RENESAS

RMLV0416E Series

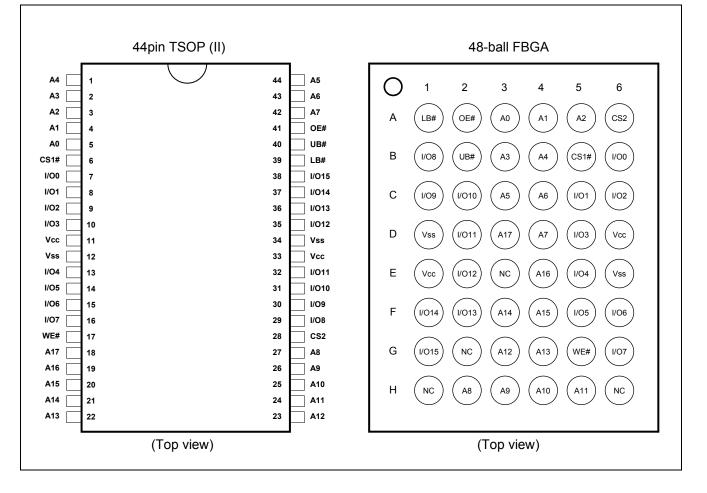
4Mb Advanced LPSRAM (256-kword × 16-bit)

R10DS0205EJ0100 Rev.1.00 2014.2.27

Description

The RMLV0416E Series is a family of 4-Mbit static RAMs organized 262,144-word \times 16-bit, fabricated by Renesas's high-performance Advanced LPSRAM technologies. The RMLV0416E Series has realized higher density, higher performance and low power consumption. The RMLV0416E Series offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is offered in 44-pin TSOP (II) or 48-ball fine pitch ball grid array.

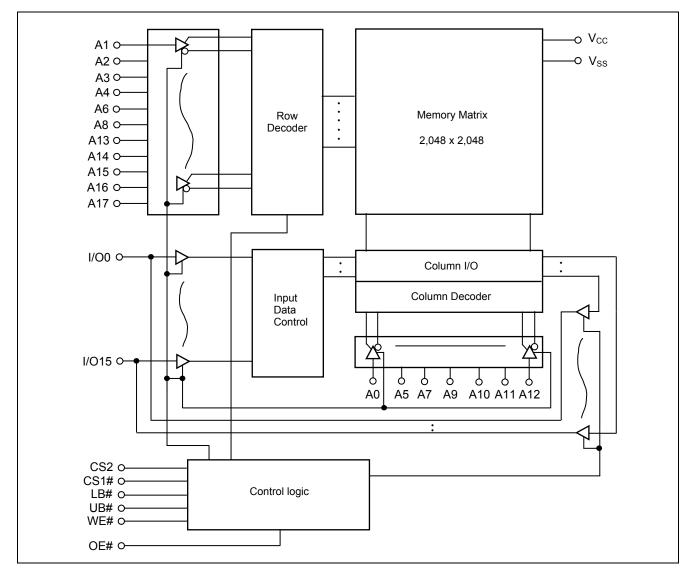
Features


- Single 3V supply: 2.7V to 3.6V
- Access time: 45ns (max.)
- Current consumption: — Standby: 0.4µA (typ.)
- Equal access and cycle times
- Common data input and output — Three state output
- Directly TTL compatible — All inputs and outputs
- Battery backup operation

Part Name Information

Part name	Access time	Temperature range	Package	Shipping container
RMLV0416EGSB-4S2#AA0			400-mil 44pin	Tray Max. 135pcs/Tray Max. 1080pcs/Inner box
RMLV0416EGSB-4S2#HA0	45	40 105%0	plastic TSOP (II)	Embossed tape 1000pcs/Reel
RMLV0416EGBG-4S2#AC0	45 ns	-40 ~ +85°C	48-ball FBGA	Tray Max. 253pcs/Tray Max. 2277pcs/Inner box
RMLV0416EGBG-4S2#KC0	RMLV0416EGBG-4S2#KC0		with 0.75mm ball pitch	Embossed tape 1000pcs/Reel

Pin Arrangement



Pin Description

Pin name	Function
Vcc	Power supply
V _{SS}	Ground
A0 to A17	Address input
I/O0 to I/O15	Data input/output
CS1#	Chip select 1
CS2	Chip select 2
OE#	Output enable
WE#	Write enable
LB#	Lower byte select
UB#	Upper byte select
NC	No connection

Block Diagram

Operation Table

CS1#	CS2	WE#	OE#	UB#	LB#	I/O0 to I/O7	I/O8 to I/O15	Operation
Н	Х	Х	Х	Х	Х	High-Z	High-Z	Standby
Х	L	Х	Х	Х	Х	High-Z	High-Z	Standby
Х	Х	Х	Х	Н	Н	High-Z	High-Z	Standby
L	Н	Н	L	L	L	Dout	Dout	Read
L	Н	Н	L	Н	L	Dout	High-Z	Lower byte read
L	Н	Н	L	L	Н	High-Z	Dout	Upper byte read
L	Н	L	Х	L	L	Din	Din	Write
L	Н	L	Х	Н	L	Din	High-Z	Lower byte write
L	Н	L	Х	L	Н	High-Z	Din	Upper byte write
L	Н	Н	Н	Х	Х	High-Z	High-Z	Output disable

Note 1. H: V_{IH} L: V_{IL} X: V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	unit
Power supply voltage relative to V _{SS}	V _{CC}	-0.5 to +4.6	V
Terminal voltage on any pin relative to V_{SS}	V _T	-0.5 ^{*2} to V _{CC} +0.3 ^{*3}	V
Power dissipation	PT	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to +150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 2. -3.0V for pulse \leq 30ns (full width at half maximum)

3. Maximum voltage is +4.6V.

DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	V _{CC}	2.7	3.0	3.6	V	
	V _{SS}	0	0	0	V	
Input high voltage	V _{IH}	2.2	_	V _{CC} +0.3	V	
Input low voltage	VIL	-0.3	_	0.6	V	4
Ambient temperature range	Та	-40	_	+85	°C	

Note 4. -3.0V for pulse \leq 30ns (full width at half maximum)

DC Characteristics

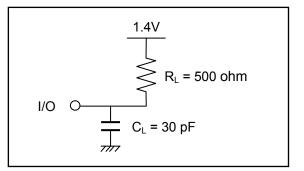
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions		
Input leakage current	I _{LI}	_	_	1	μA	Vin = V _{SS} to V _{CC}		
Output leakage current	I _{LO}	_	-	1	μA	CS1# = V_{IH} or CS2 = V_{IL} or OE# = V_{IH} or WE# = V_{IL} or LB# = UB# = V_{IH} , $V_{I/O}$ = V_{SS} to V		
Operating current	Icc	_	-	10	mA	CS1# = V _{IL} , CS2 = V _{IH} , Others = V _{IH} /V _{IL} , $I_{I/O}$ = 0mA		
Average operating current		_	-	20	mA	Cycle = 55ns, duty =100%, $I_{I/O}$ = 0mA, CS1# = V _{IL} , CS2 = V _{IH} , Others = V _{IH} /V _{IL}		
	I _{CC1}	_	-	25	mA	Cycle = 45ns, duty =100%, $I_{I/O}$ = 0mA, CS1# = V _{IL} , CS2 = V _{IH} , Others = V _{IH} /V _{IL}		
	I _{CC2}	_	_	2.5	mA	$\begin{split} & \text{Cycle =1} \mu \text{s, duty =100\%, I}_{\text{I/O}} = 0 \text{mA,} \\ & \text{CS1\# \le 0.2V, CS2 \ge V_{\text{CC}} - 0.2V,} \\ & \text{V}_{\text{IH}} \ge \text{V}_{\text{CC}} - 0.2\text{V, V}_{\text{IL}} \le 0.2\text{V} \end{split}$		
Standby current	I _{SB}	_	0.1 ^{*5}	0.3	mA	$CS2 = V_{IL}$, Others = V_{SS} to V_{CC}		
Standby current		-	0.4 ^{*5}	2	μA	$\sim +25^{\circ}$ C Vin = V _{SS} to V _{CC} , (1) CS2 < 0.2V or		
		-	-	3	μA	(1) $CS2 \le 0.2V$ or (2) $CS1\# \ge V_{CC}-0.2V$,		
	I _{SB1}	-	-	5	μA	\sim +70°C CS2 ≥ V _{CC} -0.2V or (3) LB# = UB# ≥ V _{CC} -0.2V,		
		_		7	μA	$(3) LB# = 0B# \ge V_{CC} - 0.2V,$ CS1# ≤ 0.2V, CS2 ≥ V _{CC} - 0.2V		
Output high voltage	V _{OH}	2.4	-	—	V	I _{OH} = -1mA		
	V _{OH2}	V _{CC} -0.2		-	V	I _{OH} = -0.1mA		
Output low voltage	V _{OL}	_	-	0.4	V	I _{OL} = 2mA		
	V _{OL2}	—	_	0.2	V	I _{OL} = 0.1mA		

Note 5. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.

Capacitance

 $(Vcc = 2.7V \sim 3.6V, f = 1MHz, Ta = -40 \sim +85^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	_	—	8	pF	Vin =0V	6
Input / output capacitance	C I/O		_	10	pF	V _{I/O} =0V	6


Note 6. This parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Vcc = $2.7V \sim 3.6V$, Ta = $-40 \sim +85^{\circ}C$)

- Input pulse levels: $V_{IL} = 0.4V$, $V_{IH} = 2.4V$
- Input rise and fall time: 5ns
- Input and output timing reference level: 1.4V
- Output load: See figures (Including scope and jig)

Read Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Read cycle time	t _{RC}	45		ns	
Address access time	t _{AA}	—	45	ns	
Chin coloct access time	t _{ACS1}	—	45	ns	
Chip select access time	t _{ACS2}	—	45	ns	
Output enable to output valid	t _{OE}	—	22	ns	
Output hold from address change	t _{он}	10	—	ns	
LB#, UB# access time	t _{BA}	—	45	ns	
Chin coloct to output in low 7	t _{CLZ1}	10	—	ns	7,8
Chip select to output in low-Z	t _{CLZ2}	10	—	ns	7,8
LB#, UB# enable to low-Z	t _{BLZ}	5	—	ns	7,8
Output enable to output in low-Z	t _{OLZ}	5	—	ns	7,8
Chin deceleration output in high 7	t _{CHZ1}	0	18	ns	7,8,9
Chip deselect to output in high-Z	t _{CHZ2}	0	18	ns	7,8,9
LB#, UB# disable to high-Z	t _{BHZ}	0	18	ns	7,8,9
Output disable to output in high-Z	t _{онz}	0	18	ns	7,8,9

Note 7. This parameter is sampled and not 100% tested.

8. At any given temperature and voltage condition, t_{CHZ1} max is less than t_{CLZ1} min, t_{CHZ2} max is less than t_{CLZ2} min, t_{BHZ} max is less than t_{BLZ} min, and t_{OHZ} max is less than t_{OLZ} min, for any device.

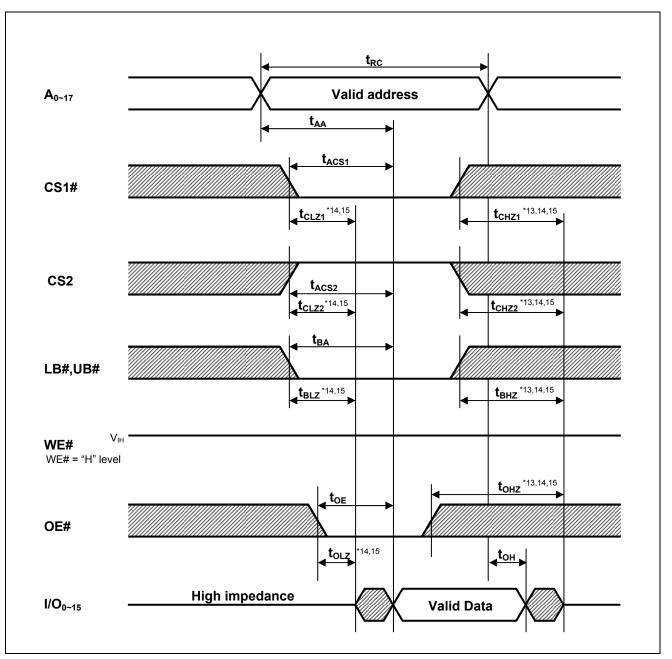
9. t_{CHZ1}, t_{CHZ2}, t_{BHZ} and t_{OHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.

Write Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Write cycle time	twc	45	_	ns	
Address valid to write end	t _{AW}	35	—	ns	
Chip select to write end	t _{cw}	35	—	ns	
Write pulse width	t _{WP}	35	—	ns	10
LB#,UB# valid to write end	t _{BW}	35	—	ns	
Address setup time to write start	t _{AS}	0	—	ns	
Write recovery time from write end	t _{wr}	0	—	ns	
Data to write time overlap	t _{DW}	25	—	ns	
Data hold from write end	t _{DH}	0	—	ns	
Output enable from write end	tow	5	—	ns	11
Output disable to output in high-Z	t _{онz}	0	18	ns	11,12
Write to output in high-Z	t _{wнz}	0	18	ns	11,12

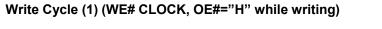
Note 10. t_{WP} is the interval between write start and write end.

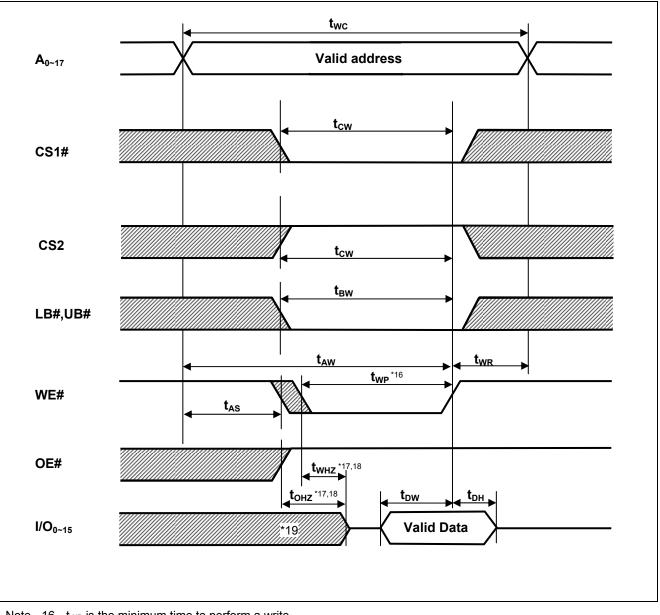
A write starts when all of (CS1#), (CS2), (WE#) and (one or both of LB# and UB#) become active. A write is performed during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#. A write ends when any of (CS1#), (CS2), (WE#) or (one or both of LB# and UB#) becomes inactive. This parameter is sampled and not 100% tested


11. This parameter is sampled and not 100% tested.

12. t_{OHZ} and t_{WHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.

Timing Waveforms

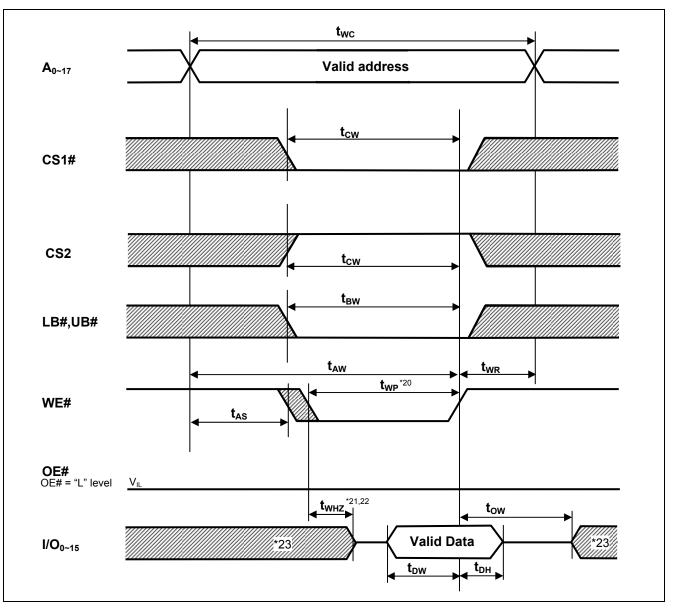

Read Cycle



Note 13. t_{CHZ1}, t_{CHZ2}, t_{BHZ} and t_{OHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.

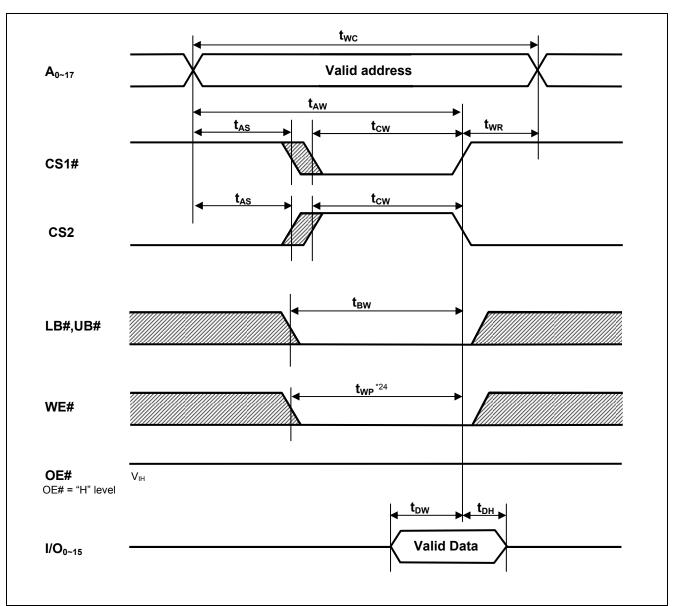
14. This parameter is sampled and not 100% tested

15. At any given temperature and voltage condition, t_{CHZ1} max is less than t_{CLZ1} min, t_{CHZ2} max is less than t_{CLZ2} min, t_{BHZ} max is less than t_{BLZ} min, and t_{OHZ} max is less than t_{OLZ} min, for any device.



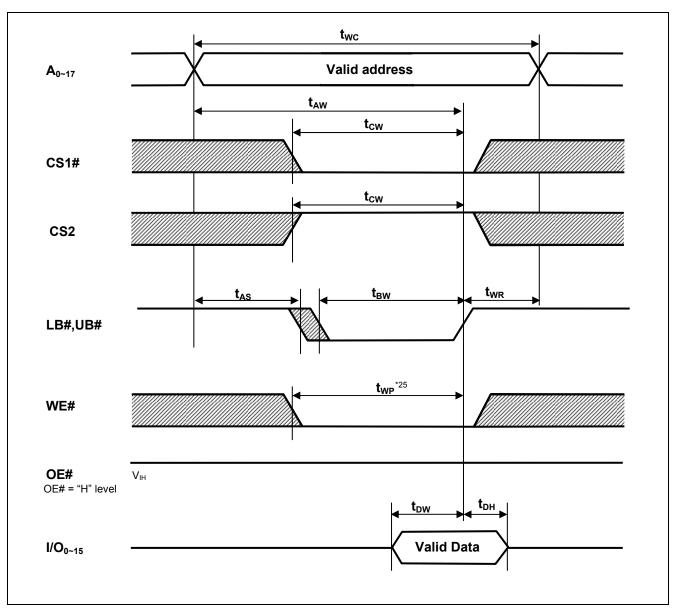
Note 16. t_{WP} is the minimum time to perform a write.

- 17. t_{OHZ} and t_{WHZ} are defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.
- 18. This parameter is sampled and not 100% tested
- 19. During this period, I/O pins are in the output state so input signals must not be applied to the I/O pins.



Note 20. t_{WP} is the minimum time to perform a write.

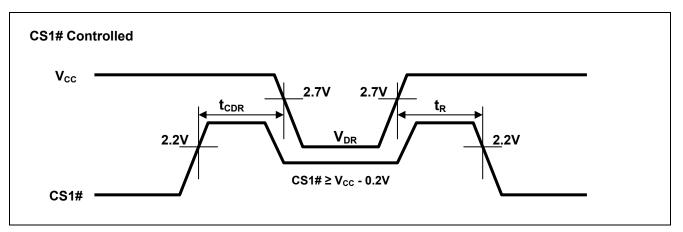
- 21. t_{WHZ} is defined as the time when the I/O pins enter a high-impedance state and are not referred to the I/O levels.
- 22. This parameter is sampled and not 100% tested.
- 23. During this period, I/O pins are in the output state so input signals must not be applied to the I/O pins.


Write Cycle (3) (CS1#, CS2 CLOCK)

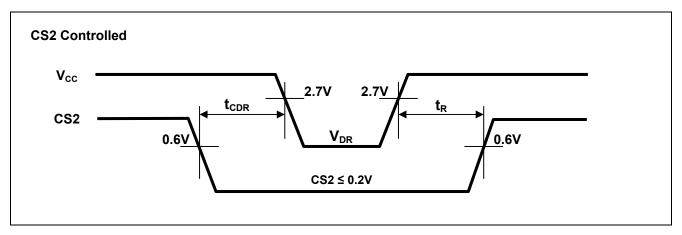
Note 24. t_{WP} is the minimum time to perform a write.

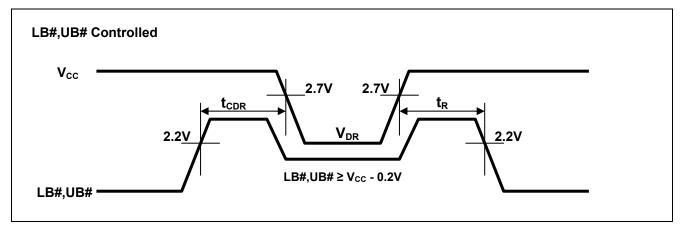
Write Cycle (4) (LB#, UB# CLOCK)

Note 25. t_{WP} is the minimum time to perform a write.


Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions ^{*27}	
V _{cc} for data retention	V _{DR}	1.5	_	_	V	$Vin \ge 0V,$ (1) CS2 $\le 0.2V$ or (2) CS1# $\ge V_{CC}$ -0.2V, CS2 $\ge V_{CC}$ -0.2V or (3) LB# = UB# $\ge V_{CC}$ -0.2V, CS1# $\le 0.2V$, CS2 $\ge V_{CC}$ -0.2V		
	Iccdr	_	0.4 ^{*26}	2	μA	~+25°C	$V_{CC} = 3.0V$, Vin $\ge 0V$, (1) CS2 $\le 0.2V$	
Data rotantian ourrant		_	_	3	μA	~+40°C	or (2) CS1# \geq V _{CC} -0.2V, CS2 \geq V _{CC} -0.2V	
Data retention current		_	-	5	μA	~+70°C	or (3) LB# = UB# \geq V _{CC} -0.2V,	
		_	_	7	μA	~+85°C	CS1# ≤ 0.2V, CS2 ≥ V _{CC} -0.2V	
Chip deselect time to data retention	t _{CDR}	0	—	_	ns	Soo rotont	ion wavoform	
Operation recovery time	t _R	5	—	_	ms	See retention waveform.		

Note 26. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.


27. CS2 controls address buffer, WE# buffer, CS1# buffer, OE# buffer, LB# buffer, UB# buffer and I/O buffer. If CS2 controls data retention mode, Vin levels (address, WE#, CS1#, OE#, LB#, UB#, I/O) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 ≥ V_{CC}-0.2V or CS2 ≤ 0.2V. The other inputs levels (address, WE#, OE#, LB#, UB#, I/O) can be in the high-impedance state.


Low Vcc Data Retention Timing Waveforms (CS1# controlled)

Low Vcc Data Retention Timing Waveforms (CS2 controlled)

Low Vcc Data Retention Timing Waveforms (LB#,UB# controlled)

Revision History	RMLV0416E Series Data Sheet
-------------------------	-----------------------------

Τ

		Description	
Rev.	Date	Page	Summary
1.00	2014.2.27	—	First edition issued

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infrigment of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics may way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulesvard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-989-5441, Fax: +1-905-989-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +9211-6503-0, Fax: +44-1628-585-900 Renesas Electronics (China) Co., Ltd. Romon 1709, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-235-1155, Fax: +86-10-235-7679 Renesas Electronics (Shanghai) Co., Ltd. Romo 1709, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Shanghai, P. R. China 200333 Tel: +86-10-235-1155, Fax: +86-21-2226-0989 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-10-235-1155, Fax: +86-21-2226-0989 Renesas Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2255-6888, Fax: +852-2286-9022/9044 Renesas Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +862-2175-9600, Fax: +886 2-8175-9670 Renesas Electronics Magapore Pte. Ltd. 80 Bendemeer Road, Unit #06-79 Hyllux Innovation Centre, Singapore 339949 Tel: +56-621-30200, Fax: +65-621-3030 Renesas Electronics Magayia Sdn.Bhd. Unit 906, Block B, Menara Amoorp, Amoorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9510 Renesas Electronics Konea Co., Ltd. 27., 234 Teheran-ro, Gangmar-Ku, Seoul, 135-920, Korea Tel: +60-3-7955-9330, Fax: +60-3-7955-9510