REI Datasheet

AM186ED, ‘EDLV

High Performance 16-Bit Embedded Microcontrollers

The AM186ED/EDLV microcontrollers are part of the AMD E86 family of embedded microcontrollers and microprocessors based on the x86 architecture. The AM186ED/EDLV microcontrollers are the ideal upgrade for 80C186/188 designs requiring 80C186/188 compatibility, increased performance, serial communications, a direct bus interface, and more than 64K of memory.

The AM186ED/EDLV microcontrollers have been designed to meet the most common requirements of embedded products developed for the communications, office automation, mass storage, and general embedded markets. Specific applications include PBXs, multiplexers, modems, disk drives, hand-held and desktop terminals, fax machines, printers, photocopiers, and industrial controls.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am186 ${ }^{\text {m }}$ ED/EDLV

High Performance, 80C186- and 80C188-Compatible, 16-Bit Embedded Microcontrollers

DISTINCTIVE CHARACTERISTICS

- E86 ${ }^{\text {TM }}$ family 80 C 186 - and 80 C 188 -compatible microcontroller with enhanced bus interface
- Lower system cost with higher performance
- 3.3-V $\pm 0.3-\mathrm{V}$ operation (Am186EDLV microcontrollers)
- Programmable DRAM Controller
- Supports zero-wait-state operation with $50-\mathrm{ns}$ DRAM at $40 \mathrm{MHz}, 60-\mathrm{ns} @ 33 \mathrm{MHz}, 70-\mathrm{ns} @ 25$ MHz
- Includes programmable $\overline{\text { CAS-before-자S }}$ refresh capability
- High performance
- 20-, $25-$, $33-$, and $40-\mathrm{MHz}$ operating frequencies
- Zero-wait-state operation at 40 MHz with $70-\mathrm{ns}$ static memory
- 1-Mbyte memory address space
- 64-Kbyte I/O space
- Enhanced features provide improved memory access and remove the requirement for a $2 x$ clock input
- Nonmultiplexed address bus
- Processor operates at the clock input frequency
- 8 -bit or 16 -bit programmable bus sizing including 8 -bit boot option
- Enhanced integrated peripherals
- 32 programmable I/O (PIO) pins
- Two full-featured asynchronous serial ports allow full-duplex, 7 -bit, 8 -bit, or 9 -bit data transfers
- Serial port hardware handshaking with CTS, RTS, ENRX, and RTR selectable for each port
- Improved serial port operation enhances 9-bit DMA support
- Independent serial port baud rate generators
- DMA to and from the serial ports
- Watchdog timer can generate NMI or reset
- A pulse-width demodulation option
- A data strobe, true asynchronous bus interface option included for DEN
- Reset configuration register
- Familiar 80C186 peripherals
- Two independent DMA channels
- Programmable interrupt controller with up to 8 external and 8 internal interrupts
- Three programmable 16-bit timers
- Programmable memory and peripheral chip-select logic
- Programmable wait state generator
- Power-save clock divider
- Software-compatible with the 80 C 186 and 80C188 microcontrollers with widely available native development tools, applications, and system software
- A compatible evolution of the Am186EM, Am186ES, and Am186ER microcontrollers
- Available in the following packages:
- 100-pin, thin quad flat pack (TQFP)
- 100-pin, plastic quad flat pack (PQFP)

GENERAL DESCRIPTION

The Am186 ${ }^{\text {TM }}$ ED/EDLV microcontrollers are part of the AMD E86 ${ }^{\text {TM }}$ family of embedded microcontrollers and microprocessors based on the x86 architecture. The Am186ED/EDLV microcontrollers are the ideal upgrade for 80C186/188 designs requiring 80C186/188 compatibility, increased performance, serial communications, a direct bus interface, and more than 64 K of memory.
The Am186ED/EDLV microcontrollers integrate a complete DRAM controller to take advantage of low DRAM costs. This reduces memory subsystem costs while maintaining SRAM performance.The Am186ED/EDLV microcontrollers also integrate the functions of a CPU, nonmultiplexed address bus, three timers, watchdog timer, chip selects, interrupt controller, two DMA controllers, two asynchronous serial ports, programmable bus
sizing, and programmable I/O (PIO) pins on one chip. Compared to the 80C186/188 microcontrollers, the Am186ED/EDLV microcontrollers enable designers to reduce the size, power consumption, and cost of embedded systems, while increasing reliability, functionality, and performance.
The Am186ED/EDLV microcontrollers have been designed to meet the most common requirements of embedded products developed for the communications, office automation, mass storage, and general embedded markets. Specific applications include PBXs, multiplexers, modems, disk drives, hand-held and desktop terminals, fax machines, printers, photocopiers, and industrial controls.

[^0]
ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (valid combination) is formed by a combination of the elements below.

Valid Combinations	
Am186ED-20	VCIW or
Am186ED-25	KCIW
Am186ED-33	
Am186ED-40	KIIW 1
Am186ED-20	
Am186ED-25	KCIW
Am186EDLV-20	
Am186EDLV-25	

Note:
The industrial version of the Am186ED is offered only in the PQFP package.

Valid Combinations

Valid combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Note: The industrial version of the Am186ED as well as the Am186EDLV are available in 20 and 25 MHz operating frequencies only.

The Am186ED and Am186EDLV microcontrollers are all functionally the same except for their $D C$ characteristics and available frequencies.

Note: There is no 188 version of the Am186ED/ EDLV. The same 8-bit external bus capabilities can be achieved using the 8-bit boot capability and programmable bus sizing options.

TQFP CONNECTION DIAGRAMS AND PINOUTS

Am186ED/EDLV Microcontrollers

Top Side View-100-Pin Thin Quad Flat Pack (TQFP)

Note:
Pin 1 is marked for orientation.

PQFP CONNECTION DIAGRAMS AND PINOUTS

Am186ED/EDLV Microcontrollers

Top Side View—100-Pin Plastic Quad Flat Pack (PQFP)

Note:
Pin 1 is marked for orientation.

ABSOLUTE MAXIMUM RATINGS

Storage temperature
Am186ED....................................... $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am186EDLV.............................. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Voltage on any pin with respect to ground
Am186ED.................................... -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Am186EDLV....................... -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Note: Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Am186ED Microcontroller
Commercial (T_{C}) $0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Industrial* $\left(\mathrm{T}_{\mathrm{A}}\right)$.
\qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply voltage (V_{CC}) $.5 \mathrm{~V} \pm 10 \%$

Am186EDLV Microcontroller

Commercial (T_{A}) \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}$ up to 25 MHz $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Where: $\quad T_{C}=$ case temperature

$$
\mathrm{T}_{\mathrm{A}}=\text { ambient temperature }
$$

*Industrial versions of Am186ED microcontrollers are available in 20 and 25 MHz operating frequencies only.

DC CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL OPERATING RANGES

Symbol	Parameter Description	Test Conditions	Preliminary		Unit
			Min	Max	
$V_{\text {IL }}$	Input Low Voltage (Except X1)		-0.5	$0.2 \mathrm{~V}_{\mathrm{CC}}-0.3$	V
$V_{\text {IL1 }}$	Clock Input Low Voltage (X1)		-0.5	0.8	V
$V_{I H}$	Input High Voltage (Except RES and X1)		2.0	$\mathrm{V}_{C C}+0.5$	V
$V_{I H 1}$	Input High Voltage (RES)		2.4	$\mathrm{V}_{C C}+0.5$	V
$V_{I H 2}$	Clock Input High Voltage (X1)		$\mathrm{V}_{\mathrm{CC}}-0.8$	$\mathrm{V}_{C C}+0.5$	V
V_{OL}	Output Low Voltage				
	Am186ED	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}(\overline{\mathrm{~S}} 2-\overline{\mathrm{S}} 0) \\ & \mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA} \text { (others) } \end{aligned}$		0.45	V
	Am186EDLV	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}(\overline{\mathrm{~S}} 2-\overline{\mathrm{S}} 0) \\ & \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA} \text { (others) } \end{aligned}$		0.45	V
V_{OH}	Output High Voltage ${ }^{(a)}$				
	Am186ED	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA} @ 2.4 \mathrm{~V}$	2.4	$\mathrm{V}_{C C}+0.5$	V
		$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} @ V_{C C}-0.5$	$\mathrm{V}_{\mathrm{CC}}-0.5$	V_{CC}	V
	Am186EDLV	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} @ V_{C C}-0.5$	$\mathrm{V}_{\mathrm{CC}}-0.5$	V_{CC}	V
I_{CC}	Power Supply Current @ $0^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}^{(\mathrm{b})} \\ & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}^{\mathrm{b})} \end{aligned}$		$\begin{aligned} & 5.9 \\ & 4.0 \end{aligned}$	$\mathrm{mA} / \mathrm{MHz}$
I_{LI}	Input Leakage Current @ 0.5 MHz	$0.45 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq V_{C C}$		± 10	$\mu \mathrm{A}$
lo	Output Leakage Current @ 0.5 MHz	$0.45 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq V_{C C}{ }^{(\mathrm{c})}$		± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CLO}}$	Clock Output Low	$\mathrm{I}_{\mathrm{CLO}}=4.0 \mathrm{~mA}$		0.45	V
$\mathrm{V}_{\mathrm{CHO}}$	Clock Output High	$\mathrm{I}_{\mathrm{CHO}}=-500 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.5$		V

Notes:

a The $\overline{L C S} / O N C E 0 / R A S O$ and $\overline{U C S} / O N C E 1$ pins have weak internal pullup resistors. Loading the $\overline{L C S} / O N C E 0 / R A S O$ and UCS/ONCE1 pins in excess of $I_{O H}=-200 \mu A$ during reset can cause the device to go into ONCE mode.
b Current is measured with the device in RESET with X1 and X2 driven and all other non-power pins open but held High or Low.
c Testing is performed with the pins floating, either during HOLD or by invoking the ONCE mode.

CAPACITANCE

			Preliminary		
Symbol	Parameter Description	Test Conditions	Min	Max	Unit
C_{IN}	Input Capacitance	$@ 1 \mathrm{MHz}$		10	pF
C_{IO}	Output or I/O Capacitance	$@ 1 \mathrm{MHz}$		20	pF

Note:
Capacitance limits are guaranteed by characterization.

POWER SUPPLY CURRENT

For the following typical system specification shown in Figure $11, \mathrm{I}_{\mathrm{CC}}$ has been measured at 4.0 mA per MHz of system clock. For the following typical system specification shown in Figure 12, I_{CC} has been measured at 5.9 mA per MHz of system clock. The typical system is measured while the system is executing code in a typical application with nominal voltage and maximum case temperature. Actual power supply current is dependent on system design and may be greater or less than the typical I_{CC} figure presented here.

Typical current in Figure 11 is given by:

$$
\mathrm{I}_{\mathrm{CC}}=4.0 \mathrm{~mA} \cdot \operatorname{freq}(\mathrm{MHz})
$$

Typical current in Figure 12 is given by:

$$
\mathrm{I}_{\mathrm{CC}}=5.9 \mathrm{~mA} \cdot \operatorname{freq}(\mathrm{MHz})
$$

Please note that dynamic $I_{C C}$ measurements are dependent upon chip activity, operating frequency, output buffer logic, and capacitive/resistive loading of the outputs. For these I_{CC} measurements, the devices were set to the following modes:

- No DC loads on the output buffers
- Output capacitive load set to 35 pF
- AD bus set to data only
- PIOs are disabled
- Timer, serial port, refresh, and DMA are enabled

Table 10 shows the variables that are used to calculate the typical power consumption value for the Am186EDLV microcontroller.

Table 10. Typical Power Consumption Calculation for the Am186EDLV Microcontroller

$\mathrm{MHz} \cdot \mathrm{I}_{\mathrm{CC}} \cdot$ Volts $/ 1000=P$			Typical Power in Watts
MHz	Typical ICC	Volts	
20	4.0	3.6	0.288
25	4.0	3.6	0.360

Figure 11. Typical $I_{c c}$ Versus Frequency for Am186EDLV Microcontroller

Figure 12. Typical I_{cc} Versus Frequency for Am186ED Microcontroller

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

Read Cycle (20 MHz and 25 MHz)

Parameter			Preliminary				Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Requirements							
1	$\mathrm{t}_{\text {DVCL }}$	Data in Setup	10		10		ns
2	$\mathrm{t}_{\text {CLDX }}$	Data in Hold ${ }^{(c)}$	3		3		ns
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	25	0	20	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	25	0	20	ns
5	$\mathrm{t}_{\text {CLAV }}$	AD Address Valid Delay and BHE	0	25	0	20	ns
6	$\mathrm{t}_{\text {CLAX }}$	Address Hold	0	25	0	20	ns
8	$\mathrm{t}_{\text {CHDX }}$	Status Hold Time	0		0		ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		25		20	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=40$		$\mathrm{t}_{\text {CLCL }}-10=30$		ns
11	$\mathrm{t}_{\mathrm{CHLL}}$	ALE Inactive Delay		25		20	ns
12	$\mathrm{t}_{\text {AVLL }}$	AD Address Valid to ALE Low ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
13	tLAX	AD Address Hold from ALE Inactive ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CHCL}}-2$		$\mathrm{t}_{\mathrm{CHCL}}{ }^{-2}$		ns
14	$\mathrm{t}_{\mathrm{AVCH}}$	AD Address Valid to Clock High	0		0		ns
15	$\mathrm{t}_{\text {CLAZ }}$	AD Address Float Delay	$\mathrm{t}_{\text {CLAX }}=0$	25	$\mathrm{t}_{\mathrm{CLAX}}=0$	20	ns
16	tclcsv	MCS/PCS Active Delay	0	25	0	20	ns
17	$\mathrm{t}_{\text {CXCsX }}$	MCS/PCS Hold from Command Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		ns
18	$\mathrm{t}_{\text {CHCSX }}$	MCS/PCS Inactive Delay	0	25	0	20	ns
19	$\mathrm{t}_{\text {DXDL }}$	DEN Inactive to DT/R Low ${ }^{(\mathrm{a})}$	0		0		ns
20	$\mathrm{t}_{\text {CVCTV }}$	Control Active Delay $1^{(b)}$	0	25	0	20	ns
21	$\mathrm{t}_{\text {CVDEX }}$	DEN Inactive Delay	0	25	0	20	ns
22	$\mathrm{t}_{\text {CHCTV }}$	Control Active Delay $2^{(b)}$	0	25	0	20	ns
23	t LHAV	ALE High to Address Valid	20		15		ns
99	$t_{\text {PLAL }}$	PCS Active to ALE Inactive	15	28	15	24	ns
Read Cycle Timing Responses							
24	$\mathrm{t}_{\text {AZRL }}$	AD Address Float to RD Active	0		0		ns
25	$\mathrm{t}_{\text {CLRL }}$	$\overline{\mathrm{RD}}$ Active Delay	0	25	0	20	ns
26	$\mathrm{t}_{\text {RLRH }}$	RD Pulse Width	$2 \mathrm{t}_{\mathrm{CLCL}}-15=85$		$2 \mathrm{t}_{\text {CLCL }}-15=65$		ns
27	$\mathrm{t}_{\text {CLRH }}$	RD Inactive Delay	0	25	0	20	ns
28	$\mathrm{t}_{\text {RHLH }}$	$\overline{\mathrm{RD}}$ Inactive to ALE High ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-3}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-3}$		ns
29	$\mathrm{t}_{\text {RHAV }}$	$\overline{\mathrm{RD}}$ Inactive to AD Address Active ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCL}}-10=40$		$\mathrm{t}_{\mathrm{CLCL}}-10=30$		ns
41	$\mathrm{t}_{\text {DSHLH }}$	$\overline{\mathrm{DS}}$ Inactive to ALE Active	$\mathrm{t}_{\mathrm{CLCH}}-2=21$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2=16}$		ns
59	$\mathrm{t}_{\text {RHDX }}$	$\overline{\mathrm{RD}}$ High to Data Hold on AD Bus ${ }^{(\mathrm{c})}$	0		0		ns
66	$\mathrm{t}_{\text {AVRL }}$	A Address Valid to $\overline{\mathrm{RD}}$ Low $^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCL}}+\mathrm{t}_{\mathrm{CHCL}}-3$		$\mathrm{t}_{\mathrm{CLCL}}+\mathrm{t}_{\mathrm{CHCL}}-3$		ns
67	$\mathrm{t}_{\text {chesv }}$	CLKOUTA High to $\overline{\text { LCS } / U C S ~ V a l i d ~}$	0	25	0	20	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Valid	0	25	0	20	ns

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Equal loading on referenced pins.
b This parameter applies to the $\overline{D E N}, \overline{D S}, \overline{I N T A} 1-\overline{I N T A} 0, \overline{W R}, \overline{W H B}$, and $\overline{W L B}$ signals.
c If either spec 2 or spec 59 is met with respect to data hold time, the part will function correctly.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges Read Cycle (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	

General Timing Requirements

1	$\mathrm{t}_{\mathrm{DVCL}}$	Data in Setup	8		5	ns
2	$\mathrm{t}_{\mathrm{CLDX}}$	Data in Hold ${ }^{(\mathrm{c})}$	3		2	

General Timing Responses

3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	15	0	12	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	15	0	12	ns
5	$\mathrm{t}_{\text {CLAV }}$	AD Address Valid Delay and BHE	0	15	0	12	ns
6	$\mathrm{t}_{\text {CLAX }}$	Address Hold	0	15	0	12	ns
8	$\mathrm{t}_{\text {CHDX }}$	Status Hold Time	0		0		ns
9	$\mathrm{t}_{\text {CHLH }}$	ALE Active Delay		15		12	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=20$		$\mathrm{t}_{\mathrm{CLCL}}-5=20$		ns
11	$\mathrm{t}_{\text {CHLL }}$	ALE Inactive Delay		15		12	ns
12	$\mathrm{t}_{\text {AVLL }}$	AD Address Valid to ALE Low ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
13	$\mathrm{t}_{\text {LLAX }}$	AD Address Hold from ALE Inactive ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CHCL}}-2$		$\mathrm{t}_{\mathrm{CHCL}}-2$		ns
14	$\mathrm{t}_{\mathrm{AVCH}}$	AD Address Valid to Clock High	0		0		ns
15	$t_{\text {claz }}$	AD Address Float Delay	$\mathrm{t}_{\text {CLAX }}=0$	15	$\mathrm{t}_{\text {CLAX }}=0$	12	ns
16	t clesv	MCS/PCS Active Delay	0	15	0	12	ns
17	$\mathrm{t}_{\text {CxCsx }}$	MCS/PCS Hold from Command Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		ns
18	$\mathrm{t}_{\text {CHCSX }}$	$\overline{M C S} / \overline{\text { PCS }}$ Inactive Delay	0	15	0	12	ns
19	$\mathrm{t}_{\text {DXDL }}$	$\overline{\mathrm{DEN}}$ Inactive to DT/R Low $^{(\mathrm{a})}$	0		0		ns
20	$\mathrm{t}_{\text {cVCTV }}$	Control Active Delay $1^{(b)}$	0	15	0	12	ns
21	$\mathrm{t}_{\text {CVDEX }}$	DEN Inactive Delay	0	15	0	12	ns
22	$\mathrm{t}_{\text {CHCTV }}$	Control Active Delay $2^{(b)}$	0	15	0	12	ns
23	thav	ALE High to Address Valid	10		7.5		ns
99	$\mathrm{t}_{\text {PLAL }}$	$\overline{\text { PCS Active to ALE Inactive }}$	12	20	10	18	ns

Read Cycle Timing Responses

24	$\mathrm{t}_{\text {AZRL }}$	AD Address Float to RD Active	0		0		ns
25	$\mathrm{t}_{\text {CLRL }}$	$\overline{\mathrm{RD}}$ Active Delay	0	15	0	10	ns
26	$\mathrm{t}_{\text {RLRH }}$	RD Pulse Width	$2 \mathrm{t}_{\text {CLCL }}-15=45$		$2 \mathrm{t}_{\text {CLCL }}-10=40$		ns
27	$\mathrm{t}_{\text {CLRH }}$	RD Inactive Delay	0	15	0	12	ns
28	$\mathrm{t}_{\text {RHLH }}$	$\overline{\mathrm{RD}}$ Inactive to ALE High ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-3}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
29	$\mathrm{t}_{\text {RHAV }}$	$\overline{\mathrm{RD}}$ Inactive to AD Address Active ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCL}}-10=20$		$\mathrm{t}_{\text {CLCL }}-5=20$		ns
41	$\mathrm{t}_{\text {DSHLH }}$	$\overline{\mathrm{DS}}$ Inactive to ALE Active	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}=11.5$		$\mathrm{t}_{\mathrm{CLCH}}-2=9.25$		
59	$\mathrm{t}_{\text {RHDX }}$	RD High to Data Hold on AD Bus ${ }^{(\mathrm{c})}$	0		0		ns
66	$\mathrm{t}_{\text {AVRL }}$	A Address Valid to RD Low ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCL}}+\mathrm{t}_{\mathrm{CHCL}}-3$		$\mathrm{t}_{\mathrm{CLCL}}+\mathrm{t}_{\mathrm{CHCL}}-1.25$		ns
67	$\mathrm{t}_{\text {CHCSV }}$	CLKOUTA High to LCS/UCS Valid	0	15	0	10	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Valid	0	15	0	10	ns

Notes:
All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Equal loading on referenced pins.
b This parameter applies to the $\overline{D E N}, \overline{D S}, \overline{I N T A} 1-\overline{I N T A} 0, \overline{W R}, \overline{W H B}$, and $\overline{W L B}$ signals.
c If either spec 2 or spec 59 is met with respect to data hold time, the part will function correctly.

READ CYCLE WAVEFORMS

Notes:

a Am186ED/EDLV microcontrollers in 16-bit mode
b Am186ED/EDLV microcontrollers in 8-bit mode
c Changes in t phase preceding next bus cycle if followed by read, INTA, or halt.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges
Write Cycle (20 MHz and 25 MHz)

Parameter			Preliminary				Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	25	0	20	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	25	0	20	ns
5	$\mathrm{t}_{\text {CLAV }}$	AD Address Valid Delay and BHE	0	25	0	20	ns
6	$\mathrm{t}_{\text {CLAX }}$	Address Hold	0	25	0	20	ns
7	t CLDV	Data Valid Delay	0	15	0	15	ns
8	$\mathrm{t}_{\text {CHDX }}$	Status Hold Time	0		0		ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		25		20	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=40$		$\mathrm{t}_{\mathrm{CLCL}}-10=30$		ns
11	$\mathrm{t}_{\mathrm{CHLL}}$	ALE Inactive Delay		25		20	ns
12	$\mathrm{t}_{\text {AVLL }}$	AD Address Valid to ALE Low ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
13	t LLAX	AD Address Hold from ALE Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CHCL}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CHCL}}{ }^{-2}$		ns
14	$t_{\text {AVCH }}$	AD Address Valid to Clock High	0		0		ns
16	tclcsv	$\overline{\mathrm{MCS}} / \overline{\mathrm{PCS}}$ Active Delay	0	25	0	20	ns
17	$\mathrm{t}_{\text {cxcsx }}$	MCS/PCS Hold from Command Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
18	$\mathrm{t}_{\text {CHCSX }}$	MCS/PCS Inactive Delay	0	25	0	20	ns
19	$t_{\text {DXDL }}$	$\overline{\mathrm{DEN}}$ Inactive to DT/R Low $^{(\mathrm{a})}$	0		0		ns
20	$\mathrm{t}_{\text {CVCTV }}$	Control Active Delay $1^{(b)}$	0	15	0	15	ns
21	$\mathrm{t}_{\text {CVDEX }}$	DS Inactive Delay	0	25	0	20	ns
22	$\mathrm{t}_{\text {CHCTV }}$	Control Active Delay 2	0	25	0	20	ns
23	thav	ALE High to Address Valid	20		15		ns
99	$t_{\text {PLAL }}$	PCS Active to ALE Inactive	15	28	15	24	ns

Write Cycle Timing Responses

30	$\mathrm{t}_{\text {CLDOX }}$	Data Hold Time	0		0		ns
31	$\mathrm{t}_{\text {CVCTX }}$	Control Inactive Delay ${ }^{(b)}$	0	25	0	20	ns
32	$\mathrm{t}_{\text {WLWH }}$	WR Pulse Width	$2 \mathrm{t}_{\text {CLCL }}-10=90$		$2 \mathrm{t}_{\text {CLCL }}-10=70$		ns
33	${ }^{\text {twhLH }}$	WR Inactive to ALE High ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
34	$\mathrm{t}_{\text {WHDX }}$	Data Hold after $\mathrm{WR}^{(\mathrm{a})}$	$\mathrm{t}_{\text {CLCL }}-10=40$		$\mathrm{t}_{\text {CLCL }}-10=30$		ns
35	$\mathrm{t}_{\text {WHDEX }}$	WR Inactive to DEN Inactive ${ }^{\left({ }^{(a)}\right.}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-3}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-3}$		ns
41	$\mathrm{t}_{\text {DSHLH }}$	$\overline{\mathrm{DS}}$ Inactive to ALE Active	$\mathrm{t}_{\mathrm{CLCH}}-2=21$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2=16}$		ns
65	$\mathrm{t}_{\text {AVWL }}$	A Address Valid to WR Low	$\mathrm{t}_{\mathrm{CLCL}}{ }^{+\mathrm{t}_{\mathrm{CHCL}}-3}$		$\mathrm{t}_{\mathrm{CLCL}}+\mathrm{t}_{\mathrm{CHCL}}-3$		ns
67	$\mathrm{t}_{\text {chCSV }}$	CLKOUTA High to LCS/UCS Valid	0	25	0	20	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Valid	0	25	0	20	ns
87	$\mathrm{t}_{\text {AVBL }}$	A Address Valid to WHB, WLB Low	$\mathrm{t}_{\mathrm{CHCL}}$-3	25	$\mathrm{t}_{\mathrm{CHCL}}{ }^{\text {-3 }}$	20	ns
98	$\mathrm{t}_{\text {DSHDIW }}$	DS High to Data Invalid-Write	35		30		ns

Notes:
All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Testing is performed with equal loading on referenced pins.
b This parameter applies to the $\overline{D E N}, \overline{D S}, \overline{I N T A} 1-\overline{I N T A} 0, \overline{W R}, \overline{W H B}$, and $\overline{W L B}$ signals.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges
Write Cycle (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	15	0	12	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	15	0	12	ns
5	$\mathrm{t}_{\text {CLAV }}$	AD Address Valid Delay and BHE	0	15	0	12	ns
6	$\mathrm{t}_{\text {CLAX }}$	Address Hold	0		0		ns
7	$\mathrm{t}_{\text {CLDV }}$	Data Valid Delay	0	15	0	12	ns
8	$\mathrm{t}_{\text {CHDX }}$	Status Hold Time	0		0		ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		15		12	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=20$		$\mathrm{t}_{\mathrm{CLCL}}-5=20$		ns
11	$\mathrm{t}_{\mathrm{CHLL}}$	ALE Inactive Delay		15		12	ns
12	$\mathrm{t}_{\text {AVLL }}$	AD Address Valid to ALE Low ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
13	tLLAX	AD Address Hold from ALE Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CHCL}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CHCL}}{ }^{-2}$		ns
14	$t_{\text {AVCH }}$	AD Address Valid to Clock High	0		0		ns
16	tclcsv	MCS/ $\overline{\text { PCS }}$ Active Delay	0	15	0	12	ns
17	$\mathrm{t}_{\text {cxcsx }}$	MCS/PCS Hold from Command Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		ns
18	$\mathrm{t}_{\text {chesx }}$	$\overline{\mathrm{MCS}} / \overline{\mathrm{PCS}}$ Inactive Delay	0	15	0	12	ns
19	$t_{\text {DXDL }}$	$\overline{\mathrm{DEN}}$ Inactive to DT// Low $^{(\mathrm{a})}$	0		0		ns
20	$\mathrm{t}_{\text {cVCTV }}$	Control Active Delay $1^{(b)}$	0	15	0	12	ns
21	$\mathrm{t}_{\text {CVDEX }}$	DS Inactive Delay	0	15	0	12	ns
22	$\mathrm{t}_{\text {CHCTV }}$	Control Active Delay 2	0	15	0	12	ns
23	thav	ALE High to Address Valid	10		7.5		ns
99	$t_{\text {PLAL }}$	PCS Active to ALE Inactive	12	20	10	18	ns

Write Cycle Timing Responses

30	$\mathrm{t}_{\text {cldox }}$	Data Hold Time	0		0		ns
31	$\mathrm{t}_{\text {CVCTX }}$	Control Inactive Delay ${ }^{(b)}$	0	15	0	12	ns
32	$\mathrm{t}_{\text {WLWH }}$	WR Pulse Width	$2 \mathrm{t}_{\text {CLCL }}-10=50$		$2 \mathrm{t}_{\mathrm{CLCL}}-10=40$		ns
33	${ }^{\text {twHLH }}$	WR Inactive to ALE High ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2}$		ns
34	$\mathrm{t}_{\text {WHDX }}$	Data Hold after $\overline{W R}^{(a)}$	$\mathrm{t}_{\mathrm{CLCL}}-10=20$		$\mathrm{t}_{\mathrm{CLCL}}-10=15$		ns
35	${ }^{\text {t }}$ WHDEX	WR Inactive to DEN Inactive ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-3}$		$\mathrm{t}_{\mathrm{CLCH}}-3$		ns
41	$\mathrm{t}_{\text {DSHLH }}$	$\overline{\text { DS Inactive to ALE Active }}$	$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2=11.5}$		$\mathrm{t}_{\mathrm{CLCH}}{ }^{-2=9.25}$		ns
65	$t_{\text {AVWL }}$	A Address Valid to WR Low	$\mathrm{t}_{\mathrm{CLCL}}+\mathrm{t}_{\mathrm{CHCL}}-3$		$\mathrm{t}_{\text {CLCL }}+\mathrm{t}_{\mathrm{CHCL}}-1.25$		ns
67	$\mathrm{t}_{\mathrm{CHCSV}}$	CLKOUTA High to LCS/UCS Valid	0	15	0	10	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Valid	0	15	0	10	ns
87	$\mathrm{t}_{\text {AVBL }}$	A Address Valid to WHB, WLB Low	$\mathrm{t}_{\mathrm{CHCL}}-3$	15	$\mathrm{t}_{\mathrm{CHCL}}-1.25$	12	ns
98	$\mathrm{t}_{\text {DSHDIW }}$	DS High to Data Invalid-Write	20		15		ns

Notes:
All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Testing is performed with equal loading on referenced pins.
b This parameter applies to the $\overline{D E N}, \overline{D S}, \overline{I N T A} 1-\overline{I N T A} 0, \overline{W R}, \overline{W H B}$, and $\overline{W L B}$ signals.

WRITE CYCLE WAVEFORMS

Notes:

a Am186ED/EDLV microcontrollers in 16-bit mode
b Am186ED/EDLV microcontrollers in 8-bit mode
c Changes in t phase preceding next bus cycle if followed by read, INTA, or halt

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges DRAM

Parameter			Preliminary								Unit
			20 MHz		25 MHz		33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	
General Timing Responses											
101	$\mathrm{t}_{\text {CHCAV }}$	CLKOUTA Low to Column Address Valid	0	25	0	20	0	15	0	12	ns
102	$\mathrm{t}_{\text {CLRA }}$	CLKOUTA Low to RAS Active	3	25	3	20	3	15	3	12	ns
103	$\mathrm{t}_{\text {CHRX }}$	CLKOUTA High to RAS Inactive	3	25	3	20	3	15	3	12	ns
104	$\mathrm{t}_{\mathrm{CHCA}}$	CLKOUTA High to CAS Active	3	25	3	20	3	15	3	12	ns
105	$\mathrm{t}_{\text {CLCX }}$	CLKOUTA Low to CAS Inactive	3	25	3	20	3	15	3	12	ns
106	$\mathrm{t}_{\text {CHRA }}$	CLKOUTA High to RAS Active	3	25	3	20	3	15	3	12	ns
107	$\mathrm{t}_{\text {CLRX }}$	CLKOUTA Low to RAS Inactive	3	25	3	20	3	15	3	12	ns
108	trpow	RAS Inactive Pulse Width with 0 Wait States	60	-	50	-	40	-	30	-	ns
109	$t_{\text {RP1W }}$	$\overline{R A S}$ Inactive Pulse Width with 1 or More Wait States	70	-	60	-	50	-	40	-	ns
110	$\mathrm{t}_{\text {RDOW }}$	RAS To Column Address Delay Time with 0 Wait States	25	-	20	-	15	-	15	-	ns
111	$\mathrm{t}_{\text {RD1W }}$	RAS to Column Address Delay Time with 1 or More Wait States	30	-	25	-	20	-	15	-	ns

As guaranteed by design, the following table shows the minimum time for $\overline{\mathrm{RAS}}$ assertion to $\overline{\mathrm{RAS}}$ assertion. These minimums correlate to DRAM spec $t_{R C}$.

DRAM Read Cycle Timing with No-Wait States

Note:
a The $\overline{R D}$ output connects to the $D R A M$ output enable $(\overline{O E})$ pin for read operations.

DRAM Read Cycle Timing with Wait State(s)

Note:
a The $\overline{R D}$ output connects to the DRAM output enable $(\overline{O E})$ pin for read operations.

DRAM Write Cycle Timing with No-Wait States

Note:
a Write operations use the $\overline{W R}$ output connected to the DRAM write enable (WE) pin.

DRAM Write Cycle Timing With Wait State(s)

Note:
a Write operations use the $\overline{W R}$ output connected to the DRAM write enable (WE) pin.

DRAM CAS-before-RAS Cycle Timing

Notes:
a CAS before RAS cycle timing is always 7 clocks, independent of wait state timing.
b The $\overline{R D}$ output connects to the DRAM output enable $(\overline{O E})$ pin for read operations.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges Interrupt Acknowledge Cycle (20 MHz and $\mathbf{2 5} \mathbf{~ M H z) ~}$

Parameter			Preliminary				Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Requirements							
1	$t_{\text {DVCL }}$	Data in Setup	10		10		ns
2	$\mathrm{t}_{\text {CLDX }}$	Data in Hold	3		3		ns
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	25	0	20	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	25	0	20	ns
7	$\mathrm{t}_{\text {cLDV }}$	Data Valid Delay	0	25	0	20	ns
8	$\mathrm{t}_{\text {CHDX }}$	Status Hold Time	0		0		ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		25		20	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=40$		$\mathrm{t}_{\mathrm{CLCL}}-10=30$		ns
11	$\mathrm{t}_{\mathrm{CHLL}}$	ALE Inactive Delay		25		20	ns
12	$\mathrm{t}_{\text {AVLL }}$	AD Address Invalid to ALE Low ${ }^{(a)}$	$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		$\mathrm{t}_{\mathrm{CLCH}^{-2}}$		ns
15	$\mathrm{t}_{\text {CLAZ }}$	AD Address Float Delay	$\mathrm{t}_{\text {CLAX }}=0$	25	$\mathrm{t}_{\mathrm{CLAX}}=0$	20	ns
19	$\mathrm{t}_{\text {DXDL }}$	$\overline{\text { DEN }}$ Inactive to DT/R Low ${ }^{(\mathrm{a})}$	0		0		ns
20	$\mathrm{t}_{\text {cVCTV }}$	Control Active Delay $1^{(b)}$	0	25	0	20	ns
21	$\mathrm{t}_{\text {CVDEX }}$	$\overline{\text { DEN }}$ Inactive Delay	0	25	0	20	ns
22	$\mathrm{t}_{\text {CHCTV }}$	Control Active Delay $2^{(\mathrm{c})}$	0	25	0	20	ns
23	thav	ALE High to Address Valid	20		15		ns
31	$\mathrm{t}_{\text {CVCTX }}$	Control Inactive Delay ${ }^{(b)}$	0	25	0	20	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Valid	0	25	0	20	ns

Notes:
All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Testing is performed with equal loading on referenced pins.
b This parameter applies to the INTA1-INTA 0 signals.
c This parameter applies to the $\overline{D E N}$ and $D T / R$ signals.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Interrupt Acknowledge Cycle (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Requirements							
1	$\mathrm{t}_{\text {DVCL }}$	Data in Setup	8		5		ns
2	${ }^{\text {t CLDX }}$	Data in Hold	3		2		ns
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	15	0	12	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	15	0	12	ns
7	$\mathrm{t}_{\text {CLDV }}$	Data Valid Delay	0	15	0	12	ns
8	$\mathrm{t}_{\text {CHDX }}$	Status Hold Time	0		0		ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		15		12	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=20$		$\mathrm{t}_{\mathrm{CLCL}}-5=20$		ns
11	$\mathrm{t}_{\text {CHLL }}$	ALE Inactive Delay		15		12	ns
12	$\mathrm{t}_{\text {AVLL }}$	AD Address Invalid to ALE Low ${ }^{(\mathrm{a})}$	$\mathrm{t}_{\mathrm{CLCH}}$		$\mathrm{t}_{\mathrm{CLCH}}$		ns
15	$\mathrm{t}_{\text {CLAZ }}$	AD Address Float Delay	$\mathrm{t}_{\text {CLAX }}=0$	15	$\mathrm{t}_{\text {CLAX }}=0$	12	ns
19	$t_{\text {DXDL }}$	$\overline{\text { DEN }}$ Inactive to DT/R Low $^{(a)}$	0		0		ns
20	$\mathrm{t}_{\text {CVCTV }}$	Control Active Delay $1^{(b)}$	0	15	0	12	ns
21	$\mathrm{t}_{\text {CVDEX }}$	$\overline{\text { DEN }}$ Inactive Delay	0	15	0	12	ns
22	$\mathrm{t}_{\text {CHCTV }}$	Control Active Delay 2 ${ }^{\text {(c) }}$	0	15	0	12	ns
23	thav	ALE High to Address Valid	10		7.5		ns
31	$\mathrm{t}_{\text {CVCTX }}$	Control Inactive Delay ${ }^{(b)}$	0	15	0	12	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Valid	0	15	0	10	ns

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Testing is performed with equal loading on referenced pins.
b This parameter applies to the $\overline{I N T A} 1-\overline{I N T A} 0$ signals.
c This parameter applies to the $\overline{D E N}$ and $D T / \bar{R}$ signals.

INTERRUPT ACKNOWLEDGE CYCLE WAVEFORMS

Notes:
a The status bits become inactive in the state preceding t_{4}
b The data hold time lasts only until the interrupt acknowledge signal deasserts, even if the interrupt acknowledge transition occurs prior to $t_{C L D X}$ (min)
c This parameter applies for an interrupt acknowledge cycle that follows a write cycle.
d If followed by a write cycle, this change occurs in the state preceding that write cycle.

AMDA
SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges
Software Halt Cycle ($\mathbf{2 0} \mathbf{~ M H z}$ and $\mathbf{2 5} \mathbf{~ M H z) ~}$

Parameter			Preliminary				Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	25	0	20	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	25	0	20	ns
5	$\mathrm{t}_{\text {CLAV }}$	AD Address Invalid Delay and BHE	0	25	0	20	ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		25		20	ns
10	$\mathrm{t}_{\text {LHLL }}$	ALE Width	$\mathrm{t}_{\mathrm{CLCL}}-10=40$		$\mathrm{t}_{\mathrm{CLCL}}-10=30$		ns
11	$\mathrm{t}_{\mathrm{CHLL}}$	ALE Inactive Delay		25		20	ns
19	$\mathrm{t}_{\text {DXDL }}$	$\overline{\mathrm{DEN}}$ Inactive to DT//R Low ${ }^{(\mathrm{a})}$	0		0		ns
22	$\mathrm{t}_{\text {chCTV }}$	Control Active Delay $2^{(b)}$	0	25	0	20	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Invalid	0	25	0	20	ns

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Testing is performed with equal loading on referenced pins.
b This parameter applies to the $\overline{D E N}$ signal.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Software Halt Cycle (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
General Timing Responses							
3	$\mathrm{t}_{\mathrm{CHSV}}$	Status Active Delay	0	15	0	12	ns
4	$\mathrm{t}_{\text {CLSH }}$	Status Inactive Delay	0	15	0	12	ns
5	tclav	AD Address Invalid Delay and BHE	0	15	0	12	ns
9	$\mathrm{t}_{\mathrm{CHLH}}$	ALE Active Delay		15		12	ns
10	thlil	ALE Width	$\mathrm{t}_{\text {CLCL }}$-10 $=20$		$\mathrm{t}_{\text {CLCL }}-5=20$		ns
11	$\mathrm{t}_{\mathrm{CHLL}}$	ALE Inactive Delay		15		12	ns
19	$\mathrm{t}_{\text {DXDL }}$	DEN Inactive to DT/R Low ${ }^{(\mathrm{a})}$	0		0		ns
22	$\mathrm{t}_{\text {chCTV }}$	Control Active Delay $2^{(b)}$	0	15	0	12	ns
68	$\mathrm{t}_{\text {CHAV }}$	CLKOUTA High to A Address Invalid	0	15	0	10	ns

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a Testing is performed with equal loading on referenced pins.
b This parameter applies to the $\overline{D E N}$ signal.

SOFTWARE HALT CYCLE WAVEFORMS

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

Clock (20 MHz and 25 MHz)

Parameter			Preliminary				Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
CLKIN Requirements							
36	$\mathrm{t}_{\mathrm{CKIN}}$	X1 Period ${ }^{(\mathrm{a})}$	50	60	40	60	ns
37	$\mathrm{t}_{\text {CLCK }}$	X1 Low Time (1.5 V) ${ }^{(\mathrm{a})}$	15		15		ns
38	$\mathrm{t}_{\mathrm{CHCK}}$	X1 High Time (1.5 V) ${ }^{(\mathrm{a})}$	15		15		ns
39	$\mathrm{t}_{\text {CKHL }}$	X1 Fall Time (3.5 to 1.0 V$)^{(\mathrm{a})}$		5		5	ns
40	$\mathrm{t}_{\text {CKLH }}$	X1 Rise Time (1.0 to 3.5 V$)^{(\mathrm{a})}$		5		5	ns
CLKOUT Timing							
42	$\mathrm{t}_{\mathrm{CLCL}}$	CLKOUTA Period	50		40		ns
43	$\mathrm{t}_{\mathrm{CLCH}}$	CLKOUTA Low Time ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$0.5 \mathrm{t}_{\text {CLCL }}-2=23$		$0.5 \mathrm{t}_{\text {CLCL }}-2=18$		ns
44	$\mathrm{t}_{\mathrm{CHCL}}$	CLKOUTA High Time ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$0.5 \mathrm{t}_{\mathrm{CLCL}}-2=23$		$0.5 \mathrm{t}_{\mathrm{CLCL}}-2=18$		ns
45	$\mathrm{t}_{\mathrm{CH} 1 \mathrm{CH} 2}$	CLKOUTA Rise Time (1.0 to 3.5 V)		3		3	ns
46	$\mathrm{t}_{\mathrm{CL2CL} 1}$	CLKOUTA Fall Time (3.5 to 1.0 V)		3		3	ns
61	$\mathrm{t}_{\text {LOCK }}$	Maximum PLL Lock Time		1		1	ms
69	$\mathrm{t}_{\text {CICOA }}$	X1 to CLKOUTA Skew		15		15	ns
70	$\mathrm{t}_{\text {CICOB }}$	X1 to CLKOUTB Skew		25		25	ns

Notes:
All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a The specifications for CLKIN are applicable to the normal PLL and CLKDIV2 modes.
The PLL should be used for operations from 16.667 MHz to 40 MHz . For operations below 16.667 MHz , the CLKDIV2 mode should be used.
Because the CLKDIV2 input frequency is two times the system frequency, the specifications for twice the frequency should be used for CLKDIV2 mode. For example, use the 20 MHz CLKIN specifications for 10 MHz operation.

SWITCHING CHARACTERISTICS over Commercial operating ranges
Clock (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
CLKIN Requirements							
36	$\mathrm{t}_{\text {CKIN }}$	X1 Period ${ }^{(a)}$	30	60	25	60	ns
37	$\mathrm{t}_{\text {CLCK }}$	X1 Low Time (1.5 V) ${ }^{(\mathrm{a})}$	10		7.5		ns
38	$\mathrm{t}_{\text {CHCK }}$	X1 High Time (1.5 V) ${ }^{(\mathrm{a})}$	10		7.5		ns
39	$\mathrm{t}_{\text {CKHL }}$	X1 Fall Time (3.5 to 1.0 V$)^{(\mathrm{a})}$		5		5	ns
40	$\mathrm{t}_{\text {CKLH }}$	X1 Rise Time (1.0 to 3.5 V$)^{(\mathrm{a})}$		5		5	ns
CLKOUT Timing							
42	$\mathrm{t}_{\mathrm{CLCL}}$	CLKOUTA Period	30		25		ns
43	$\mathrm{t}_{\mathrm{CLCH}}$	CLKOUTA Low Time ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$0.5 \mathrm{t}_{\mathrm{CLCL}}-1.5=13.5$		$0.5 \mathrm{t}_{\mathrm{CLCL}}-1.25=11.25$		ns
44	$\mathrm{t}_{\mathrm{CHCL}}$	CLKOUTA High Time ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$0.5 \mathrm{t}_{\mathrm{CLCL}}-1.5=13.5$		$0.5 \mathrm{t}_{\mathrm{CLCL}}-1.25=11.25$		ns
45	$\mathrm{t}_{\mathrm{CH} 1 \mathrm{CH} 2}$	CLKOUTA Rise Time (1.0 to 3.5 V)		3		3	ns
46	$\mathrm{t}_{\mathrm{CL2CL}}$	CLKOUTA Fall Time (3.5 to 1.0 V)		3		3	ns
61	tock	Maximum PLL Lock Time		1		1	ms
69	$\mathrm{t}_{\text {CICOA }}$	X1 to CLKOUTA Skew		15		15	ns
70	$\mathrm{t}_{\text {CICOB }}$	X1 to CLKOUTB Skew		25		25	ns

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a The specifications for CLKIN are applicable to the normal PLL and CLKDIV2 modes.
The PLL should be used for operations from 16.667 MHz to 40 MHz . For operations below 16.667 MHz , the CLKDIV2 mode should be used.

Because the CLKDIV2 input frequency is two times the system frequency, the specifications for twice the frequency should used for CLKDIV2 mode. For example, use the 20 MHz CLKIN specifications for 10 MHz operation.

CLOCK WAVEFORMS

Clock Waveforms-Active Mode

X2

X1

CLKOUTA
(Active, $\mathrm{F}=000$)

CLKOUTB

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges Ready and Peripheral (20 MHz and 25 MHz)

Parameter			Preliminary		Preliminary		Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	

Ready and Peripheral Timing Requirements

47	$\mathrm{t}_{\text {SRYCL }}$	SRDY Transition Setup Time ${ }^{\left({ }^{(a)}\right.}$	10	10	ns
48	$\mathrm{t}_{\text {CLSRY }}$	SRDY Transition Hold Time ${ }^{(a)}$	3	3	ns
49	$\mathrm{t}_{\text {ARYCH }}$	ARDY Resolution Transition Setup Time ${ }^{(b)}$	10	10	ns
50	$\mathrm{t}_{\text {CLARX }}$	ARDY Active Hold Time ${ }^{(a)}$	4	4	ns
51	$\mathrm{t}_{\text {ARYCHL }}$	ARDY Inactive Holding Time	6	6	ns
52	$\mathrm{t}_{\text {ARYLCL }}$	ARDY Setup Time ${ }^{(\mathrm{a})}$	15	15	ns
53	$\mathrm{t}_{\text {INVCH }}$	Peripheral Setup Time ${ }^{(b)}$	10	10	ns
54	$\mathrm{t}_{\text {INVCL }}$	DRQ Setup Time ${ }^{(b)}$	10	10	ns

Peripheral Timing Responses

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a This timing must be met to guarantee proper operation.
b This timing must be met to guarantee recognition at the clock edge.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Ready and Peripheral (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
Ready and Peripheral Timing Requirements							
47	$\mathrm{t}_{\text {SRYCL }}$	SRDY Transition Setup Time ${ }^{(a)}$	8		5		ns
48	$\mathrm{t}_{\text {CLSRY }}$	SRDY Transition Hold Time ${ }^{(a)}$	3		2		ns
49	$\mathrm{t}_{\text {ARYCH }}$	ARDY Resolution Transition Setup Time ${ }^{(b)}$	8		5		ns
50	t CLARX	ARDY Active Hold Time ${ }^{(\mathrm{a})}$	4		3		ns
51	$\mathrm{t}_{\text {ARYCHL }}$	ARDY Inactive Holding Time	6		5		ns
52	$\mathrm{t}_{\text {ARYLCL }}$	ARDY Setup Time ${ }^{(a)}$	10		5		ns
53	$\mathrm{t}_{\text {INVCH }}$	Peripheral Setup Time ${ }^{(b)}$	8		5		ns
54	$\mathrm{t}_{\text {INVCL }}$	DRQ Setup Time ${ }^{(b)}$	8		5		ns
Peripheral Timing Responses							
55	$\mathrm{t}_{\text {CLTMV }}$	Timer Output Delay		15		12	ns

Notes:

All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a This timing must be met to guarantee proper operation.
b This timing must be met to guarantee recognition at the clock edge.

SYNCHRONOUS, ASYNCHRONOUS, and PERIPHERAL WAVEFORMS
Synchronous Ready Waveforms

Asynchronous Ready Waveforms

Case 1	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{4}}$
Case 2	$\mathbf{t}_{\mathbf{3}}$	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{4}}$
Case 3	$\mathbf{t}_{\mathbf{2}}$	$\mathbf{t}_{\mathbf{3}}$	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{4}}$
Case 4	$\mathbf{t}_{\mathbf{1}}$	$\mathbf{t}_{\mathbf{2}}$	$\mathbf{t}_{\mathbf{3}}$	$\mathbf{t}_{\mathbf{4}}$

Peripheral Waveforms

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges
Reset and Bus Hold (20 MHz and 25 MHz)

Parameter			Preliminary				Unit
			20 MHz		25 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
Reset and Bus Hold Timing Requirements							
5	$\mathrm{t}_{\text {CLAV }}$	AD Address Valid Delay and BHE	0	25	0	20	ns
15	$\mathrm{t}_{\text {cLAZ }}$	AD Address Float Delay	0	25	0	20	ns
57	$\mathrm{t}_{\text {RESIN }}$	RES Setup Time	10		10		ns
58	$\mathrm{t}_{\mathrm{HVCL}}$	HOLD Setup ${ }^{(a)}$	10		10		ns
Reset and Bus Hold Timing Responses							
62	$\mathrm{t}_{\text {CLHAV }}$	HLDA Valid Delay	0	25	0	20	ns
63	$\mathrm{t}_{\mathrm{CHCZ}}$	Command Lines Float Delay		25		20	ns
64	$\mathrm{t}_{\mathrm{CHCV}}$	Command Lines Valid Delay (after Float)		25		20	ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Reset and Bus Hold (33 MHz and 40 MHz)

Parameter			Preliminary				Unit
			33 MHz		40 MHz		
No.	Symbol	Description	Min	Max	Min	Max	
Reset and Bus Hold Timing Requirements							
5	$\mathrm{t}_{\text {clav }}$	AD Address Valid Delay and BHE	0	15	0	12	ns
15	$\mathrm{t}_{\text {CLAZ }}$	AD Address Float Delay	0	15	0	12	ns
57	$\mathrm{t}_{\text {RESIN }}$	RES Setup Time	8		5		ns
58	$\mathrm{t}_{\mathrm{HVCL}}$	HOLD Setup ${ }^{(\mathrm{a})}$	8		5		ns
Reset and Bus Hold Timing Responses							
62	$\mathrm{t}_{\text {CLHAV }}$	HLDA Valid Delay	0	15	0	12	ns
63	$\mathrm{t}_{\mathrm{CHCZ}}$	Command Lines Float Delay		15		12	ns
64	$\mathrm{t}_{\mathrm{CHCV}}$	Command Lines Valid Delay (after Float)		15		12	ns

Notes:
All timing parameters are measured at 1.5 V with 50 pF loading on CLKOUTA, unless otherwise noted. All output test conditions are with $C_{L}=50 \mathrm{pF}$. For switching tests, $V_{I L}=0.45 \mathrm{~V}$ and $V_{I H}=2.4 \mathrm{~V}$, except at $X 1$ where $V_{I H}=V_{C C}-0.5 \mathrm{~V}$.
a This timing must be met to guarantee recognition at the next clock.

RESET and BUS HOLD WAVEFORMS

Reset Waveforms

Signals Related to Reset Waveforms

Bus Hold Waveforms-Entering

Bus Hold Waveforms-Leaving

[^0]: This document contains information on a product under development at Advanced Micro Devices. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

