

FUSB301A Autonomous USB Type-C Controller with Configurable I²C Address

Features

- Fully Autonomous Type-C Controller Supports Type-C Version 1.1
- V_{DD} Operating Range, 3.0 V- 5.5 V
- Low Disable Power: I_{CC} = 2.0 µA (Max.)
- Low Standby Power: I_{CC} = 7.0 µA (Max.)
- DRP Mode with Optional Accessory Support
- Configurable I²C Address
- Capable of Supporting Try.SNK and Try.SRC
- Dead Battery Support (UFP Support when No Power Applied)
- 2 kV HBM ESD Protection
- Small Packaging, 12 Lead TMLP (1.6 mm x 1.6 mm x 0.375 mm)

Description

The FUSB301A is a fully autonomous Type-C controller optimized for <15 W applications. The FUSB301A offers CC logic detection for Source Mode, Sink Mode, DRP, accessory detection support, and dead battery support. The FUSB301A features configurable I²C address to support multiple ports per system. The FUSB301A features an extremely low power disable mode as well as low power during normal operation. It is available in an ultra thin, 12-Lead TMLP package.

Applications

- Smartphones
- Tablets
- Notebooks
- Ultra Portable Applications

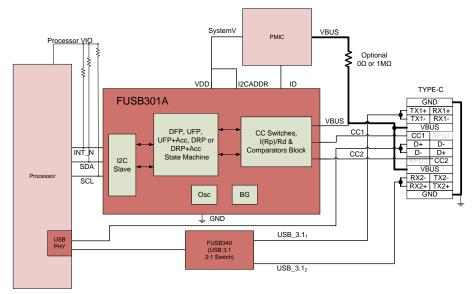


Figure 1. Typical Application

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FUSB301ATMX	-40 to 85°C	12-Lead Ultra-thin Molded Leadless Package (TMLP) 1.6 mm x 1.6 mm x 0.375 mm	Tape and Reel

Block Diagram

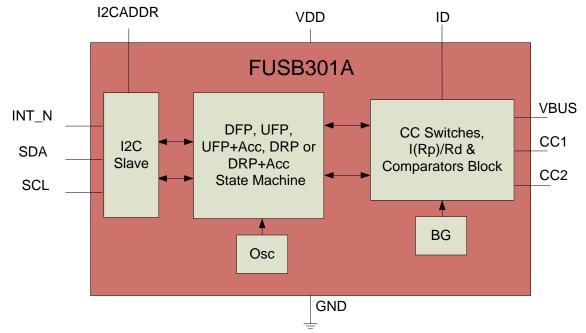


Figure 2. Block Diagram

Pin Configuration

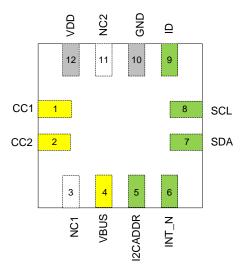


Figure 3. Pin Assignment (Top Through View)

Pin Descriptions

Pin #	Name	Туре	Description					
USB Type-C C	Connector Inter	rface						
1, 2	CC1, CC2	I/O	Type-C Configuration Channel					
4	VBUS	Input	VBUS input pin for attach and detach detection					
10	GND	Ground	Ground					
Power Interfac	се							
12	VDD	Power	Input Supply Voltage					
Signal Interfac	Signal Interface							
8	SCL	Input	I ² C serial clock signal to be connected to the I ² C master.					
7	SDA	Open-Drain I/O	I ² C serial data signal to be connected to the I ² C master					
6	INT_N	Open-Drain Output	Active LOW open drain interrupt output used to prompt the processor to read the I ² C register bits					
9	ID	Open-Drain Output	Used to Identify if connected device is Source or Sink. The ID Pin can be used to interface with USB2.0 Input on the processor.					
5	I2CADDR	Input	Used to change bit 3 of the I2C address so that multiple addresses can be used in a system where two device addresses conflict					
3	NC1	NC	No Connect – Tie to Ground or Float					
11	NC2	NC	No Connect – Tie to Ground or Float					

Dead Battery

If power is not applied to FUSB301A and it is attached to a Source device, then the Source would pull up the CC line connected through the cable. The FUSB301A in response would turn on the pull-down that will bring the CC voltage to a range that the Source can detect an attach and turn on VBUS.

Power Up, Initialization and Reset, Interrupt Operation

When power is first applied, the FUSB301A will power up in Sink mode with Accessory Support, with all interrupts masked. The local processor must configure the FUSB301A to the desired mode and clear the global interrupt mask bit, INT_MASK. The INT_N pin is an active low, open drain output. This pin indicates to the host processor that an interrupt has occurred in the

FUSB301A which needs attention. The INT_N pin is in a high impedance state by default after power-up or device reset, and the global interrupt mask (INT_MASK in Control register) is set. After INT_MASK bit is cleared by the local processor, the INT_N pin stays high impedance in preparation of future interrupts. When an interruptible event occurs, INT_N is driven LOW and is in a high impedance state again when the processor clears the interrupt by reading the interrupt registers. Subsequent to the initial power up or reset; if the processor writes a "1" to global interrupt mask bit when the system is already powered up, the INT_N pin stays in a high impedance state and ignores all interrupts until the global interrupt mask bit is cleared. If an event happens that would ordinarily cause an interrupt when the global interrupt mask bit is set, the INT_N pin goes LOW when the global interrupt mask is cleared.

Table 1. ID Pin Truth Table

TYPE Register (h12, bit 4)	Description	ID
SINK = b0	SINK Not Detected	Hi-Z (default)
SINK = b1	SINK Detected	Low

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Parameter							
V_{DD}	Supply Voltage from V _{DD}			-0.5	6.0	V			
V _{BUS}	VBUS supply voltage	VBUS supply voltage							
V _{CC_HDDRP}	CC pins when configured as Host, Device or Dua	al Role Port		-0.5	6.0	V			
T _{STORAGE}	Storage Temperature Range			-65	+150	С			
TJ	Maximum Junction Temperature			+150	С				
T _L	Lead Temperature (Soldering, 10 seconds)				+260	С			
		Connector	Air Gap	15					
	IEC 61000-4-2 System ESD	Pins (VBUS, CC1 & CC2)	Contact	8		kV			
ESD	Human Body Model, JEDEC JESD22-A114	Connector Pir	,	4		kV			
		Others		2					
	Charged Device Model, JEDEC LESD22-C101		1						

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{BUS}	VBUS Supply Voltage	3.7	5.0	21	V
V_{DD}	Supply Voltage	2.8 ⁽¹⁾	3.3	5.5	V
T _A	Operating Temperature	-40		+85	С

Note:

1. This is for functional operation only and isn't the lowest limit for all subsequent electrical specifications below. All electrical parameters have a minimum of 3 V operation.

DC and Transient Characteristics

Unless otherwise specified: Recommended T_A and T_J temperature ranges. All typical values are at T_A =25°C and V_{DD} =3.3 V unless otherwise specified.

Symbol	Parameter	T _A = -	Unit						
		Min.	Min. Typ. Max						
Type C Specific Parameters									
I _{80_CCX}	Source 80 µA CC Current (Default) HOST_CUR1=0, HOST_CUR0=1	64	80	96	μΑ				
I _{180_CCX}	SOURCE 180 µA CC Current (1.5 A) HOST_CUR1=1, HOST_CUR0=0	166	180	194	μΑ				
I _{330_CCX}	SOURCE 330 µA CC Current (3 A) HOST_CUR1=1, HOST_CUR0=1	304	330	356	μΑ				
V _{SNKDB}	UFP Pull-Down Voltage in Dead Battery Under all Pull-up SOURCE Loads			2.18	V				
R _{DEVICE}	Device Pull-Down Resistance when VDD is within Operating Range	4.6	5.1	5.6	kΩ				
zOPEN	CC Resistance for Disabled State	126			kΩ				
vRa-SRCdef	Ra Detection Threshold for CC Pin for Source for Default Current on VBUS	0.15	0.20	0.25	V				
vRa-SRC1.5A	Ra Detection Threshold for CC Pin for Source for 1.5 A Current on VBUS	0.35	0.40	0.45	V				
vRa-SRC3A	Ra Detection Threshold for CC Pin for Source for 3 A Current on VBUS	0.75	0.80	0.85	V				
vRd-SRCdef	Rd Detection Threshold for Source for Default Current (HOST_CUR1/0=01)	1.50	1.60	1.65	V				
vRd-SRC1.5A	Rd Detection Threshold for Source for 1.5 A Current (HOST_CUR1/0=10)	1.50	1.60	1.65	V				
vRd-SRC3A	Rd Detection Threshold for Source for 3 A Current (HOST_CUR1/0=11)	2.45	2.60	2.75	V				
vRa-SNK	Ra Detection Threshold for CC Pin for Sink	0.15	0.20	0.25	V				
vRd-def	Rd Default Current Detection Threshold for Sink	0.61	0.66	0.70	V				
vRd-1.5A	Rd 1.5 A Current Detection Threshold for Sink	1.16	1.23	1.31	V				
vRd-3.0A	Rd 3 A Current Detection Threshold for Sink	2.04	2.11	2.18	V				
vVBUSthr	VBUS Threshold at which I_VBUSOK Interrupt is Triggered	3.7			V				

Current Consumption

Symbol	Parameter	V _{DD} (V)	Conditions	T _A = T _J =-	Unit		
				Min.	Тур.	Max.	
Idisable	Disabled Current	3.0 to 5.5	Disabled State		0.0035	2.0000	μΑ
	Unattached.Sink	3.0 to 5.5	Nothing attached		3.5	7.0	μΑ
Istby	Unattached Sink + Acc, Source + Acc, or DRP		Nothing attached, Internally Toggling		5	20	μΑ
lottoch	Attach Current (Less Host	2 0 to 5 5	Attached as a Sink		5	15	μA
lattach	Current)	3.0 to 5.5	Attached as a Source		10	15	

Timing Parameters

Symbol	Parameter	T _A = -4	Unit				
,							
tCCDebounce	Debounce Time for CC (Source or Acces	ssory)	100	150	200	ms	
toobebounce		63	75	87	ms		
tPDDebounce	Debounce Time for CC Detach Detection	า	10	15	20	ms	
tAccDetect	Debounce Time to Detect AudioAccessor DebugAccessory is Attached	ory, or	50	100	200	ms	
tErrorRecovery	Time staying in the ErrorRecovery State ERROR_REC bit or by a change of Mod	25	50	100	ms		
tVBUSondeb	Debounce Time of VBUS Detection whe Signal VBUS is present	2	5	15	ms		
tVBUSoffdeb	Debounce Time of VBUS Detection whe Signal VBUS has been removed	n acting as a Sink to	10	15	20	ms	
		DRPTOGGLE=00	35		70	ms	
tDDDTogglo4	For DRP Operation, Time Spent in	DRPTOGGLE=01	30		60	ms	
tDRPToggle1	Unattached.Sink before going to Unattached.Source State	DRPTOGGLE=10	25		50	ms	
		DRPTOGGLE=11	20		40	ms	
		DRPTOGGLE=00	15		30	ms	
*DDDToggle0	For DRP Operation, Time Spent in	DRPTOGGLE=01	20		40	ms	
tDRPToggle2	Unattached.Source before going to Unattached.Sink State	DRPTOGGLE=10	25		50	ms	
		DRPTOGGLE=11	30		60	ms	

IO Specifications

Symbol	Parameter	V _{DD} (V)	Conditions	T _A = -40 to +85°C T _J =-40 to +125°C			Unit
		, ,		Min.	Тур.	Max.	
Host Inte	rface Pins (ID)			-	•		
V _{OLID}	Output Low Voltage	3.0 to 5.5	I _{OL} =4 mA			0.4	V
Host Inte	rface Pins (I2CADDR)						
V _{ILADDR}	Low-Level Input Voltage	3.0 to 5.5				$0.3V_{DD}$	V
V _{IHADDR}	High-Level Input Voltage	3.0 to 5.5		0.7V _{DD}			V
Host Inte	rface Pins (INT_N)			1	•		
V _{OLINTN}	Output Low Voltage	3.0 to 5.5	I _{OL} =4 mA			0.4	V
I ² C Interfa	ace Pins – Fast Mode SDA, SCL						
V _{ILI2C}	Low-Level Input Voltage	3.0 to 5.5				0.4	V
V _{IHI2C}	High-Level Input Voltage	3.0 to 5.5		1.2			V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs	3.0 to 5.5		0.2			V
I _{I2C}	Input Current of SDA and SCL Pins,	3.0 to 5.5	Input Voltage 0.26 V to 2 V	-10		10	μΑ
I _{CCTI2C}	VDD Current when SDA or SCL is HIGH	SCL is HIGH 3.0 to 5.5 Input Voltage 1.8 V			10	μΑ	
V _{OLSDA}	Low-Level Output Voltage at 3 mA Sink Current (Open-Drain)	A Sink 3.0 to 5.5 0			0.3	V	
Cı	Capacitance for Each I/O Pin ⁽²⁾	3.0 to 5.5				10	pF

Note:

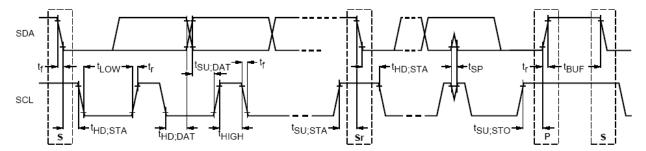
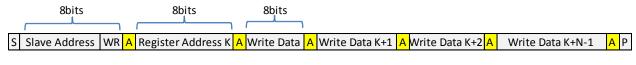
2. Guaranteed by characterization. Not production tested.

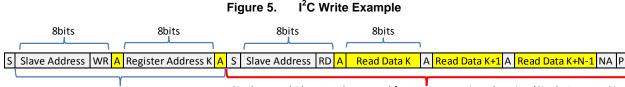
Fast Mode I²C Specifications⁽³⁾ (see Figure 4)

Comple of	Davamatar	Fast Mode				
Symbol	Parameter	Min.	Max.	Unit		
f _{SCL}	I2C_SCL Clock Frequency	0	400	kHz		
t _{HD;STA}	Hold Time (Repeated) START Condition	0.6		μs		
t _{LOW}	LOW Period of I2C_SCL Clock	1.3		μs		
t _{HIGH}	HIGH Period of I2C_SCL Clock	0.6		μs		
t _{SU;STA}	Set-up Time for Repeated START Condition	0.6		μs		
t _{HD;DAT}	Data Hold Time	0	0.9	μs		
t _{SU;DAT}	Data Set-up Time ⁽⁴⁾	100		ns		
t _r	Rise Time of I2C_SDA and I2C_SCL Signals ⁽⁵⁾	20*(V _{DD} /5.5 V)	250	ns		
t _f	Fall Time of I2C_SDA and I2C_SCL Signals ⁽⁵⁾	20*(V _{DD} /5.5 V)	250	ns		
t _{SU;STO}	Set-up Time for STOP Condition	0.6		μs		
t _{BUF}	BUS-Free Time between STOP and START Conditions	1.3		μs		
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns		

Notes:

- 3. Guaranteed by characterization. Not production tested
- 4. A fast-mode I^2 C-bus device can be used in a standard-mode I^2 C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line $tr_{max} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the standard-mode I^2 C bus specification) before the I2C_SCL line is released.
- 5. Cb equals the total capacitance of one bus line in pF. If mixed with high-speed devices, faster fall times are allowed according to the I²C specification.


Figure 4. Definition of Timing for Full-Speed Mode Devices on the I²C Bus

I²C Interface

The FUSB301A includes a full I^2C slave controller. The I^2C slave fully complies with the I^2C specification version 6 requirements. This block is designed for fast mode. Examples of an I^2C write and read sequence are shown Figure 5 and Figure 6 respectively.

Note: Single Byte read is initiated by Master with P immediately following first data byte

Single or multi byte read executed from current register location (Single Byte read is Register address to Read specified initiated by Master with NA immediately following first data byte)

Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed

Figure 6. I²C Read Example

I²C Address

The I2CADDR bit high or low is indicated in bit3 of the slave address shown in Table 2.

Table 2. FUSB301A I2C Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	I2CADDR	0	1	R/W

Register Definitions

Table 3. Register Map

Address	Register Name	Туре	Rst Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x01	Device ID	RO	12		Version	on ID[3:0]			Revision ID[3:0]				
0x02	Modes	R/W	04			DRP+ACC	DRP	Sink+ACC	Sink	Source+ACC	Source		
0x03	Control	R/W	03		DRPTOGGLE		GGLE		HOST_CUR1	HOST_CUR0	INT_MASK		
0x04	Manual	W/C	00					UNATT_SNK	UNATT_SRC	DISABLED	ERROR_REC		
0x05	Reset	W/C	00								SW_RES		
0x06-0x0F	Reserved	Х	xx				Do No	ot Use					
0x10	Mask	R/W	00					M_ACC_CH	M_BC_LVL	M_DETACH	M_ATTACH		
0x11	Status	RO	00			ORIENT1	ORIENT0	VBUSOK	BC_LVL1	BC_LVL0	ATTACH		
0x12	Туре	RO	00				Sink	Source		DEBUGACC	AUDIOACC		
0x13	Interrupt	R/C	00					I_ACC_CH	I_BC_LVL	I_DETACH	I_ATTACH		
0x14-0x1F	Reserved	Х	XX				Do No	ot Use		1	•		

Notes:

- 6. Do not use registers that are blank7. Values read from undefined register bits are invalid. Do not write to undefined registers.

Table 4. Device ID

Address: 01h

Reset Value: 0x0001_0010

Type: Read Only

Bit #	Name	Size (Bits)	Description
7:4	Version ID	4	Device version ID by Trim or etc. A_[Version ID]: 0010 (FUSB301ATMX)
3:0	Revision ID	4	Revision History of each version [Revision ID]_revC: 0010

Table 5. Modes

Address: 02h

Reset Value: 0x0000_0100

Type: Read/Write

Bit #	Name	Size (Bits)	Description
7:6	Reserved	2	Do Not Use
5	DRP+ACC	1	1: Configure device as a Dual Role Port (DRP) with accessory support
4	DRP	1	1: Configure device as a Dual Role Port (DRP) without accessory support
3	Sink+ACC	1	1: Configure device as a Sink with accessory support
2	Sink	1	1: Configure device as a Sink without accessory support
1	Source+ACC	1	1: Configure device as a Source with accessory support
0	Source	1	1: Configure device as a Source without accessory support

Table 6. Control

Address: 03h

Reset Value: 0xXX00_X011

Type: Read/Write

Bit #	Name	Size (Bits)	Description
7:6	Reserved	2	Do Not Use
5:4	DRPTOGGLE	1	Selects different timing for Dual Role Port Toggle between Unattached.Sink State and Unattached.SOURCE State. 00: 35 ms min. in Unattached.Sink and 15 ms min. in Unattached.SOURCE 01: 30 ms min. in Unattached.Sink and 20 ms min. in Unattached.SOURCE 10: 25 ms min. in Unattached.Sink and 25 ms min. in Unattached.SOURCE 11: 20 ms min. in Unattached.sink and 30 ms min. in Unattached.SOURCE
3	Reserved	1	Do Not Use
2:1	HOST_CUR[1:0]	2	1: Controls the pull-up current when device enabled as a Source 00: No Current 01: 80 µA – Default USB Power 10: 180 µA – Medium Current Mode: 1.5 A 11: 330 µA – High Current Mode: 3 A
0	INT_MASK	1	1: Global interrupt mask to mask all interrupts

Table 7. Manual⁽⁸⁾

Address: 04h

Reset Value: 0xXXXX_0000

Type: Write/Clear

Bit #	Name	Size (Bits)	Description
7:4	Reserved	4	Do Not Use
3	UNATT_SINK	1	1: Put device in Unattached.Sink State as defined in the Type C spec
2	UNATT_SOURCE	1	1: Put device in Unattached.Source state as defined in the Type C spec
1	DISABLED ⁽⁹⁾	1	1: Put device in Disabled state as defined in the Type C spec
0	ERROR_REC	1	1: Put device in ErrorRecovery state as defined in the Type C spec

Notes:

8. If more than one bit is set to "b1" simultaneously then an order of priority will be used.1st priority is DISABLED, 2nd is ERROR_REC, 3rd is UNATT_DFP, last is UNATT_UFP. The highest priority bit will take precedence and all other bits will be cleared automatically.

9. The DISABLED bit must be manually cleared.

Table 8. Reset

Address: 05h

Reset Value: 0xXXXX_XXX0

Type: Write/Clear

Bit #	Name	Size (Bits)	Description
7:6	Reserved	7	Do Not Use
0	SW_RES	1	1: Reset the system and I2C Register.

Table 9. Mask

Address: 10h

Reset Value: 0xXXXX_0000

Type: Read/Write

Bit #	Name	Size (Bits)	Description
7:4	Reserved	4	Do Not Use
3	M_ACC_CH	1	1:Mask a change from Accessory Present to Attached Accessory
2	M_BC_LVL	1	1: Mask a change in I_BC_LVL interrupt bit
1	M_DETACH	1	1: Mask the I_DETACH interrupt bit
0	M_ATTACH	1	1: Mask a change in the I_ATTACH interrupt bit

Table 10. Status

Address: 11h

Reset Value: 0xXX00_0000

Type: Read

Bit #	Name	Size (Bits)	Description
7:6	Reserved	2	Do Not Use
5:4	ORIENT[1:0]	2	Status to indicate which CCx pins has the CC cable connection 11: A fault has occurred during the detection 10: Cable CC is connected through the CC2 pin 01: Cable CC is connected through the CC1 pin 00: No or unresolved connection detected
3	VBUSOK	1	1: Status to indicate VBUS is in the valid range
2:1	BC_LVL[1:0]	2	Thresholds that allow detection of current advertisement on CC line 00: Ra or unattached Sink 01: Rd threshold for Sink default current advertisement 10: Rd threshold for Sink 1.5 A current advertisement 11: Rd threshold for Sink 3 A current advertisement
0	ATTACH	1	1: Attached to a device or accessory of a type shown in the Type register

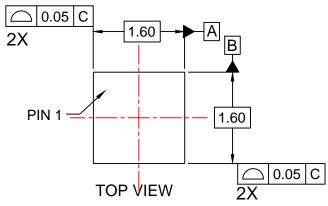
Table 11. Type

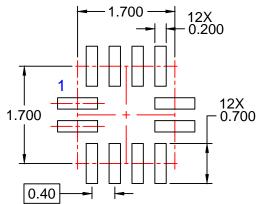
Address: 12h

Reset Value: 0xXXX0_0X00

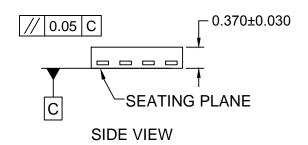
Type: Read

Bit #	Name	Size (Bits)	Description
7:5	Reserved	3	Do Not Use
4	Sink	1	1: Indicates a Sink has been detected
3	Source	1	1: Indicates a Source has been detected
2	Reserved	1	Do Not Use
1	DEBUGACC	1	1: Indicates a Debug Accessory has been detected
0	AUDIOACC	1	1: Indicates a Audio Accessory has been detected

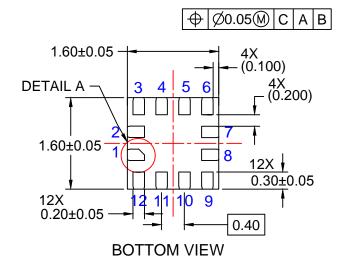

Table 12. Interrupt0

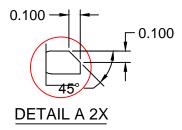

Address: 13h

Reset Value: 0xXXXX_X000


Type: Write/Clear

Bit #	Name	Size (Bits)	Description
7:4	Reserved	5	Do Not Use
3	I_ACC_CH	1	1: Interrupt flagged when a change from Accessory Present to Audio Accessory or Debug Accessory occurs
2	I_BC_LVL	1	1: Interrupt flagged when a change in BC_LVL advertised current level has occurred
1	I_DETACH	1	1: Interrupt flagged when a device or accessory has been detached
0	I_ATTACH	1	1: Interrupt flagged when a device or accessory of type indicated in the Type register has been attached




LAND PATTERN RECOMMENDATION

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 2009.
- D. PACKAGE NOMINAL HEIGHT IS 370 MICRONS.
- E. FSC LANDPATTERN RECOMMENDATION
- F. DRAWING FILENAME: MKT-TMLP12Arev1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177