 V		OUT	"		_					•	"	CLK1 to Q1	"	"	"
			124	2.7 V	2.7 V	GND	IN	2.7 V	OUT											CLK1 to Q1			

See footnotes at end of device type 09.

TABLE III. Group A inspection for device type 09.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$. low $\leq 0.7 \text{ V}$. or open).

Subgroup		MIL-STD-	Cases 1/ 2, X	2	3	3	5	7	8	9	10	12	13	14	15 12	17	18	19 15	20	Measured	Lim	uits	Unit
3.00	,	method	E, F		_		•	-		•										terminal			
			Test no.	CLR1	J1	- 1	CLK1	PR1	Q1	Q1	GND	Q 2	Q2	PR2	CLK2		J2	CLR2	V _{CC}		Min	Max	
10	f _{MAX} <u>8</u> /	Fig. 16	125-128										20		MHz								
	t _{PLH1}	3003 Fig. 17	129-132	Same test	ame tests and terminal conditions as for subgroup 9, except $T_C = +125^{\circ}C$.								5	39	ns								
	t _{PHL1} 3003 133-136 Fig. 17									"	59												
	t _{PLH2}	3003 Fig. 16	137-140	140								39											
	t _{PHL2}	3003 Fig. 16	141-144																			59	
11	Same te	sts, termina	l conditions,	and limits	as for sub	ogroup 1, e	except T _C =	= -55°C an	d V _{IC} tests	are omitt	ed.												

3/ I_{IL} limits in mA are as follows:

	Min/Max limits for CKT								
I _{IL2}	Α	В	С	D	E	F			
	075/250	030/300	095/210	160/400	135/370	160/400			

		Min/Max limits for CKT							
I _{IL4}	Α	В	С	D	E	F			
	150/500 for tests 31, 32, 35, 36 200/800	060/700	160/400 for tests 31, 32, 35, 36 350/760	320/800	120/360 for tests 31, 32, 35, 36 350/760	320/800			
	for tests 33, 34		for tests 33, 34		for tests 33, 34				

	Min/Max limits for CKT						
I _{IL7}	Α	В	С	D	Е	F	
	200/800	060/700	350/760	560/-1.600	280/760	560/-1.600	

<u>4</u>/ 2.5 V minumum/5.5 V maximum 0 V

- 5/ Input voltages shown are A = 2.0 volts minimum and B = 0.7 volts maximum.
- 6/ Tests shall be performed in sequence, attributes data only.
- $\overline{Z}/$ Output voltages shall be H \geq 1.5 V and L < 1.5 V.
- g/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

MIL-M-38510/301E

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
- 6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IC}	Input clamp voltage
V _{IN}	Voltage level at an input terminal

6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming shall not affect the part number.

MIL-M-38510/301E

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54LS73
02	54LS74A
03	54LS112
04	54LS113
05	54LS114
06	54LS174
07	54LS175
08	54LS107
09	54LS109
10	54LS76A

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits, which form a part of this specification, are designated as shown in table IV herein.

TABLE IV. Manufacturers' designation.

	Manufacturers							
Device type	Texas Instru- ments Inc.	Signetics Corporation	National Semiconductor Corp	Raytheon Company	Motorola Inc	Fairchild Semiconductor	Advanced Micro Devices	
01	Α	В	С	D	Е			
02	Α	В	С	D	Е	F		
03	Α	В	С	С	D	Е		
04	Α	В	С	С	F	Е	D	
05	Α		С	С	D	Е		
06	Α	В	С	Е	F	G	D	
07	Α	В	С	E	F	G	D	
08	Α	В	С	D	Е			
09	Α	В	С		E	F		
10	Α	В	С	С	D	Е		

6.9 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:

Army - CR

Navy - EC

Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-1946)

Review activities: Army - HD, MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

- 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.
- 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts.

Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.								
I RECOMMEND A CHANGE:	1. DOCUMENT NUMBER MIL-M-38510/301E	2. DOCUMENT DATE (YYYYMMDD) 2003-02-14						
3. DOCUMENT TITLE		·						
		IP-FLOPS,CASCADABLE, MONOLITHIC SILICON						
4. NATURE OF CHANGE (Identify paragrap	oh number and include proposed rewrite, if p	ossible. Attach extra sheets as needed.)						
5. REASON FOR RECOMMENDATION								
6. SUBMITTER								
a. NAME (Last, First Middle Initial)	b. ORGANIZATIO	N						
c. ADDRESS (Include Zip Code)	d. TELEPHONE (I (1) Commercial (2) DSN (If applicable)	nclude Area Code) 7. DATE SUBMITTED (YYYYMMDD)						
8. PREPARING ACTIVITY								
a. NAME Defense Supply Center, Columbus	b. TELEPHONE (I (1) Commercial 6							
c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	Defense Standa 8725 John J. Kir Fort Belvoir, Virg	ECEIVE A REPLY WITHIN 45 DAYS, CONTACT: rdization Program Office (DLSC-LM) ngman Road, Suite 2533 njinia 22060-6221 767-6888 DSN 427-6888						