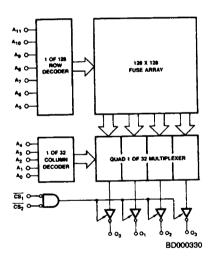
Am27S40/S41

4096 x 4 Bit Generic Series Bipolar IMOX™ PROM (with ultra fast access time)

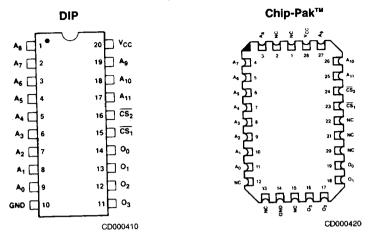
DISTINCTIVE CHARACTERISTICS


- Ultra fast access time "A" version (35ns max) Fast access time Standard version (50ns max) — allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm

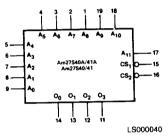
GENERAL DESCRIPTION

The Am27S40A, Am27S41A, Am27S40, and Am27S41 are high speed electrically programmable Schottky read only memories. Organized in 4096 x 4 configuration, they are available in both open collector (Am27S40A and Am27S40) and three-state (Am27S41A and Am27S41) output ver-

sions. After programming, stored information is read on outputs O_0-O_3 by applying unique binary addresses to A_0-A_{11} and holding the chip select inputs, \overline{CS}_1 and \overline{CS}_2 , LOW. If either chip select input goes to a logic HIGH, O_0-O_3 go to the OFF or HIGH impedance state.


BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE


Access Time	35ns	50	65ns		
Temperature Range	С	М	С	М	
Open Collector	27S40A	27S40A	27\$40	27S40	
Three-State	27S41A	27S41A	27S41 27PS41	27S41 27PS41	

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

V_{CC} = Pin 20 GND = Pin 10

ORDERING INFORMATION

Valid Combinations					
Am27S40 Am27S40A Am27S41 Am27S41A Am27PS41	PC, PCB, DC, DCB, LC, LCB, DM, DMB, FM, FMB, LM, LMB				

Am27PS41 Power Switched

POWER SWITCHING

The Am27PS41 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, I_{CC} is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

 When the Am27PS41 is selected by a low level on CS₁, a current surge is placed on the V_{CC} supply due to the power-

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

- up feature. In order to minimize the effects of this current transient, it is recommended that a 0.1 µf ceramic capacitor be connected from pin 20 to pin 10 at each device. (See Figure 1.)
- Address access time (t_{AA}) can be optimized if a chip enable set-up time (t_{EAS}) of greater than 25ns is observed.
 Negative set-up times on chip enable (t_{EAS} < 0) should be avoided. (For typical and worse case characteristics, see Figures 2A and 2B.)

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

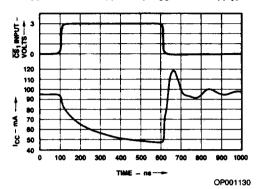
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage0.5V to +7.0V
DC Voltage Applied to Outputs (Except During Programming)0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming21V
Output Current into Outputs During Programming (Max Duration of 1 sec)250mA
DC Input Voltage0.5V to +5.5V
DC Input Current30mA to +5mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Temperature	0°C to +70°C +4.75V to +5.25V
Military (M) Devices Temperature Supply Voltage Operating ranges define those limity of the device is guaranteed.	+4.5V to +5.5V

DC CHARACTERISTICS over operating range unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Typ (Note 1)	Max	Units	
V _{OH} (TS Devices only)	OH Output HIGH VCC = MIN, 10H = -2.0mA						Volts
(10.000)	Output LOW Voltage	Vcc = MIN, IoL = 16mA	COM'L			0.45	Volts
V _{OL}		VIN = VIH or VIL	MIL			0.50	10113
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage finputs (Note 4)	for all	2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage fi inputs (Note 4)	or all			0.8	Volts
IIL .	Input LOW Current	V _{CC} = MAX, V _{IN} = 0.45V		-0.020	-0.250	mA	
liн	Input HIGH Current	V _{CC} = MAX, V _{IN} = V _{CC}				40	μΑ
ISC (TS Devices only)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V	COM'L	-20	-40	-90	mA
		(Note 2)	MIL	-15	-40	-90	
	Power Supply Current	All inputs = GND,	COM'L		110	165	1/
lcc		V _{CC} = MAX $\overline{\text{CS}}_1$ = 2.7V, All other inputs = GND		110 50	170 85	mA	
Vı	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -18mA				-1.2	Volt
	Output Leakage Current	Vcc = MAX	Vo = Vcc	l		40	Αμ [
1CEX		VCC = MAX VCS ₁ = 2.4V		<u> </u>	-40	1	
Cin	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 3)		 	5.0		ρF
Cout	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz (Note 3)			8.0	<u> </u>	

Notes:

- 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.
- Not more than one output should be shorted at a time.
 Duration of the short circuit should not be more than one second.
- These parameters are not 100% tested, but are periodically sampled.
- These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC OPERATING CHARACTERISTICS

Typical I_{CC} Current Surge without 0.1mF (I_{CC} is Current Supplied by V_{CC} Power Supply)

Typical I_{CC} Current Surge with 0.1mF (I_{CC} is Current Supplied by V_{CC} Power Supply)

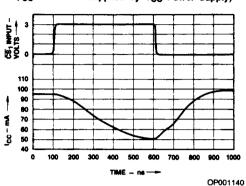


Figure 1. I_{CC} Current

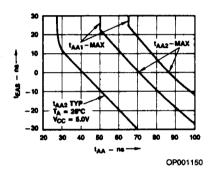


Figure 2A. tAA versus tEAS

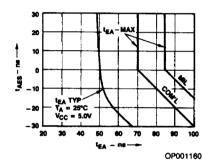
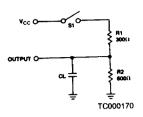



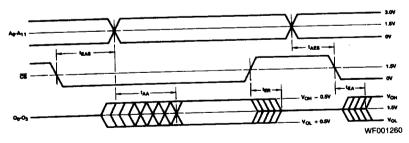
Figure 2B. tEA versus tAES

SWITCHING TEST CIRCUIT

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGING FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGING FROM L TO H
XXXX	DON'T CARE: ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
}	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
		KS00001

SWITCHING CHARACTERISTICS over operating range unless otherwise specified


				27S C devices		27S M devices		27PS C devices		27S M devices		
	Cumbal	Description		Min	Max	Min	Max	Min	Max	Min	Max	Units
No.	Symbol		STD		50		65		50		65	j
1	1 taa /	Address Access Time	 	35		50		\sim]	
	2 t _{EA} Enable Access		STD	t	25	1	30		70		85	1
2		Enable Access Time	A	 	25		30				L	ns
			STD	 -	25		30		25		30	1
3 ten	Enable Recovery Time	A	 	25	 	30	\Box				j	
			STD	+	-	†	\vdash		, 70		85	1
4	taaps	Power Switched Address Access Time (27PS devices only)	A	\top								<u></u>

Notes:

- t_{AA} is tested with switch S₁ closed and C_L = 30pF. t_{EAS} is defined as chip enable setup time.
- For the three-state output, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is

tested with C_L = 5pF. HIGH to high impedance tests are made with S_1 open to an output voltage of V_{OH} -0.5V; LOW to high impedance tests are made with S_1 closed to the V_{OL} +0.5V level.

SWITCHING WAVEFORMS

Note: Level on output while either CS is HIGH is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.