

August 2008

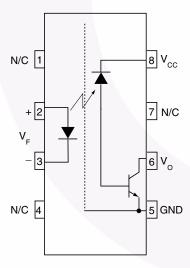
HCPL4503M High Speed Transistor Optocouplers

Features

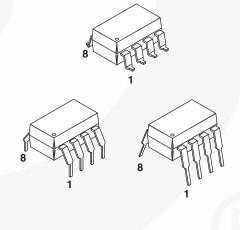
- V_{ISO} = 5kV RMS is standard for all devices
- High speed 1MBit/s
- Superior CMR, CM_H = 50kV/ms (typical); CM_I = 30kV/ms (typical)
- No base connection for improved noise immunity
- CTR guaranteed 0°C to 70°C
- U.L. recognized (File # E90700, Vol 2)
- VDE approval pending

Applications

- Line receivers
- Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- Wide bandwidth analog coupling


Description

The HCPL4503M optocoupler consists of an AlGaAs LED optically coupled to a high speed photodetector transistor.


A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor. The base of the phototransistor is not bonded out to a pin for improved noise immunity.

An internal noise shield provides superior common mode rejection of 15kV/µs minimum.

Schematic

Package Outlines

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
T _{SOL}	Lead Solder Temperature	260 for 10 sec	°C
EMITTER			
I _F (avg)	DC/Average Forward Input Current	25	mA
I _F (pk)	Peak Forward Input Current (50% duty cycle, 1ms P.W.)	50	mA
I _F (trans)	Peak Transient Input Current - (≤1µs P.W., 300pps)	1.0	Α
V _R	Reverse Input Voltage	5	V
P _D	Input Power Dissipation	100	mW
DETECTOR			
I _O (avg)	Average Output Current	8	mA
I _O (pk)	Peak Output Current	16	mA
V _{CC}	Supply Voltage	-0.5 to 30	V
V _O	Output Voltage	-0.5 to 20	V
PD	Output Power Dissipation	100	mW

Electrical Characteristics (T_A = 0 to 70°C unless otherwise specified)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.*	Max.	Unit
EMITTER						
V _F	Input Forward Voltage	I _F = 16mA, T _A = 25°C		1.45	1.7	V
		I _F = 16mA			1.8]
B _{VR}	Input Reverse Breakdown Voltage	Ι _R = 10μΑ	5.0			V
$\Delta V_F / \Delta T_A$	Temperature Coefficient of forward voltage	I _F = 16mA		-1.6		mV/°C
DETECTOR	R					
I _{OH}	Logic high output current	$I_F = 0mA$, $V_O = V_{CC} = 5.5V$, $T_A = 25^{\circ}C$		0.001	0.5	μA
		$I_F = 0mA, V_O = V_{CC} = 15V,$ $T_A = 25^{\circ}C$		0.005	1	
		$I_F = 0mA, V_O = V_{CC} = 15V$	\		50	
I _{CCL}	Logic low supply current	$I_F = 16$ mA, $V_O = Open$, $V_{CC} = 15$ V		120	200	μA
I _{CCH}	Logic high supply current	$I_F = 0$ mA, $V_O = 0$ pen, $V_{CC} = 15$ V, $T_A = 25$ °C			1	μA
		$I_F = 0mA$, $V_O = Open$, $V_{CC} = 15V$			2	

^{*}All Typicals at T_A = 25°C

Transfer Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.*	Max.	Unit
COUPLED				•		
CTR	Current Transfer Ratio ⁽⁵⁾	$I_F = 16\text{mA}, V_O = 0.4\text{V}, V_{CC} = 4.5\text{V}, $ $T_A = 25^{\circ}\text{C}^{(1)}$	19	27	50	%
		$I_F = 16\text{mA}, V_{CC} = 4.5\text{V}, V_{OL} = 0.5\text{V}$	15	30		
V _{OL}	Logic low output voltage output voltage	$I_F = 16$ mA, $I_O = 3$ mA, $V_{CC} = 4.5$ V, $T_A = 25$ °C			0.5	V
		$I_F = 16\text{mA}, I_O = 2.4\text{mA},$ $V_{CC} = 4.5\text{V}$			0.5	

^{*}All Typicals at T_A = 25°C

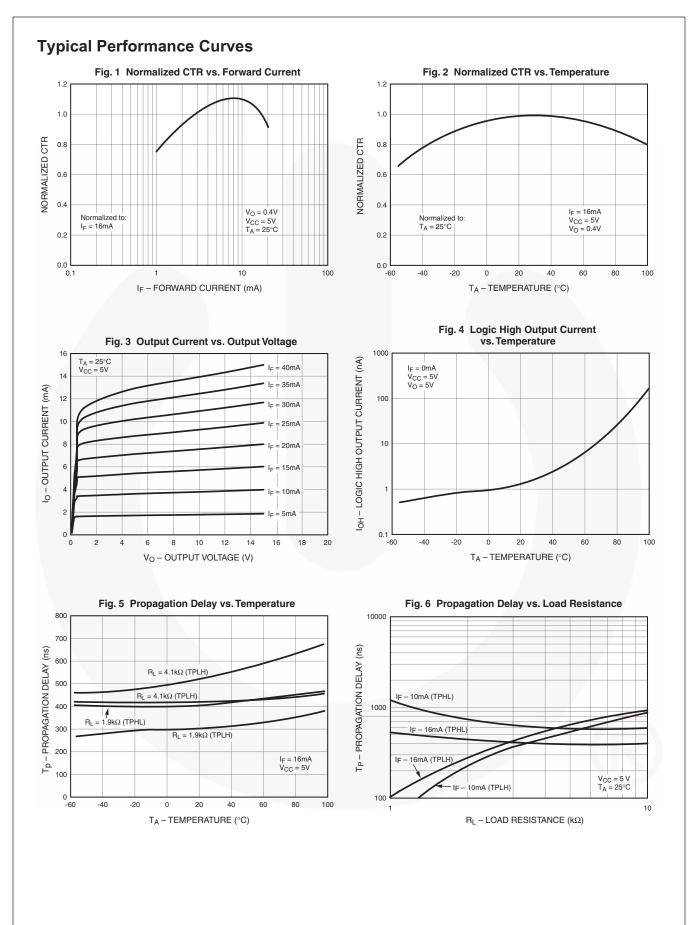
Note:

1. Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_F, times 100%.

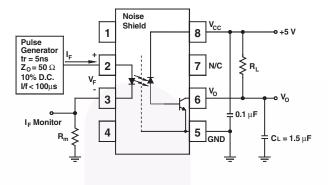
Electrical Characteristics (Continued) ($T_A = 0$ to 70° C unless otherwise specified)

Switching Characteristics $(V_{CC} = 5V)$

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit
T _{PHL}	Propagation Delay Time to Logic Low	$R_L = 1.9k\Omega$, $I_F = 16mA^{(2)}$ (Fig. 7) $T_A = 25^{\circ}C$		0.45	0.8	μs
		$R_L = 1.9k\Omega$, $I_F = 16mA^{(2)}$ (Fig. 7)			1.0	μs
T _{PLH}	Propagation Delay Time to Logic High	$R_L = 1.9k\Omega$, $I_F = 16mA^{(2)}$ (Fig. 7) $T_A = 25^{\circ}C$		0.3	0.8	μs
		$R_L = 1.9k\Omega$, $I_F = 16mA^{(2)}$ (Fig. 7)			1.0	μs
ICM _H I	Common Mode Transient Immunity at Logic High	$I_F = 0 \text{ mA}, V_{CM} = 1,500V_{P-P},$ $T_A = 25^{\circ}\text{C}, R_L = 1.9 \text{k}\Omega^{(3)}(\text{Fig. 8})$	15,000	50,000		V/µs
ICM _L I	Common Mode Transient Immunity at Logic Low	$I_F = 16 \text{mA}, V_{CM} = 1,500 V_{P-P},$ $R_L = 1.9 \text{k} \Omega^{(3)} \text{ (Fig. 8)}$	15,000	30,000		V/µs


^{*}All Typicals at T_A = 25°C

Isolation Characteristics


Symbol	Characteristics	Test Conditions	Min.	Тур.**	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25$ °C, $t = 5s$, $V_{I-O} = 3000VDC^{(4)}$			1.0	μΑ
V _{ISO}	Withstand Insulation Test Voltage	$RH \le 50\%$, $T_A = 25$ °C, $I_{I-O} \le 2\mu A$, $t = 1 min.$ (4)	5,000			V _{RMS}
R _{I-O}	Resistance (input to output)	V _{I-O} = 500VDC		10 ¹²		Ω
C _{I-O}	Capacitance (input to output)	$f = 1MHz^{(4)}$		0.6		pF

Notes:

- 2. The 1.9k Ω load represents 1 TTL unit load of 1.6mA and 5.6k Ω pull-up resistor.
- 3. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0V$). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8V$).
- 4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.

Test Circuits

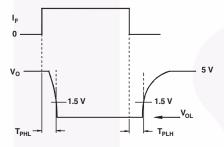
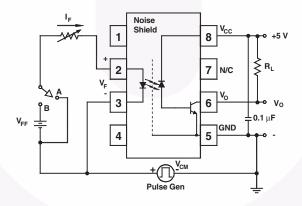
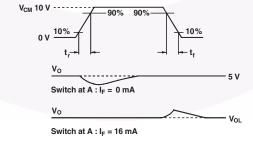
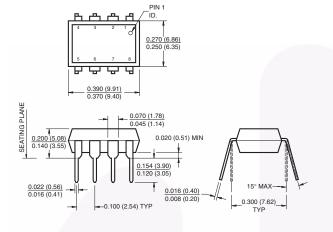
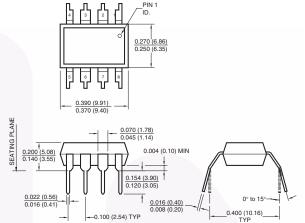
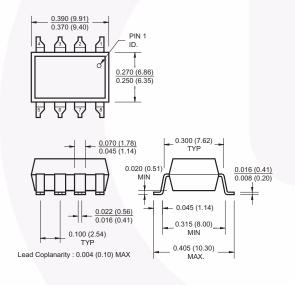



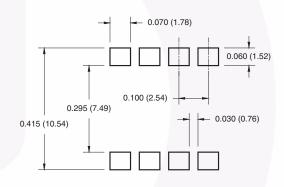
Fig. 7 Switching Time Test Circuit


Fig. 8 Common Mode Immunity Test Circuit

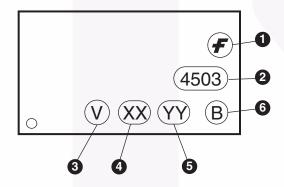
Package Dimensions


Through Hole


0.4" Lead Spacing

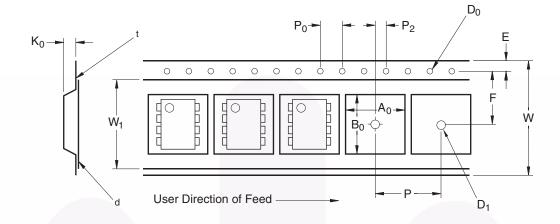
Surface Mount

8-Pin DIP - Land Pattern

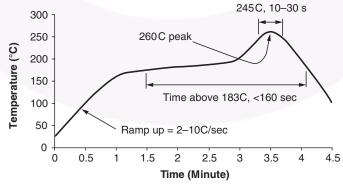

Note:

All dimensions are in inches (millimeters)

Ordering Information


Option	Example Part Number Description		
No Option	HCPL4503M	Standard Through Hole	
S	HCPL4503SM Surface Mount Lead Bend		
SD	HCPL4503SDM Surface Mount; Tape and Reel		
Т	HCPL4503TM	HCPL4503TM 0.4" Lead Spacing	
V	V HCPL4503VM VDE0884		
TV	TV HCPL4503TVM VDE0884; 0.4" Lead Spacing		
SV	SV HCPL4503SVM VDE0884; Surface Mount		
SDV HCPL4503SDVM VDE0884; Surface Mount; Tape and Reel		VDE0884; Surface Mount; Tape and Reel	

Marking Information


Defini	Definitions				
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	Two digit year code, e.g., '03'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

Carrier Tape Specifications

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		4.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀		10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	1.6 ± 0.1
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

- Peak reflow temperature: 260 C (package surface temperature)
 Time of temperature higher than 183 C for 160 seconds or less
 One time soldering reflow is recommended

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$

CTL™ Current Transfer Logic™ FcoSPARK[®]

EfficentMax™ EZSWITCH™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST®

FastvCore™ FlashWriter®

FPS™ F-PFS™ FRFET®

Global Power Resource

Green FPS™ Green FPS™e-Series™

GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™

QFET QS™

Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™

SmartMax™

SMART START™

SPM[®] STEALTH™ SuperFET™

SuperSOT™3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ®

The Power Franchise®

bwer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC Ultra FRFET™ UniFFT™

VCX™ VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Somme of Tornic				
Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev 135