OIDT

Features

- $256 \mathrm{~K} \times 36,512 \mathrm{~K} \times 18$ memory configurations
- Supports high performance system speed - 100 MHz (7.5 ns Clock-to-Data Access)
- ZBT ${ }^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{O E}$
- Single R \bar{W} (READ/WRITE) control pin
- 4-word burst capability (Interleaved or linear)
- Individual byte write ($\overline{\mathrm{BW}_{1}}-\overline{\mathrm{BW}} 4$) control (May tie active)
- Three chip enables for simple depth expansion
- 3.3 V power supply ($\pm 5 \%$)
- 3.3 V ($\pm 5 \%$) I/O Supply (VDDQ)
- Power down controlled by ZZ input
- Packaged in a JEDEC standard 100 -pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA).

Description

The IDT71V65703/5903 are 3.3 V high-speed 9,437,184-bit (9 Megabit) synchronous SRAMs organized as $256 \mathrm{~K} \times 36 / 512 \mathrm{~K} \times 18$. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus they have been given the name ZBT ${ }^{T M}$, or Zero Bus Turnaround.

Address and control signals are appliedto the SRAM during one clock
cycle, and on the next clock cycle the associated data cycleoccurs, be it read or write.

The IDT71V65703/5903 contain address, data-in and control signal registers. The outputs are flow-through (no output data register). Output enable is the only asynchronous signal and can be used to disable the outputs at any given time.

A Clock Enable ($\overline{\mathrm{CEN}}$) pin allows operation of the IDT71V65703/5903 tobesuspendedaslongasnecessary. All synchronousinputsareignoredwhen CEN is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}}_{2}$) that allow the user to deselect the device when desired. If any one of these three is not asserted when ADV/LDislow, no new memory operation can be initiated. However, any pending datatransfers(readsor writes) will be completed. The data bus will tri-state one cycle after the chip is deselected or a write is initiated.

The IDT71V65703/5903 have an on-chip burst counter. In the burst mode, the IDT71V65703/5903 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/ $\overline{\mathrm{LD}}$ signal is used to load a new external address (ADV//DD$=L O W$) or increment the internal burstcounter (ADV/ $\overline{\mathrm{LD}}=\mathrm{HIGH}$).

The IDT71V65703/5903 SRAMs utilize IDT's latest high-performance CMOSprocess andare packagedinaJEDECStandard $14 \mathrm{mmx} 20 \mathrm{~mm} 100-$ pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and a 165 fine pitch ball grid array (fBGA).

Pin Description Summary

A0-A 18	Address Inputs	Input	Synchronous
$\overline{\mathrm{CE}}_{1}, \mathrm{CE} 2, \overline{\mathrm{CE}}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
$\mathrm{R} \bar{W}$	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BWW}}_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/ $\overline{L D}$	Advance Burst Address/Load New Address	Input	Synchronous
$\overline{\mathrm{LBO}}$	Linear/Interleaved Burst Order	Input	Static
ZZ	Sleep Mode	Input	Asynchronous
VO0-V/O31, VOP1-VOp4	Data Input/Output	VO	Synchronous
VDD, VDDQ	Core Power, VO Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/O	Active	Description
A0-A18	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/L̄D low, $\overline{\mathrm{C} E N}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	ADV/ $\overline{\mathrm{D}}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/ $\overline{\mathrm{LD}}$ is low with the chip deselected, any burst in progress is terminated. When ADV/ $\overline{\mathrm{LD}}$ is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/L̄D is sampled high.
R / \bar{W}	Read / Write	1	N/A	R / \bar{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place one clock cycle later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\mathrm{CEN}}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of $\overline{C E N}$ sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, $\overline{C E N}$ must be sampled low at rising edge of clock.
$\bar{B}^{\bar{W}} 1-\bar{B}^{\text {W }}{ }_{4}$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R / \bar{W} and $A D V / \overline{L D}$ are sampled low) the appropriate byte write signal $\left(\overline{\mathrm{B}} \bar{W}_{1}-\overline{\mathrm{B}} \bar{W}_{4}\right)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when $R \bar{W}$ is sampled high. The appropriate byte(s) of data are written into the device one cycle later. $\overline{\mathrm{B}}_{1}-\overline{\mathrm{B}} \bar{W}_{4}$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{C}} \overline{\mathrm{E}}_{1}, \overline{\mathrm{C}} \overline{\mathrm{E}}_{2}$	Chip Enables	I	LOW	Synchronous active low chip enable. $\overline{\mathrm{C}} \overline{\mathrm{E}}_{1}$ and $\overline{\mathrm{C}} \bar{E}_{2}$ are used with CE2 to enable the IDT71V65703/5903 ($\overline{\mathrm{C}} \bar{E}_{1}$ or $\overline{\mathrm{C}} \bar{E}_{2}$ sampled high or CE 2 sampled low) and $\mathrm{ADV} / \overline{\mathrm{D}}$ low at the rising edge of clock, initiates a deselect cycle. The $Z^{\prime} T^{M M}$ has a one cycle deselect, i.e., the data bus will tri-state one clock cycle after deselect is initiated.
CE2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{C}} \overline{\mathrm{E}}_{1}$ and $\overline{\mathrm{C}} \overline{\mathrm{E}}_{2}$ to enable the chip. CE 2 has inverted polarity but otherwise identical to $\overline{\mathrm{C}} 1$ and $\overline{\mathrm{C}} \overline{\mathrm{E}}_{2}$.
CLK	Clock	I	N/A	This is the clock input to the IDT71V65703/5903. Except for $\overline{\mathrm{O}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{aligned} & \text { //Oo-//O31 } \\ & \text { I/Op1-//Op4 } \end{aligned}$	Data Input/Output	I/O	N/A	Data input/output (/O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register).
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input, and it must not change during device operation.
$\bar{O} \bar{E}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{\mathrm{O}} \mathrm{E}$ must be low to read data from the $71 \mathrm{~V} 65703 / 5903$. When $\overline{\mathrm{O}} \overline{\mathrm{E}}$ is HIGH the $/ / O$ pins are in a high-impedance state. $\bar{O} \bar{E}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{O}} \mathrm{E}$ can be tied low.
Z	Sleep Mode	I	HIGH	Asynchronous sleep mode input. Z HIGH will gate the CLK internally and power down the IDT71V65703/5903 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
Vdo	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V //O supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:
5298 tol 02

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram - 256K x 36

5298 drw 01

Functional Block Diagram - 512K x 18

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	V
VSS	Ground	0	0	0	V
VIH	Input High Voltage - Inputs	2.0	-	VDD +0.3	V
VIH	Input High Voltage - //O	2.0	-	VDDQ +0.3	V
VIL	Input Low Voltage	$-0.3^{(1)}$	-	0.8	V

NOTE:

1. VIL (min.) $=-1.0 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature ${ }^{(1)}$	Vss	VdD	VdDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$

NOTES:

1. TA_{A} is the "instant on" case temperature.

Pin Configuration - 256K x 36

Top View 100 TQFP

NOTES:

1. Pins 14 and 66 do not have to be connected directly to Vss as long as the input voltage is \leq VIL.
2. Pin 16 does not have to be connected directly to $\mathrm{VDD}_{\text {d }}$ as long as the input voltage is \geq VIH.
3. Pins 84 is reserved for a future 16 M .
4. $\operatorname{DNU}=$ Do not use. Pins $38,39,42$ and 43 are reserved for respective JTAG pins TMS, TDI, TDO and TCK. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration - 512K x 18

Top View 100 TQFP

NOTES:

1. Pins 14 and 66 do not have to be connected directly to Vss as long as the input voltage is \leq VIL.
2. Pin 16 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
3. Pin 84 is reserved for a future 16 M .
4. $\mathrm{DNU}=$ Do not use. Pins 38, 39, 42 and 43 are reserved for respective JTAG pins: TMS, TDI, TDO and TCK. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

100 TQFP Capacitance ${ }^{(1)}$
($\mathrm{TA}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 . 0} \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	5	pF
CIo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{55,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Commercial	0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial	-40 to +85	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
IOUT	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA is the "instant on" case temperature.

119 BGA Capacitance ${ }^{(1)}$
($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	7	pF
CIVo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

165 fBGA Capacitance ${ }^{(1)}$
(TA $=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TBD	pF
Clo	I/O Capacitance	Vout $=3 \mathrm{dV}$	TBD	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - 256K x 36, 119 BGA

Pin Configuration - 512K x 18, 119 BGA

	1	2	3	4	5	6	7
A	O	O	O	\bigcirc	O	O	\bigcirc
	VDDQ	A6	A4	NC(3)	A8	A16	VDDQ
	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc
B	NC	CE2	A3	ADV/ $\overline{L D}$	A9	$\overline{C E}_{2}$	NC
	0	0	\bigcirc	0	0	0	0
C	NC	A7	A2	VDD	A13	A17	NC
	0	0	0	\bigcirc	O	0	0
D	I/O8	NC	VSS	NC	VSS	I/O	NC
	O	\bigcirc	0	O	0	0	0
E	NC	I/O9	VSS	$\overline{\mathrm{CE}} 1$	VSS	NC	I/O
	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc	0
F	VDDQ	NC	VSS	$\overline{\text { OE }}$	VSS	I/O	VDDQ
	\bigcirc	0	0	0	O	0	\bigcirc
G	NC	1/O10	$\overline{B W} 2^{2}$	A18	VSS	NC	1/O
	0	O	\bigcirc	0	0	O	0
H	I/O11	NC	VSS	R/W	VSS	I/O	NC
	O	\bigcirc	\bigcirc	O	O	0	0
J	VDDQ	VDD	$\mathrm{VDD}(2)$	VDD	VSS(1)	VDD	VDDQ
	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc	\bigcirc
K	NC	1/O12	VSS	CLK	VSS	NC	1/O
	0	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	0
L	I/O13	NC	VSS	NC	$\overline{B W}_{1}$	I/O	NC
	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
M	VDDQ	I/O14	VSS	CEN	VSS	NC	VDDQ
	\bigcirc						
N	1/O15	NC	VSS	A1	VSS	I/O	NC
	0	\bigcirc	0	0	0	0	0
P	NC	1/OP2	VSS	A0	VSS	NC	I/O
	0	\bigcirc	0	O	0	0	0
R	NC	A5	$\overline{\text { LBO }}$	VDD	VSS(1)	A12	NC
	0	O	0	\bigcirc	0	O	0
T	NC	A10	A15	NC	A14	A11	ZZ
	\bigcirc	0	\bigcirc	0	0	0	0
\mathbf{U}	VDDQ	DNU(4)	DNU ${ }^{(4)}$	DNU(4)	DNU(4)	DNU(4)	VDDQ

Top View

NOTES:

1. R5 and J 5 do not have to be directly connected to Vss as long as the input voltage is \leq VIL.
2. J3 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{V}_{1} \mathrm{H}$.
3. $A 4$ is reserved for future 16 M .
4. $\mathrm{DNU}=\mathrm{Do}$ not use; Pin U2, U3, U4, U5 and U6 are reserved for respective JTAG pins: TMS, TDI, TCK, TDO and TRST. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration - 256K x 36, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(3)}$	A7	$\overline{\mathrm{C}} \overline{1}_{1}$	$\overline{\mathrm{B}} \bar{W}_{3}$	$\overline{\mathrm{B}} \bar{W}_{2}$	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\bar{C} E \bar{N}$	ADV/L̄D	A17	A8	NC
B	NC	A6	CE2	$\overline{\mathrm{B}} \bar{W}_{4}$	$\bar{B} \bar{W}_{1}$	CLK	R / \bar{W}	$\overline{\mathrm{O}}$	NC ${ }^{(3)}$	A9	NC ${ }^{(3)}$
C	//Op3	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	//Op2
D	I/O17	I/O16	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//O15	//O14
E	I/O19	I/O18	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/013	//O12
F	1/021	//O20	VDDQ	VDD	VSS	Vss	Vss	VDD	VDDQ	1/O11	//O10
G	1/O23	//O22	VDDQ	VDD	VSs	Vss	VSs	VDD	VDDQ	I/09	1/08
H	VSS ${ }^{(1)}$	VDD ${ }^{(2)}$	NC	VDD	VSS	Vss	VSS	VDD	NC	NC	Z
J	l/O25	//O24	VDDQ	VDD	VSs	Vss	Vss	VDD	VDDQ	//07	1/06
K	1/O27	//O26	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//05	//O4
L	1/O29	//O28	VDDQ	VDD	VSs	Vss	Vss	VDD	VDDQ	//03	//O2
M	1/031	//О30	VDDQ	VDD	VSs	Vss	Vss	VDD	VDDQ	//01	1/00
N	//Op4	NC	VDDQ	Vss	DNU ${ }^{(4)}$	NC	VSS ${ }^{(1)}$	Vss	VDDQ	NC	//Op1
P	NC	NC ${ }^{(3)}$	A5	A2	DNU ${ }^{(4)}$	A1	DNU(4)	A10	A13	A14	NC
R	$\overline{\mathrm{B} O}$	$N C^{(3)}$	A4	A3	DNU ${ }^{(4)}$	A0	DNU ${ }^{(4)}$	A11	A12	A15	A16

Pin Configuration - 512K x 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(3)}$	A7	$\overline{\mathrm{C}} \overline{\mathrm{E}}^{\prime}$	$\overline{\mathrm{B}} \mathrm{W}_{2}$	NC	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\overline{\mathrm{C}} \overline{\mathrm{E}}$	ADVILD	A18	A8	A10
B	NC	A6	CE2	NC	$\bar{B} \bar{W}_{1}$	CLK	R / \bar{W}	$\overline{\mathrm{O}} \mathrm{E}$	NC ${ }^{3}$	A9	NC ${ }^{(3)}$
C	NC	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	//Op1
D	NC	//08	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	I/O7
E	NC	I/O9	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/06
F	NC	//O10	VDDQ	VDD	Vss	Vss	Vss	VDD	VdDQ	NC	I/O5
G	NC	//O11	VDDQ	VDD	Vss	VSs	Vss	VDD	VDDQ	NC	I/O4
H	Vss ${ }^{(1)}$	VDD ${ }^{(2)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	Z
J	1/012	NC	VDDQ	VDD	Vss	VSs	Vss	VDD	VDDQ	I/O3	NC
K	1/013	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//O2	NC
L	//014	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VdDQ	1/01	NC
M	//015	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/O0	NC
N	//Op2	NC	VDDQ	Vss	DNU ${ }^{(4)}$	NC	Vss ${ }^{(1)}$	Vss	VDDQ	NC	NC
P	NC	NC ${ }^{3}$	A5	A2	DNU ${ }^{(4)}$	A1	DNU ${ }^{(4)}$	A11	A14	A15	NC
R	$\overline{\text { LBO }}$	$N C^{(3)}$	A4	A3	DNU ${ }^{(4)}$	A0	DNU ${ }^{(4)}$	A12	A13	A16	A17

NOTES:

1. Pins H 1 and N 7 do not have to be connected directly to Vss as long as the input voltage is $\leq \mathrm{V}$ IL.
2. Pin H 2 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
3. Pin B9, B11, A1, R2 and P2 are reserved for a future 18M, 36M, 72M, 144M and 288M respectively.
4. $\operatorname{DNU}=$ Do not use. Pins P5, R5, P7, R7 and N5 are reserved for respective JTAG pins: TDI, TMS, TDO, TCK and TRST on future revisions. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Synchronous Truth Table ${ }^{(1)}$

$\overline{C E N}$	R/W	$\overline{\mathrm{CE}} 1, \mathrm{CE}^{2}{ }^{(5)}$	ADV/ \bar{D}	BWx	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	I/0 (One cycle later)
L	L	L	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	L	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	H	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HIZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	HIZ
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $L=$ VIL, $H=$ VIH, $X=$ Don't Care.
2. When $A D V / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The R / \bar{W} signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the $\mathrm{R} \overline{\mathrm{W}}$ signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{\mathrm{CE}} 1$, or $\overline{\mathrm{CE}}_{2}$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state one cycle after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H}$ on these chip enable pins. The chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z during device power-up.
7. Q - data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R / \bar{W}	$\overline{\mathrm{BW}}_{1}$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}} 3^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], //Opi) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], //Op2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], /OP3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (//O[24:31], /OP4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{V} \mathrm{V}, \mathrm{H}=\mathrm{V} \mathrm{IH}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N / A for x 18 configuration.

Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{VDD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT ${ }^{\text {TM }}$ SRAMs with
3.3V I/O, Burst Counter, and Flow-Through Outputs

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:
5298 tbl 11

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

CYCLE	$\mathrm{n}+29$	$\mathrm{n}+30$	$\mathrm{n}+31$	$\mathrm{n}+32$	$\mathrm{n}+33$	n+34	$\mathrm{n}+35$	n+36	$\mathrm{n}+37$
CLOCK	\triangle	4	4	4	4	4	4	4	
ADDRESS ${ }^{(2)}$ (A0 - A17)	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\begin{gathered} \text { CONTROL }^{(2)} \\ (\mathrm{R} / \overline{\mathrm{W}}, \mathrm{ADV} / \overline{\mathrm{LD}, \overline{\mathrm{BW}} \mathrm{x})} \end{gathered}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(2)} \\ \text { I/O }[0: 31], \mathrm{I} / \mathrm{O} \mathrm{P}[1: 4] \end{gathered}$	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35	D/Q36

NOTES:

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}}_{1}, \mathrm{CE} 2$ and $\overline{\mathrm{CE}} 2$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(\mathbf{2})}$

Cycle	Address	R/ \bar{W}	ADV/ $/ \bar{D}$	$\overline{\mathrm{CE}} 1^{1(1)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{O}}$	1/0	Comments
n	A0	H	L	L	L	X	X	D1	Load read
n+1	X	X	H	X	L	X	L	Q0	Burst read
n+2	A1	H	L	L	L	X	L	Q0+1	Load read
n+3	X	X	L	H	L	X	L	Q1	Deselect or STOP
n+4	X	X	H	X	L	X	X	Z	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	L	Q2	Burst read
n+7	X	X	L	H	L	X	L	Q2+1	Deselect or STOP
n+8	А3	L	L	L	L	L	X	Z	Load write
n+9	X	X	H	X	L	L	X	D3	Burst write
n+10	A4	L	L	L	L	L	X	D3+1	Load write
n+11	X	X	L	H	L	X	X	D4	Deselect or STOP
n+12	X	X	H	X	L	X	X	Z	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	D5	Load read
n+15	A_{7}	L	L	L	L	L	L	Q6	Load write
n+16	X	X	H	X	L	L	X	D_{7}	Burst write
n+17	A8	H	L	L	L	X	X	D7+1	Load read
n+18	X	X	H	X	L	X	L	Q8	Burst read
n+19	A9	L	L	L	L	L	L	Q8+1	Load write

NOTES:

1. $\overline{\mathrm{CE}} 2$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.
2. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedence.

Read Operation ${ }^{(1)}$

Cycle	Address	R / \bar{W}	$\mathrm{ADV} / \overline{\mathrm{D}}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A_{0}	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	X	X	L	Q_{0}	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}} 2$ signals.

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{\mathrm{D}}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{O}}$	1/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	H	X	L	X	L	Q0	Address A0 Read Out, Inc. Count
n+2	X	X	H	X	L	X	L	Q0+1	Address A0+1 Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q0+2	Address A0+2 Read Out, Inc. Count
n+4	X	X	H	X	L	X	L	Q0+3	Address A0+3 Read Out, Load A1
n+5	A1	H	L	L	L	X	L	Q0	Address A0 Read Out, Inc. Count
n+6	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
n+7	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}} \mathbf{1}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	D 0	Write to Address Ao

NOTES:
5298 tbl 15

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $/ \bar{D}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+2	X	X	H	X	L	L	X	D0+1	Address A0+1 Write, Inc. Count
n+3	X	X	H	X	L	L	X	D $0+2$	Address A0+2 Write, Inc. Count
n+4	X	X	H	X	L	L	X	D0+3	Address A0+3 Write, Load A1
n+5	A1	L	L	L	L	L	X	Do	Address Ao Write, Inc. Count
n+6	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
n+7	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:
5298 tbl 16

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBTTM SRAMs with
3.3V I/O, Burst Counter, and Flow-Through Outputs

Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{\mathrm{D}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	AddressAo and Control meet setup
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored
n+2	A1	H	L	L	L	X	L	Q0	Address A0 Read out, Load A1
n+3	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Qo_{0} is on the bus.
n+4	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Q_{0} is on the bus.
n+5	A2	H	L	L	L	X	L	Q1	Address A1 Read out, Load A2
n+6	A3	H	L	L	L	X	L	Q2	Address A2 Read out, Load A3
n+7	A4	H	L	L	L	X	L	Q3	Address A3 Read out, Load A4

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $/ \bar{D}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	A0	L	L	L	L	L	X	X	Address A0 and Control meet setup.
n+1	X	X	X	X	H	X	X	X	Clock n+1 lgnored.
n+2	A1	L	L	L	L	L	X	Do	Write data Do, Load A1.
n+3	X	X	X	X	H	X	X	X	Clock Ignored.
n+4	X	X	X	X	H	X	X	X	Clock Ignored.
n+5	A2	L	L	L	L	L	X	D1	Write Data D1, Load A2
n+6	A3	L	L	L	L	L	X	D2	Write Data D2, Load A3
n+7	A4	L	L	L	L	L	X	D3	Write Data D3, Load A4

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Read Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R / \bar{W}	ADV/ $\overline{L D}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	Z	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address A0 and Control meet setup.
n+3	X	X	L	H	L	X	L	Q0	Address Ao read out, Deselected.
n+4	A1	H	L	L	L	X	X	Z	Address A1 and Control meet setup.
n+5	X	X	L	H	L	X	L	Q1	Address A1 read out, Deselected.
n+6	X	X	L	H	L	X	X	Z	Deselected.
n+7	A2	H	L	L	L	X	X	Z	Address A2 and Control meet setup.
n+8	X	X	L	H	L	X	L	Q2	Address A2 read out, Deselected.
n+9	X	X	L	H	L	X	X	Z	Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.
3. Device outputs are ensured to be in High-Z during device power-up.

Write Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	$\mathrm{R} \overline{\mathrm{W}}$	$\mathrm{ADV} \overline{/ \mathrm{L}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathbf{0}$	Comments
n	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	Z	Deselected.
$\mathrm{n}+2$	A 0	L	L	L	L	L	X	Z	Address A0 and Control meet setup
$\mathrm{n}+3$	X	X	L	H	L	X	X	D 0	Data Do Write In, Deselected.
$\mathrm{n}+4$	A 1	L	L	L	L	L	X	Z	Address A1 and Control meet setup
$\mathrm{n}+5$	X	X	L	H	L	X	X	D 1	Data D1 Write In, Deselected.
$\mathrm{n}+6$	X	X	L	H	L	X	X	Z	Deselected.
$\mathrm{n}+7$	A 2	L	L	L	L	L	X	Z	Address A2 and Control meet setup
$\mathrm{n}+8$	X	X	L	H	L	X	X	D 2	Data D2 Write In, Deselected.
$\mathrm{n}+9$	X	X	L	H	L	X	X	Z	Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range (Vdo = 3.3V $\pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	니		Input Leakage Current	$\mathrm{V} D \mathrm{D}=\mathrm{Max} ., \mathrm{VIN}=0 \mathrm{~V}$ to $\mathrm{V} d \mathrm{~d}$	-	5	$\mu \mathrm{A}$
\|	LI		$\overline{\text { LBO }}$ Input Leakage Current ${ }^{(1)}$	$\mathrm{V} D \mathrm{D}=\mathrm{Max} ., \mathrm{VIN}=0 \mathrm{~V}$ to $\mathrm{V} d \mathrm{~d}$	-	30	$\mu \mathrm{A}$
\|ILO		Output Leakage Current	VOUT $=0 \mathrm{~V}$ to VCC	-	5	$\mu \mathrm{A}$	
VOL	Output Low Voltage	$\mathrm{OL}=+8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
VOH	Output High Voltage	$\mathrm{IOH}=-8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.4	-	V		

NOTE:
5298 tbl 21

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VoD if it is not actively driven in the application and the $Z Z$ pin will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating
 Temperature and Supply Voltage Range ${ }^{(1)}$ (Vdd = 3.3V $\pm 5 \%$)

Symbol	Parameter	Test Conditions	7.5ns		8 ns		8.5ns		Unit
			Com'l	Ind	Com'I	Ind	Com'l	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, $A D V / \bar{L} \bar{D}=X, V D D=$ Max., VIN \geq VIH or \leq VIL, $f=f m a X^{(2)}$	275	295	250	60	225	60	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VdD = Max., VIN \geq VHD or $\leq \operatorname{VLD}$, $f=0^{(2,3)}$	40	60	40	60	40	60	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, VdD $=$ Max., VIN \geq VhD or $\leq \operatorname{VLD}$, $f=f_{\text {max }}{ }^{(2,3)}$	105	125	100	120	95	115	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\bar{C} \bar{E} \bar{N} \geq \mathrm{V} \operatorname{H}, \mathrm{VDD}=\mathrm{Max}$., $\mathrm{VIN} \geq$ VHD or $\leq \operatorname{VLD}, \mathrm{f}=$ fmax $^{(2,3)}$	40	60	40	60	40	60	mA
Iz	Full Sleep Mode Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{C}} \overline{\mathrm{N}} \mathrm{N} \leq \mathrm{VIL}, \mathrm{VDD}=\mathrm{Max} ., \mathrm{Z} \geq$ VHD $\mathrm{VIN} \geq \mathrm{V} H \mathrm{D}$ or $\leq \mathrm{VLD}, \mathrm{f}=\mathrm{fmAX}{ }^{(2,3)}$	40	60	40	60	40	60	mA

NOTES:

1. All values are maximum guaranteed values.
2. At $f=f M A X$, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing.
3. For $1 / O s \mathrm{VHD}=\mathrm{V} D D Q-0.2 \mathrm{~V}, \mathrm{VLD}=0.2 \mathrm{~V}$. For other inputs $\mathrm{VHD}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$.

AC Test Load

AC Test Conditions

Input Pulse Levels	0 to 3 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	Figure 1

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics
(VdD = 3.3V $\mathbf{\pm 5 \%}$, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	7.5ns		8ns		8.5ns		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tcyc	Clock Cycle Time	10	-	10.5	-	11	-	ns
tch ${ }^{(1)}$	Clock High Pulse Width	2.5	-	2.7	-	3.0	-	ns
tcL ${ }^{(1)}$	Clock Low Pulse Width	2.5	-	2.7	-	3.0	-	ns

Output Parameters

tCD	Clock High to Valid Data	-	7.5	-	8	-	8.5	ns
tcDC	Clock High to Data Change	2	-	2	-	2	-	ns
tc_ ${ }^{(2,3,4)}$	Clock High to Output Active	3	-	3	-	3	-	ns
tchz ${ }^{(2,3,4)}$	Clock High to Data High-Z	-	5	-	5	-	5	ns
toe	Output Enable Access Time	-	5	-	5	-	5	ns
toLz ${ }^{(2,3)}$	Output Enable Low to Data Active	0	-	0	-	0	-	ns
toh ${ }^{(2,3,3)}$	Output Enable High to Data High-Z	-	5	-	5	-	5	ns

Set Up Times								
tSE	Clock Enable Setup Time	2.0	-	2.0	-	2.0	-	ns
tSA	Address Setup Time	2.0	-	2.0	-	2.0	-	ns
tsD	Data In Setup Time	2.0	-	2.0	-	2.0	-	ns
tsw	Read/Write (R/W) Setup Time	2.0	-	2.0	-	2.0	-	ns
tSADV	Advance/Load (ADV/LD]) Setup Time	2.0	-	2.0	-	2.0	-	ns
tsc	Chip Enable/Select Setup Time	2.0	-	2.0	-	2.0	-	ns
tsB	Byte Write Enable ($\overline{\mathrm{B}} \overline{\mathrm{X}}$) Setup Time	2.0	-	2.0	-	2.0	-	ns
Hold Times								
the	Clock Enable Hold Time	0.5	-	0.5	-	0.5	-	ns
tha	Address Hold Time	0.5	-	0.5	-	0.5	-	ns
tHD	Data In Hold Time	0.5	-	0.5	-	0.5	-	ns
tHW	Read/Write (R/W) Hold Time	0.5	-	0.5	-	0.5	-	ns
thadv	Advance/Load (ADV/LD) Hold Time	0.5	-	0.5	-	0.5	-	ns
thC	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	ns
thB	Byte Write Enable ($\overline{\mathrm{B}} \overline{\mathrm{W}}$) Hold Time	0.5	-	0.5	-	0.5	-	ns

NOTES:

1. Measured as HIGH above 0.6 V ddo and LOW below 0.4 V dod .
2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
3. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
4. To avoid bus contention, the output buffers are designed such that tCHz (device turn-off) is about 1 ns faster than tcLZ (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tcLz is a Min. parameter that is worse case at totally different test conditions ($0 \mathrm{deg} . \mathrm{C}, 3.465 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 3.135 V).

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

[^0]
Timing Waveform of Combined Read and Write Cycles ${ }^{(1,2,3)}$

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

NOIES:

1. $Q\left(A_{1}\right)$ represents the first output from the external address A_{1}. $\frac{D}{}\left(A_{2}\right)$ represents the input data to the $S_{R A M}$ corresponding to address A_{2}.
2. CE_{2} timing transitions are identical but inverted to the $\overline{C E}_{1}$ and CE_{2} signals. For example, when CE_{1} and $\overline{C E}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}.
3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur.
All internal registers in the SRAM will retain their previous state.
[^1]Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

[^2]
100-Pin Plastic Thin Quad Flatpack (TQFP) Package Diagram Outline

119 Ball Grid Array (BGA) Package Diagram Outline

(119 BALL)

NOTES:
ALL DIMENSIONING AND TOLERANCING CONFORIW TO ANSI Y $14.5 \mathrm{H}-1982$
(2) Seatins plane and primary datum -C-- are defned by the SEATNN PLANE AND PRINARY DATLM - -C-
SPHERICAL CRONNS OF THE SOLDER EALLS
"MD" IS THE BALL MATRIX SIZE IN THE "B" DIEECTION
"ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTON
"UE" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION
"N" IS THE MAXXIMU ALLOWABLE NUMPER OF SOLCER BALLS
\triangle PACKAGE MAY EXTEND TO EDGE PERIPHERY AND MAY CONSIST OF MOLLING COMPOUNE, EPOXY, MEALL, CERAMC OR OILR WATL
DIMENSION b" IS MEASURED AT THE MAXIMUM SDLDER BALL CIAMETER FARALLEL TO PRIMAFY BATUM $-\Sigma-$

actual shape of this feature is oftunal
AL DIMENSIONS ARE IN MILLIMETERS
THIS DRAWING CONFORNS TO JEDE PJBLKATION O5 REAISTRATION MS-028 VAFRIATIIN AA

165 Ball Grid Array (fBGA) Package Diagram Outline

IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT ${ }^{\text {TM }}$ SRAMs with

Timing Waveform of $\overline{\mathrm{OE}}$ Operation ${ }^{(1)}$

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

Datasheet Document History

12/31/99		Created new partnumber and datasheetfrom 71V657/59 to 71v65703/5903
04/20/00	Pg.5,6	Add JTAG resetpins to TQFP pin configuration; removedfootnote
		Addclarification note to Recommended Operating Temperature and Absolute Max Ratings tables
	Pg. 7	Add note to BGA pin configuration; correctedtypo within pinout
	Pg. 21	InsertTQFP Package Diagram Outiline
05/23/00		Add new package offering: $13 \mathrm{~mm} \times 15 \mathrm{~mm}$, 165 fine pitch ball grid array
	Pg. 23	Correction on 119 Ball Grid Array Package diagram Outline
07/28/00	Pg. 5-8	Remove JTAG pins from TQFP, BG119 and BQ165 pinouts, refer to IDT71V656xx and IDT71V658xx device errata sheet
	Pg. 7,8	Correct error in pinout, B 2 on BG 119 and B 1 on BQ 165 pinout
	Pg. 23	Update BG119 package diagram dimensions
11/04/00	Pg. 8	Add reference note to pin N5 on the BQ165 pinout, reserved for JTAG TRST
	Pg. 15	Addlız to DCElectrical Characteristics
12/04/02	Pg. 1-25	Changed datasheetfromPreliminary to final release.
	Pg. 5,6,15, 16,25	Addedl temp to datasheet
12/18/02	Pg. 1,2,5,6,7,8	Removed JTAG functionality for currentdie revision.
	Pg. 7	Corrected pin configuration on the x36, 119 BGA. Switched pins //OOand I/OP1.
03/02/09	Pg. 25	Removed "IDT" from orderable part number.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Rd
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200 fax: 408-284-2775
www.idt.com
for Tech Support:
sramhelp@idt.com
800-345-7015 or
408/284-4555

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

[^0]: NOTES: $D\left(A_{1}\right)$ represents the first input to the external address A_{1}. $D\left(A_{2}\right)$ represents the first input to the external address $A_{2} ; D\left(A_{2}+1\right)$ represents the next input data in the burst sequence of the base
 address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input.
 CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{C}}_{2}$ signals. For example, when $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are LOW on this waveform, CE 2 is HIGH^{2}. . Burst ends when new address and control are loaded into the SRAM by sampling ADV/ $\overline{\mathrm{LD}} \mathrm{LOW}$.
 4. R / \bar{W} is don't care when the SRAM is bursting (ADV/嘼 sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the $\mathrm{R} \bar{W}$ signal when new address and control are
 loaded into the SRAM.
 5. Individual Byte Write signals ($\overline{\mathrm{BW}} \mathrm{x}$) must be valid on all write and burst-write cycles. A write cycle is initiated when R/ \bar{W} signal is sampled LOW. The byte write information comes in one cycle before the actual data is presented to the SRAM.

[^1]: cycle before the actual data is presented to the SRAM.

[^2]: NOTES:

 1. $Q\left(A_{1}\right)$ represents the first output from the external address $A_{1} . D\left(A_{3}\right)$ represents the input data to the SRAM corresponding to address A_{3} etc.
 2. CE_{2} timing transitions are identical but inverted to the $\overline{C E}_{1}$ and \bar{C}_{2} signals. For example, when $\overline{C E}_{1}$ and $\overline{C E}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}.
 3. When either one of the Chip enables ($\overline{\mathrm{CE}}_{1}, \mathrm{CE} 2, \overline{\mathrm{C}}_{2}$) is sampled inactive at the rising clock edge, a deselect cycle is initiated. The data-bus tri-states one cycle after the initiation of the
 deselect cycle. This allows for any pending data transfers (reads or writes) to be completed.
 cycle before the actual data is presented to the SRAM.
