MC14512B

8-Channel Data Selector

The MC14512B is an 8-channel data selector constructed with MOS P -channel and N -channel enhancement mode devices in a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation.

- Diode Protection on All Inputs
- Single Supply Operation
- 3-State Output (Logic "1", Logic "0", High Impedance)
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb -free devices. Please see our website at www.onsemi.com for specific Pb -free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 2.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note NO TAG)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range T_{L}Lead Temperature (8-Second Soldering)	-65 to +150	${ }^{\circ} \mathrm{C}$
260	${ }^{\circ} \mathrm{C}$		

2. Maximum Ratings are those values beyond which damage to the device may occur.
3. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC14512BCP	PDIP-16	2000/Box
MC14512BD	SOIC-16	48/Rail
MC14512BDR2	SOIC-16	2500/Tape \& Reel
MC14512BF	SOEIAJ-16	See Note 1.
MC14512BFL1	SOEIAJ-16	See Note 1.

1. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

MC14512B

TRUTH TABLE

\mathbf{C}	\mathbf{B}	\mathbf{A}	Inhibit	Disable	\mathbf{Z}
0	0	0	0	0	X 0
0	0	1	0	0	X 1
0	1	0	0	0	X 2
0	1	1	0	0	X 3
1	0	0	0	0	X 4
1	0	1	0	0	X 5
1	1	0	0	0	X 6
1	1	1	0	0	X 7
X	X	X	1	0	0
X	X	X	X	1	High

PIN ASSIGNMENT

X0 [$1 \bullet$	16] V_{DD}
X1	2	15	DIS
X2	3	14	Z
X3	4	13	C
X4	5	12	B
X5	6	11	A
X6	7	10] INH
VSS	8	9	X7

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (4.)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|lc} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(\mathrm{V}_{0}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \text { "1" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left.\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
Output Drive Current $\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left.\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{\mathrm{IOH}}$	$\begin{gathered} 5.0 \\ 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (5.) (6.) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	I_{T}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.8 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(2.4 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{I} \end{aligned}$							$\mu \mathrm{Adc}$
Three-State Leakage Current	$\mathrm{I}_{\text {TL }}$	15	-	± 0.1	-	± 0.0001	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$

4. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

SWITCHING CHARACTERISTICS ${ }^{\text {(7.) }}\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, See Figure 1)

Characteristic	Symbol	V_{DD}	All Types		Unit
			Typ ${ }^{(8 .)}$	Max	
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{T L H}, \mathrm{t}_{T H L}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{T L H}, \mathrm{t}_{T H L}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	${ }_{\mathrm{t} \text { tilh }}$, $t_{\text {thi }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	$t_{\text {PLL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 330 \\ 125 \\ 85 \end{gathered}$	$\begin{aligned} & 650 \\ & 250 \\ & 170 \end{aligned}$	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 330 \\ 125 \\ 85 \end{gathered}$	$\begin{aligned} & 650 \\ & 250 \\ & 170 \end{aligned}$	ns
3-State Output Delay Times (Figure 3) "1" or "0" to High Z, and High Z to " 1 " or " 0 "	$\begin{aligned} & \mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }} \\ & \mathrm{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 60 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} \hline 150 \\ 100 \\ 75 \end{gathered}$	ns

7. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
8. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. AC Test Circuit and Waveforms

Figure 3. 3-State AC Test Circuit and Waveform

3-STATE MODE OF OPERATION

Output terminals of several MC14512B 8-Bit Data Selectors can be connected to a single date bus as shown. One MC14512B is selected by the 3-state control, and the remaining devices are disabled into a high-impedance "off" state. The number of 8-bit data selectors, N , that may be connected to a bus line is determined from the output drive current, $\mathrm{I}_{\mathrm{OD}}, 3$-state or disable output leakage current, I_{TL}, and the load current, I_{L}, required to drive the bus line
(including fanout to other device inputs), and can be calculated by:

$$
N=\frac{\mathrm{I}_{\mathrm{OD}}-\mathrm{I}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{TL}}}+1
$$

N must be calculated for both high and low logic state of the bus line.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

SOEIAJ-16 F SUFFIX PLASTIC EIAJ SOIC PACKAGE
 CASE 966-01
 ISSUE O

DETAIL P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE 3. DIMENSIONS D AND E DO NOT INCLUDE MEASURED AT THE PARTING LINE. MOLD FLAS MEASURED AT THE PARTING LINE. MOLD FLAS
OR PROTRUSIONS SHALL NOT EXCEED 0.15 OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
3. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
4. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD BETWEEN PROTRU
TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
\mathbf{A}	---	2.05	---	0.081
$\mathbf{A}_{\mathbf{1}}$	0.05	0.20	0.002	0.008
\mathbf{b}	0.35	0.50	0.014	0.020
\mathbf{c}	0.18	0.27	0.007	0.011
\mathbf{D}	9.90	10.50	0.390	0.413
\mathbf{E}	5.10	5.45	0.201	
\mathbf{e}	1.27 BSC	0.215		
$\mathrm{H}_{\mathbf{E}}$	7.40	8.20	0.050	
\mathbf{L}	0.50	0.85	0.020	0.323
$\mathbf{L}_{\mathbf{E}}$	1.10	1.50	0.043	0.033
\mathbf{M}	0°	10°	0.059	
\mathbf{Q}_{1}	0.70	0.90	0.028	0.035
\mathbf{Z}	---	0.78	---	0.031

ON Semiconductor and (ill are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
"Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your local Sales Representative.

