

Low Droop Rate/Accurate Sample-and-Hold Amplifiers

SMP-10/SMP-11

FEATURES

SMP-10

•	Low Droop Rate 5.0	μ V/ms
•	Linearity Error	0.005%
_	High Sample/Hold Current Ratio	2 x 10 ⁹

SMP-11

•	Low Droop Rate Over Temperature	չ400µV/ms
•	High Sample/Hold Current Ratio	1.7 x 10 ⁵

BOTH SMP-10 AND SMP-11

•	Fast Acquisition Time, 10V Step to 0.1%	3.5μs
	High Slew Rate	
•	Low Aperture Time	50ns
•	Trimmed for Minimum Zero-Scale Error	0.45mV
	Feedthrough Attenuation Ratio	

- Low Power Dissipation...... 160mW
 DTL, TTL & CMOS Compatible Logic Input
- HA-2420, HA-2425, SHM-IC-1, and AD583 Socket Compatible
- Available in Die Form

ORDERING INFORMATION [†]

TA=	+25°C		104165	
Vzs (mV)	DROOP RATE IN µV/ms	14-PIN DIP HERMETIC	LCC	OPERATING TEMPERATURE RANGE
1.5	20	SMP10AY	-	MIL
1.5	20	SMP10EY	-	COM
3.0	50	SMP10FY	-	COM
1.5	200	SMP11AY*	-	MIL
3.0	500	SMP11BY*	SMP11BRC/883	MIL
1.5	200	SMP11EY	-	COM
3.0	500	SMP11FY	_	COM
7.0	900	SMP11GY	-	СОМ
7.0	900	SMP11GS	-	XIND
7.0	900	SMP11GP	- 4	XIND

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- t Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

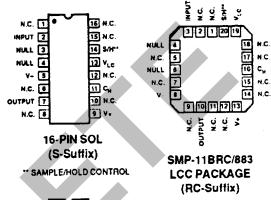
GENERAL DESCRIPTION

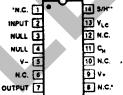
The SMP-10/11 are precision sample-and-hold amplifiers that provide the high accuracy, the low droop rate and the fast acquisition time required in data acquisition and signal processing systems. Both devices are essentially noninverting unity gain circuits consisting of two very high input impedance buffer amplifiers connected together by a diode bridge switch.

HIGH ACCURACY AND LOW DROOP RATE

The high input impedance and the low droop rates of the SMP-10 and the SMP-11 are achieved by using bipolar Darlington circuits and an ion implant process that creates "super beta" transistors.

The output buffer's input stage converts to a super beta Darlington configuration during the hold mode, which results in a very

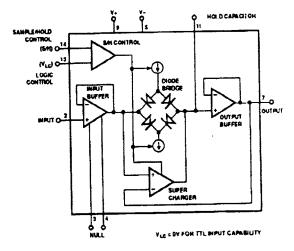

REV. C


information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any intringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

low droop rate with no penalty in acquisition time. The use of bipolar transistors achieves a low change in droop rate over the operating temperature range.

Continued

PIN CONNECTIONS



14-PIN DIP (Y-Suffix) 14-PIN EPOXY DIP (P-Suffix)

PINS 1 AND 8 ARE NOT INTERNALLY CONNECTED, IN UNITY GAIN APPLICA TIONS. SMP-10 AND SMP-11 CAN RE-PLACE HA-2425, HA-2420. SHM-IC-1 AND AD-583 DIRECTLY

FUNCTIONAL DIAGRAM

S/H	MODE
0	Sample
1	Hold

Manufactured under the following patents: 4,109,215 and 4,142,117.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

GENERAL DESCRIPTION Continued

FAST ACQUISITION

A unique super charger provides up to 50mA of charging current to the hold capacitor, which results in smooth, fast charging with minimum noise. As the hold capacitor voltage nears its final value, the low current diode bridge controls the final settling time. This unique combination of linear functions in a monolithic circuit enables the system designer to achieve superior performance.

ARSOLUT	'E MAXIMUM	RATINGS	(Note 1)

Supply Voltage (V+ minus V-)	
Derate Above 100°C	
Input Voltage Ec	
Logic and Logic Reference	
Voltage Ed	qual to Supply Voltage
Output Short-Circuit Duration	Indefinite
Hold Capacitor Short-Circuit Duration	60 sec
Storage Temperature Range	
Lead Temperature (Soldering, 60 sec)	

Operating Temperature Ra	nge		
SMP-10AY	• • • • • • • • • • • • • • • • • • • •	55°C	to +125°C
SMP-10EY, FY			
SMP-11AY, BY, BRC	• • • • • • • • • • • • • • • • • • • •	55°C	to +125°C
SMP-11EY, FY, GY	• • • • • • • • • • • • • • • • • • • •	0°(C to +70°C
SMP11GS, GP			
Junction Temperature (T _j)			
PACKAGE TYPE	e _{jA} (Note 2)	e _{ic}	UNITS
14-Pin Hermetic DIP (Y)	108	16	*C/W
14-Pin Epoxy DIP (P)	83	39	*C/W
16-Pin SOL (S)	98	30	°C/W
20-Contact LCC (RC)	98	38	*C/W
NOTES:			

- Absolute ratings apply to both DICE and packaged parts, unless otherwise noted.
- 8ja is specified for worst case mounting conditions, i.e., eja is specified for device in socket for CerDIP and LCC packages.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005 \mu F$, V_{LC} connected to ground, $T_A = +25 ^{\circ} C$, unless otherwise noted.

-				SMP-10A SMP-11A			SMP-100 SMP-118			SMP-110	3	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Zero-Scale Error (Hold Mode)	Vzs	V _{IN} = 0 V _{S/M} = 3.5V, (Note 2)	-	0.45	1.5	-	0.60	3.0	-	1.5	7.0	mV
Input Bias Current	l _B	V _{IN} = 0	-	35	65	-	55	90	-	90	160	nA
Leakage (Droop) Current	IDR	SMP-10 SMP-11	-	-	0.10	-	<u> </u>	0.25 2.50	-		4.5	nA
Droop Rate	d√c+/d≀	SMP-10 SMP-11	7	5 60	20 200	7	5 70	50 500	-		900	μV/ms
Input Resistance	R _{IN}	(Note 1)	2.0	3.0	-	1.4	2.5		-	2.0		GΩ
Voltage Gain	Av	Sample Mode $V_{IN} = \pm 10V$, $R_L = 5k\Omega$ or $V_{IN} = \pm 5V$, $R_L = 2.5k\Omega$	0,99963	0.99983		0.99953	0.99978	-	0.99940	0.99975	-	٧٨٧
Acquisition Time	laq	10V Step to Within 10mV of Final Value (0.1%) 10V Step to Within 1.0mV	-	3.5	*	-	3.5		_	3.5	-	ħz
		of Final Value (0.01%)		5.0	-		5.0	-	-	5.0	-	μς
Aperture Time	lap		-	50	-	-	50	-	-	50	-	ns
Hold Mode Settling Time	l _{Hm}	Settling to 1mV SMP-10 of Final Value. SMP-11	-	7 1,5	-	-	7 1.5	-	-	7 1.5	-	μ5
Charge Transfer	Ot	V _{IN} = 0 V _{S/H} = 3.5V	-	5	-	-	5	-	-	5	_	рC
Slew Rate	SR	V _{IN} = ±10V R _L = 2.5kQ	_	10		-	10	-	-	10		V/µs
Hold Capacitor Charging Current	Існ	V _{IN} -V _{OUT} ≥±3V	30	50	-	20	50	-	-	50	-	mΑ
Sample/Hold Current Ratio	ICH/IDR	SMP-10 SMP-11	3x10 ⁸	2x10 ⁹ 1.7x10 ⁸	-	8x10 ⁷	8x10 ⁸ 1.5x10 ⁸	-	-	1.5x10 ⁸	-	mA/mA
Feedthrough Attenuation Ratio	FA	Input = $20V_{p-p}$ 1kHz R _L = $5k\Omega$, (Note 1)	86	98	-	80	90		_	90	_	dR
Full Power Bandwidth	F _P	±10V _{p-p} (Dissipation Limited)	-	100	-	-	100	_		100	-	kHz

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005 \mu F$, V_{LC} connected to ground, $T_A = +25$ °C, unless otherwise noted. Continued

	***			MP-10A MP-11A	-		SMP-10 MP-118			MP-110	3	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Voltage Range and/or Output Voltage Swing		R _L = 2.5kΩ	±11	±11.5		±10.5	±11.5	-	±10.5	±11.5	-	v
Output Resistance	Ro		<u> </u>	0.15		***	0.15		-	0.15		Ω
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ±18V	82	92		77	92	-	72	92	_	dB
Power Consumption (DC)	PD	Sample Mode V _{IN} = 0		160	180		170	210	-	180	240	mW

NOTES:

ELECTRICAL CHARACTERISTICS – SMP-10 ONLY at $V_S = \pm 15V$, $C_H = 0.005 \mu F$, $V_{LC} = 0V$, $T_A = +25 ^{\circ}C$, device fully warmed up, unless otherwise noted.

		1		S	MP-10A	/E				
PARAMETER	SYMBOL	CONDITIONS	_	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Hold Step	V _{HS}	V _{IN} = 0		-1.0	+1.5	+4.0	-3.0	+1.5	+6.0	mV
Linearity Error	NL	V _{IN} = ±10V, R _L = 5kΩ		-	0.005		_	0.007	-	% of 10V
Output Noise	E _{N (RMS)}	Wideband Noise 100Hz to 100kHz Sample Mode		-	40	-	-	50	-	μV _{RMS}

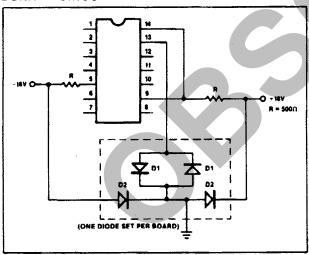
ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005 \mu F$, V_{LC} connected to ground, $0^{\circ}C \le T_A \le +70^{\circ}C$, unless otherwise noted.

-			SMP-10E SMP-11E				SMP-101		SMP-11G			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Zero-Scale Error	Vzs	V _{IN} = 0, V _{S/H} = 3.5V, (Note 1)	-	0.75	2.0	-	1,0	4.0		2.7	10	mV
Input Bias Current	l _S	V _{IN} = 0V	_	50	90	-	80	140	_	120	250	nΛ
Leakage (Droop) Current	IDR	SMP-10 SMP-11		0.05 0.5	0.25 1.8	-	0.080	0.65 2.8	-	0.7	- 5	n.A
Droop Rate	dV _{C⊁I} /dt	SMP-10 SMP11	- -	10 100	50 360	-	16 120	130 560	-	140	1000	μV/ms
Voltage Gain	Av	Sample Mode $V_{IN} = \pm 10V$, $R_L = 5k\Omega$ or $V_{IN} = \pm 5V$, $R_L = 2.5k\Omega$.99955	0.99976	-	0.99950	0.99972	-	0.99930 (0.99970	-	٧/v
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ±18V	80	90	-	75	80	-	70	90	-	dB
Logic Control Input Current	I _{LC}	V _{LC} = 0V	•	-1	-2	_	-1	-3	_	-1	~4	μА
Logic Input	Isnu	Sample Mode V _{S/H} = 0.6V	-	-5	-15	-	-5	-15	-	-5	-15	με
erace of ear	J.,,	Hold Mode V _{S/H} = 5.0V	-	0.2	-	-	0.2	-	-	0.2	-	n#
Differential Logic Threshold	V _{TH}		0.8	1.3	2.0	0.8	1.3	2.0	0.8	1.3	2.0	١

NOTE:

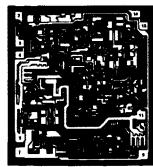
^{1.} Guaranteed by design.

^{2.} Measured 500µs after hold command.


^{1.} Measured 500µs after hold command.

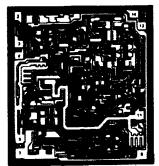
ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005 \mu F$, V_{LC} connected to ground, $-55^{\circ}C \le T_A \le +125^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL			SMP-10A SMP-11A		SMP-10 SMP-11B				
		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Zero-Scale Error	٧ _{zs}	$V_{1N} = 0$, $V_{S/41} = 3.5V$,	:Note 1:		1.25	3.0	_	1.60	5.5	m∨
Input Bias Current	18	V _{IN} = 0V		_	90	180	_	160	280	nA
Leakage (Droop) Current	[‡] DR	T _A = −55°C T _A = +125°C T _A = Full Range	SMP-10 SMP-11	_ 	0.050 12 12	0.50 20 20	<u>-</u>	0.080 16 16	1.22 25 25	nA
Droop Rate	dV _{CH} /dt	T _A = -55°C T _A = 1·125°C T _A = Full Range	SMP-10 SMP-11	_ _ _	10 2400 2400	100 4000 4000	- -	16 3200 3200	250 5000 5000	μV/ms
Voltage Gain	A _V	Sample Mode $V_{IN} = \pm 10V$, $R_L = 5k$ or $V_{IN} = \pm 5V$, $R_L = 2$		0.99950	0.99972	_	0.99940	0.99968	-	V/V
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ±18V		78	88	- <	72	90	-	σВ
Logic Control Input Current	ارد	V _{LC} = 0V		_	-1	-3		-1	5	Αر
Logic Input	I _{S/H}	Sample Mode V _{S/H} = 0.6V Hold Mode V _{S/H} = 5.0V		MATE .	-5	-15	-	5 0.2	- 15 	μA nA
Differential Logic Threshold	V _{TH}			0.6	1.3	2.0	0.6	1.3	2.0	٧


NOTES:

BURN-IN CIRCUIT

^{1.} Measured 500µs after hold command.


DICE CHARACTERISTICS

SMP-10

- 2. INPUT
- 3. NULL
- 4. NULL
- 5. NEGATIVE SUPPLY (SUBSTRATE)
- 7. OUTPUT
- 9. POSITIVE SUPPLY
- 11. HOLD CAPACITOR (CH)
- 13. LOGIC THRESHOLD
- CONTROL (VLC) SAMPLE/HOLD COMMAND

DIE SIZE 0.088 > 0.083 inch, 7304 sq. mils (2.235 × 2.108 mm, 4.711 sq. mm)

SMP-11

- 2. INPUT
- 3. NULL
- 4. NULL
- 5. NEGATIVE SUPPLY (SUBSTRATE)
- OUTPUT
- 9. POSITIVE SUPPLY
- 11. HOLD CAPACITOR (CH)
- 13. LOGIC THRESHOLD
- CONTROL (V_{LC})

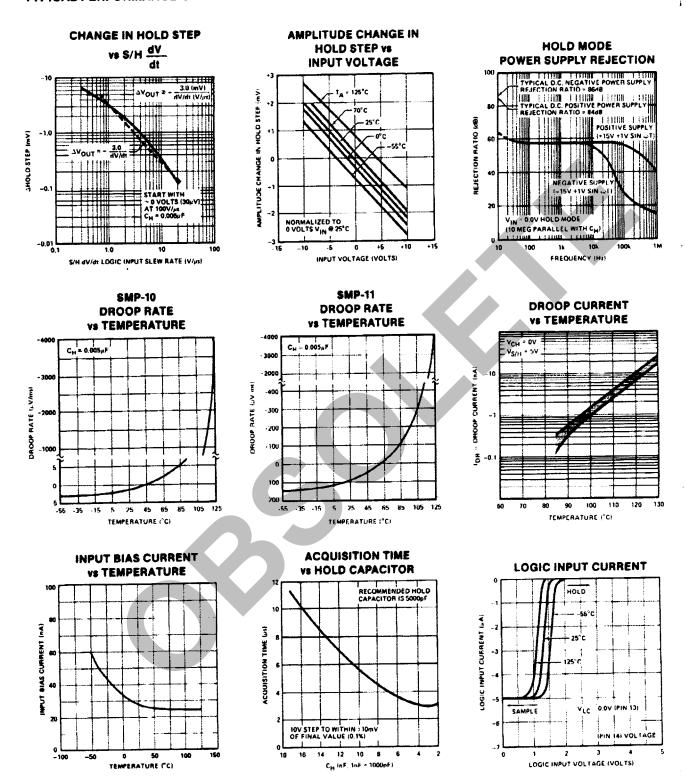
 14. SAMPLE/HOLD

 COMMAND

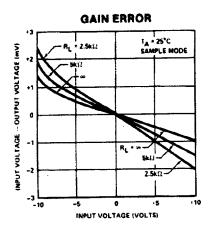
WAFER TEST LIMITS at $V_S = \pm 15V$, $C_H = 0.005 \mu F$, V_{LC} connected to ground, $T_A = 25 ^{\circ} C$, unless otherwise noted.

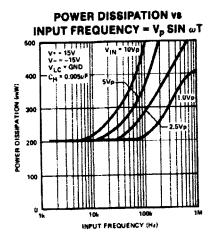
PARAMETER	SYMBOL	CONDITIONS	SMP-10N SMP-11N LIMIT	SMP-10G SMP-11G LIMIT	UNITS
Zero-Scale Error	V _{ZS}	V _{IN} = 0, V _{S/H} = 3.5V Hold Mode, :Note 2:	1.5	3.0	mV MAX
Input Bias Current	i _B	V _{IN} = 0V	60	90	nA MAX
Leakage Droop: Current	I _{DR}	SMP-10 SMP-11	0.10	0.25 2.5	na MAX
Droop Rate	dV _{CH} /dt	SMP-10 SMP-11	20 200	50 500	μV/ms MAX
Voltage Gain	Av	Sample Mode $V_{IN} = \pm 10V$ or $V_{IN} = \pm 5V$	0.99963	0.99953	V/V MIN
Hold Capacitor Charging Current	³ CH	V _{IN} V _{OUT} ≥ ±3V	30	20	mA MIN
Input Voltage Range and/or Output Voltage Swing		R _L = 2.5k12	±11	± 10.5	VMIN
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ±18V	82	77	dB MIN
Power Consumption	Pu	Sample Mode V _{IN} = 0	180	210	mW MAX
Logic Control Input Current	ILC	V _{LC} = 0V	- 2	- 3	μΑ ΜΑΧ
Logic Input		Sample Mode V _{S/H} = 0.6V	15	- 15	A MAX
	I _{S/H}	Hold Mode V _{S/H} = 5V	0	0	nA MAX
Differential Logic Threshold	V _{TM}	V _{i.C} * 0	2.0 0.8	2.0 0.8	V MAX V MIN

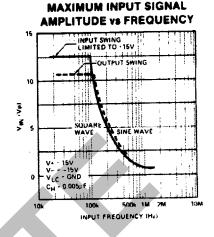
NOTES:

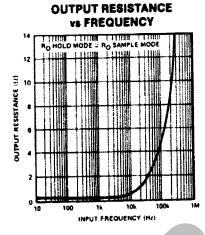

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

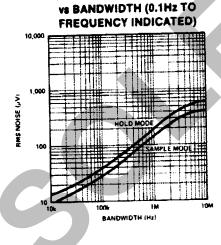
TYPICAL ELECTRICAL CHARACTERISTICS at $V_S=\pm\,15V$, $C_H=0.005\mu F$, V_{LC} connected to ground, $T_A=25^{\circ}C$, unless otherwise noted.

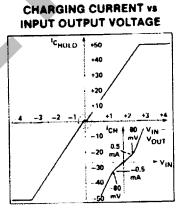

PARAMETER	SYMBOL CONDITIONS		SMP-10N SMP-11N TYPICAL	SMP-10G SMP-11G TYPICAL	UNITS وبر
Acquisition Time t _{ag}		10V step to 0.1% of final value	3.5	3.5	
Aperture Time	ten		50	50	ns
Charge Transfer	Q,	V _{IN} = 0, V _{S/H} = 3.5V	5	5	рС
Siew Rate	SR	V _{IN} = ± 10V, R _L = 2.5k()	10	10	V/μS

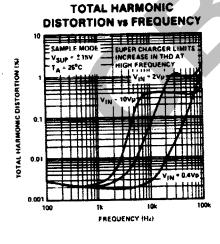

Measured 500µs after hold command.

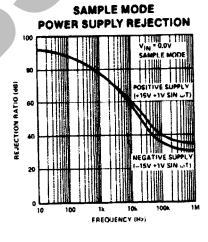

TYPICAL PERFORMANCE CHARACTERISTICS

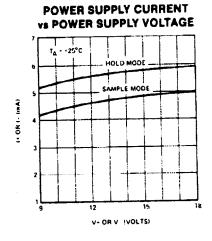


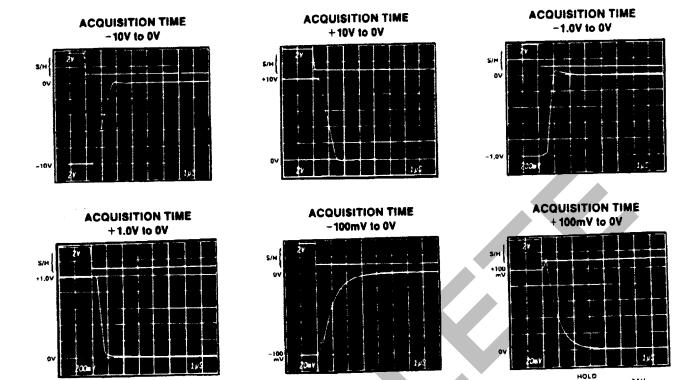

TYPICAL PERFORMANCE CHARACTERISTICS



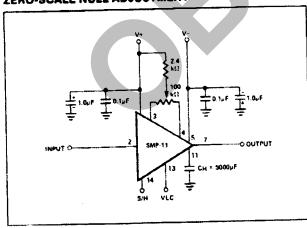




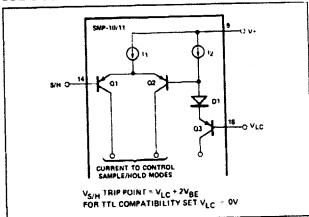

OUTPUT WIDEBAND NOISE


HOLD CAPACITOR

SMP-10/SMP-11 ACQUISITION TIMES

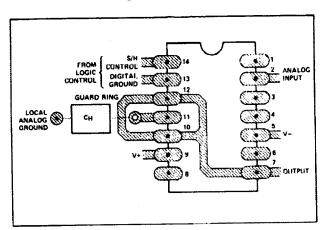

APPLICATIONS INFORMATION

During the null adjustment, the amplifier should be switched continuously between the "sample" and "hold" mode. The error should be adjusted to read zero when the unit is in the "hold" mode. In this way, both offset voltage errors and charge transfer errors are adjusted to zero.


As shown in the Figure, the sample/hold mode control is accomplished by steering the current (I_1) through Q1 or Q2, thus providing high-speed switching and a predictable logic threshold. For TTL and DTL interface, simply ground V_{LC} (Pin 13). For CMOS, HTL and HNIL interface, the appropriate

SAMPLE

ZERO-SCALE NULL ADJUSTMENT


LOGIC CONTROL

threshold voltage, allowing for 2 diode drops for D1 and V_{BE} of Q3, should be applied to V_{LC} .

For proper operation, the V_{LC} (logic control) must always be at least 3.5V below the positive supply and 2.0V above the negative supply.

Sample-and-hold control voltage (S/H) must always be at least 2.8V above the negative supply.

GUARDING AND GROUNDING LAYOUT

The use of a ground plane is strongly recommended to minimize ground path resistances. Separate analog and digital grounds should be used, and it is advisable to keep these two ground systems isolated until they are tied back to the common system ground. Digital currents should not flow back to the system ground through the analog ground path.

HOLD CAPACITOR RECOMMENDATIONS

The hold capacitor (C_H) acts as a memory element and also as a compensating capacitor for the sample-and-hold amplifier. For stable operation, a minimum value of 2000pF is recommended, with no limit set for the maximum value. The devices have been internally trimmed for $C_H = 5000$ pF. Other values of C_H will cause a zero-scale shift, which can be calculated from the following equation:

$$\Delta V_{ZS}(mV) = \frac{5 (pC) \times 10^3}{C_H (pF)} - 1$$

The hold capacitor should have very high insulation resistance and low dielectric absorption. For temperatures below 85°C, polystyrene capacitors are recommended, while teflon capacitors are recommended for higher temperature applications.

