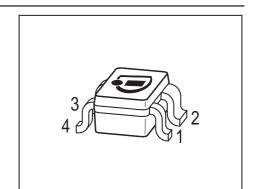


NPN Silicon RF Transistor

- For medium power amplifiers
- Compression point P_{-1dB} = +19 dBm at 1.8 GHz maximum available gain G_{ma} = 15.5 dB at 1.8 GHz Noise figure F = 1.25 dB at 1.8 GHz
- Transition frequency $f_T = 24 \text{ GHz}$
- Gold metallization for high reliability
- SIEGET ® 25 GHz fT Line
- Pb-free (RoHS compliant) package¹⁾
- Qualified according AEC Q101


ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package		
BFP450	ANs	1=B	2=E	3=C	4=E	-	-	SOT343

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
$T_A > 0$ °C		4.5	
$T_A \le 0$ °C		4.1	
Collector-emitter voltage	V_{CES}	15	
Collector-base voltage	V_{CBO}	15	
Emitter-base voltage	V_{EBO}	1.5	
Collector current	I _C	100	mA
Base current	I _B	10	
Total power dissipation ²⁾	P_{tot}	450	mW
<i>T</i> _S ≤ 96 °C			
Junction temperature	T_{i}	150	°C
Ambient temperature	T_{A}	-65 150	
Storage temperature	$T_{\rm stg}$	-65 150	

¹Pb-containing package may be available upon special request

²T_S is measured on the collector lead at the soldering point to the pcb

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}	≤ 120	K/W

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$, ,				
Collector-emitter cutoff current	I _{CES}	-		10	μΑ
$V_{CE} = 15 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	/ _{EBO}	-	-	10	μΑ
$V_{EB} = 0.5 \text{ V}, I_{C} = 0$					
DC current gain	h _{FE}	60	95	130	-
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 4 V, pulse measured					

 $^{^{1}\}mbox{For calculation}$ of $R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

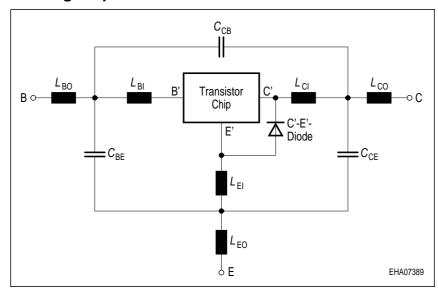
Parameter Parameter Stics at $I_A = 25^{\circ}\text{C}$, unless of the state	Symbol	Values			Unit		
		min.	typ.	max.			
AC Characteristics (verified by random sampling)							
Transition frequency	f_{T}	18	24	-	GHz		
$I_{\rm C} = 90 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ f = 1 \text{ GHz}$							
Collector-base capacitance	C_{cb}	-	0.48	0.8	pF		
$V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0,$							
emitter grounded							
Collector emitter capacitance	C _{ce}	-	1.2	-			
$V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$,							
base greunded							
Emitter-base capacitance	C _{eb}	-	1.75	-			
$V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{CB} = 0$,							
collector grounded							
Noise figure	F	-	1.25	-	dB		
$I_{C} = 10 \text{ mA}, \ V_{CE} = 2 \text{ V}, \ f = 1.8 \text{ GHz}, \ Z_{S} = Z_{Sopt}$							
Power gain, maximum available ¹⁾	G _{ma}	-	15.5	-			
$I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 2 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt,} \ Z_{\rm L} = Z_{\rm Lopt},$							
f = 1.8 GHz							
Insertion power gain	$ S_{21} ^2$	8	11.5	-	dB		
$V_{CE} = 2 \text{ V}, I_{C} = 50 \text{ mA}, f = 1.8 \text{ GHz},$							
$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$							
Third order intercept point at output ²⁾	IP ₃	-	29	-	dBm		
$V_{CE} = 3 \text{ V}, I_{C} = 50 \text{ mA}, f = 1.8 \text{ GHz},$							
$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$							
1dB Compression point at output	P _{-1dB}	-	19	-			
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,							
f = 1.8 GHz							

 $^{^{1}}G_{\text{ma}} = |S_{21e} / S_{12e}| (k-(k^{2}-1)^{1/2})$

²IP3 value depends on termination of all intermodulation frequency components.

Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):


Transistor Chip Data:

IS =	0.13125	fA	BF =	76.123	-	NF =	0.79652	-
VAF =	24.165	V	IKF =	0.58905	Α	ISE =	28341	fA
NE =	1.5563	-	BR =	21.254	-	NR =	1.2966	-
VAR =	13.461	V	IKR =	0.25878	Α	ISC =	0.012292	fA
NC =	0.70543	-	RB =	5.403	Ω	IRB =	0.013181	mΑ
RBM =	2.1659	Ω	RE =	0.45346	-	RC =	0.50084	Ω
CJE =	3.2276	fF	VJE =	0.95292	V	MJE =	0.48672	-
TF =	7.5068	ps	XTF =	0.69972	-	VTF =	0.66148	V
ITF =	0.017655	mA	PTF =	0	deg	CJC =	1049.5	fF
VJC =	1.1487	V	MJC =	0.50644	-	XCJC =	0.28285	-
TR =	2.6912	ns	CJS =	0	F	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.91274		TNOM	300	K

C'-E'-dioden Data (Berkley-Spice 1G.6 Syntax): IS = 25 fA; N = 1.05 -, $RS = 5 \Omega$

All parameters are ready to use, no scalling is necessary.

Package Equivalent Circuit:

$$L_{\rm BI} = 0.31$$
 nH $L_{\rm BO} = 0.63$ nH $L_{\rm EI} = 0.2$ nH $L_{\rm EO} = 0.05$ nH $L_{\rm CI} = 0.29$ nH $L_{\rm CO} = 0.68$ nH $L_{\rm CBE} = 208$ fF $L_{\rm CCB} = 3.2$ fF $L_{\rm CCE} = 213$ fF Valid up to 6GHz

The SOT343 package has two emitter leads. To avoid high complexity to the package equivalent circuit both leads are combined in one electrical connection

Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a InfineonTechnologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

For non-linear simulation:

- · Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies < 100MHz.
 For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

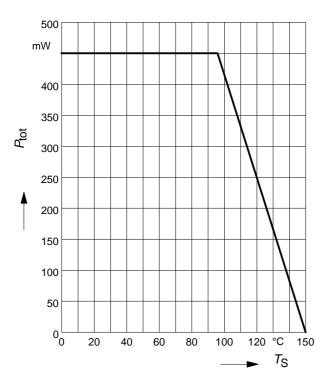
 This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

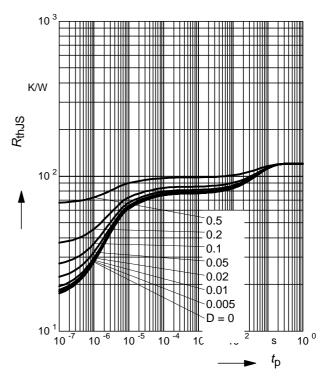
Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

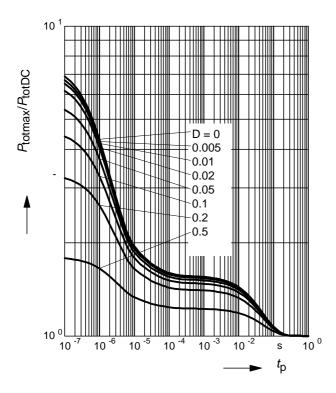
- · Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

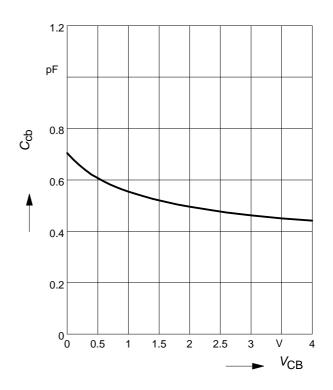
Please note, that the broadest lead is the emitter lead.


Common Emitter S- and Noise-parameter


For detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$

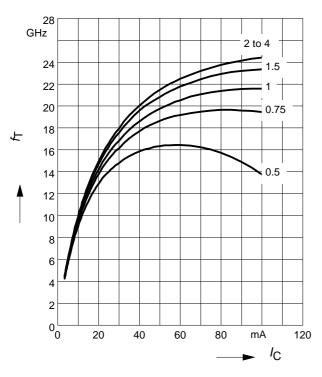

Permissible Pulse Load $R_{thJS} = f(t_p)$



Permissible Pulse Load

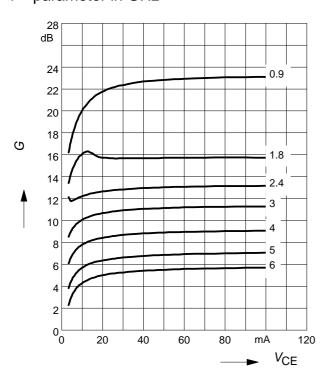
 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$

Collector-base capacitance C_{cb} = $f(V_{CB})$ f = 1MHz

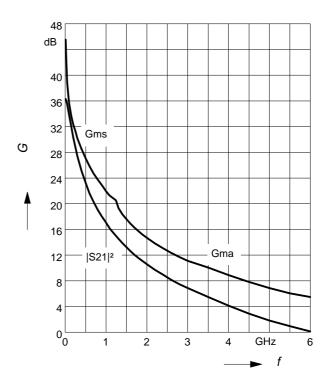


Transition frequency $f_T = f(I_C)$

f = 1 GHz

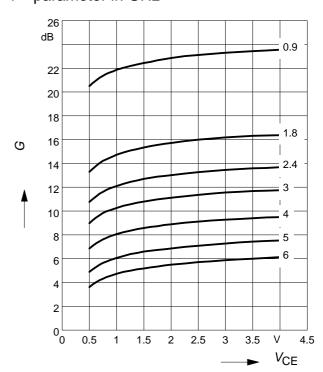

 V_{CE} = parameter in V

Power gain G_{ma} , $G_{ms} = f(I_C)$


 $V_{CE} = 2V$

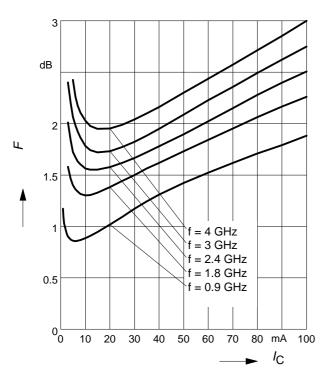
f = parameter in GHz

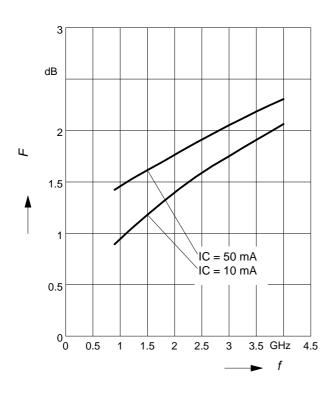
Power gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(t)$


$$V_{CE} = 2 \text{ V}, I_{C} = 50 \text{ mA}$$

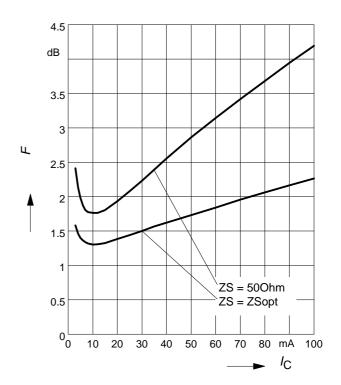
Power gain G_{ma} , $G_{ms} = f(V_{CE})$

 $I_{\rm C} = 50 \, {\rm mA}$


f = parameter in GHz

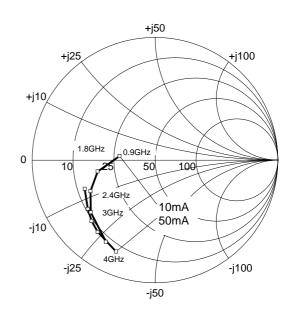

Noise figure $F = f(I_C)$

$$V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}$$


Noise figure F = f(f)

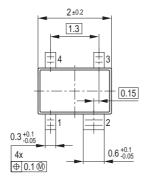
$$V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}$$

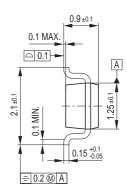
Noise figure $F = f(I_{\mathbb{C}})$

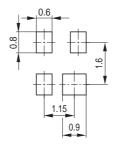

$$V_{CE} = 2 \text{ V}, f = 1.8 \text{ GHz}$$

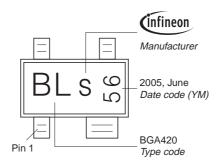
Source impedance for min.

noise figure vs. frequency

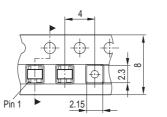

$$V_{CE} = 2 \text{ V}, I_{C} = 10 \text{mA} / 50 \text{ mA}$$




Package Outline



Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.