P-Channel POWERTRENCH® MOSFET

–12 V, –8 A, 22 mΩ

General Description

This device is designed specifically for battery charging or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

The MicroFET 1.6x1.6 Thin package offers exceptional thermal performance for its physical size and is well suited to switching and linear mode applications.

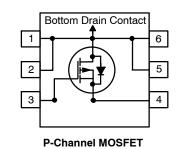
Features

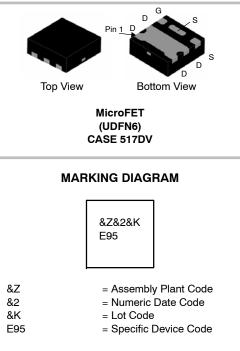
- Max $R_{DS(on)} = 22 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -8 \text{ A}$
- Max $R_{DS(on)} = 26 \text{ m}\Omega$ at $V_{GS} = -2.5 \text{ V}$, $I_D = -7.3 \text{ A}$
- Max $R_{DS(on)} = 97 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -3.8 \text{ A}$
- Low Profile: 0.55 mm Maximum in the New Package MicroFET 1.6x1.6 Thin
- Free from Halogenated Compounds and Antimony Oxides
- These Devices are Pb-Free and are RoHS Compliant

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	-12	V
V _{GS}	Gate to Source Voltage	±8	V
ID	Drain Current Continuous (T _A = 25°C) (Note 1a) Pulsed	-8 -30	A
P _D	Power Dissipation (T _A = 25°C) (Note 1a) (T _A = 25°C) (Note 1b)	2.1 0.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

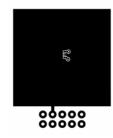


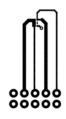

ON Semiconductor®

www.onsemi.com

V _{DS}	I _D MAX	R _{DS(on)} MAX
–12 V	–8 A	22 mΩ

ELECTRICAL CONNECTION


ORDERING INFORMATION


See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	4.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	60	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1b)	175	°C/W

1. Repetitive rating: pulse-width limited by maximum junction temperature.

a) 60 °C/W when mounted on a 1 in² pad of 2 oz copper

b). 175 °C/W when mounted on a minimum pad of 2 oz copper

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
E95	FDME905PT	MicroFET 1.6x1.6 Thin (Pb-Free / Halide Free)	7″	8 mm	5,000 Units

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	-12	-	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	-8.7	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -9.6 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = \pm 8 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARACTE	RISTICS	-				
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS}=V_{DS},\ I_{D}=-250\ \mu A$	-0.4	-0.7	-1.0	V
$\Delta V_{GS(th)}/\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	_	2.5	_	mV/°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
ON CHARACT	ERISTICS	•			•	
R _{DS(on)}	Drain to Source On Resistance	$\begin{array}{l} V_{GS}=-4.5 \text{ V}, \text{ I}_{D}=-8 \text{ A} \\ V_{GS}=-2.5 \text{ V}, \text{ I}_{D}=-7.3 \text{ A} \\ V_{GS}=-1.8 \text{ V}, \text{ I}_{D}=-3.8 \text{ A}, \\ V_{GS}=-4.5 \text{ V}, \text{ I}_{D}=-8 \text{ A}, \text{ T}_{J}=125^{\circ}\text{C} \end{array}$		18 22 28 23	22 26 97 32	mΩ
9 FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -8 \text{ A}$	_	38	-	S
YNAMIC CH	ARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -6 V, V_{GS} = 0 V,$	-	1740	2315	pF
C _{oss}	Output Capacitance	f = 1 MHZ	-	350	525	pF
C _{rss}	Reverse Transfer Capacitance		_	311	465	pF
WITCHING C	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -6 V, I_D = -8 A,$	-	9.5	19	ns
t _r	Rise Time	$V_{\rm GS}$ = -4.5 V, $R_{\rm GEN}$ = 6 Ω	-	8	16	ns
t _{d(off)}	Turn-Off Delay Time		-	90	144	ns
t _f	Fall Time		-	42	67	ns
Qg	Total Gate Charge	$V_{DD} = -6 \text{ V}, \text{ I}_{D} = -8 \text{ A}$ $V_{GS} = -4.5 \text{ V}$	-	14	20	nC
Q _{gs}	Gate to Source Gate Charge		-	2.4	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	3	-	nC
RAIN-SOUR	CE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward	$V_{GS} = 0 V, I_S = -8 A (Note 2)$	-	-0.8	-1.2	V
	Voltage	V _{GS} = 0 V, I _S = -1.8 A (Note 2)	-	-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -8 A, di/dt = 100 A/μs	-	17	31	ns
Q _{rr}	Reverse Recovery Charge		_	4.5	10	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

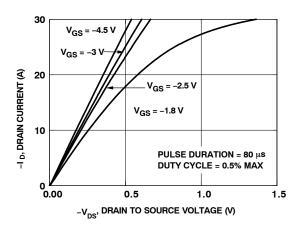
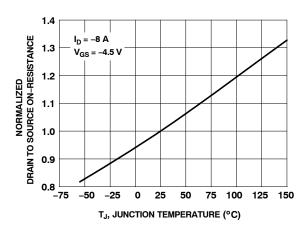



Figure 1. On-Region Characteristics

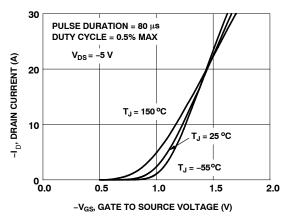


Figure 5. Transfer Characteristics

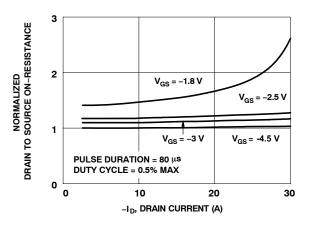


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

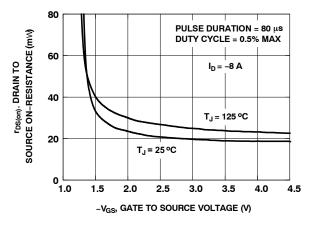
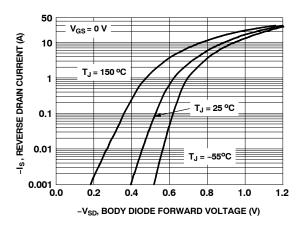



Figure 4. On-Resistance vs. Gate to Source Voltage

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

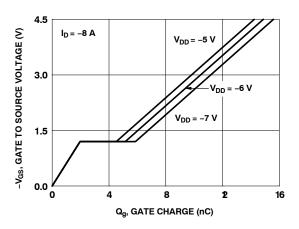


Figure 7. Gate Charge Characteristics

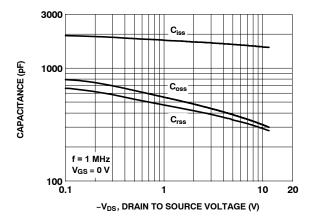


Figure 8. Capacitance vs. Drain to Source Voltage

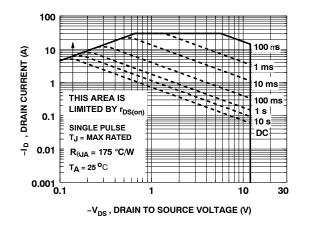


Figure 9. Forward Bias Safe Operating Area

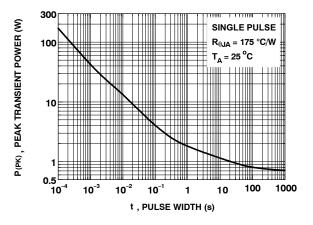


Figure 10. Single Pulse Maximum Power Dissipation

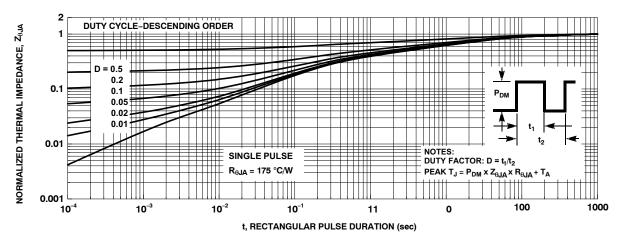
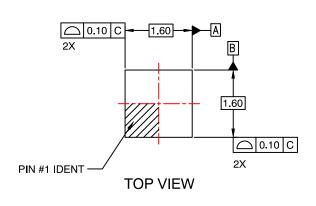
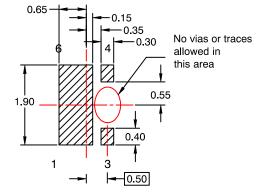
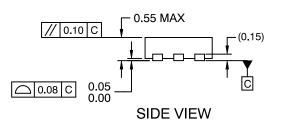
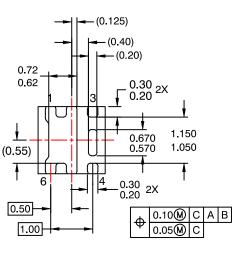
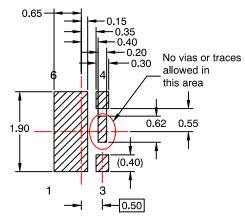




Figure 11. Junction-to-Ambient Transient Thermal Response Curve


PACKAGE DIMENSIONS


UDFN6 1.6x1.6, 0.5P CASE 517DV ISSUE O



RECOMMENDED LAND PATTERN OPT 1

BOTTOM VIEW

RECOMMENDED LAND PATTERN OPT 2

NOTES:

- A. DOES NOT FULLY CONFORM TO JEDEC REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

POWERTRENCH is a registered trademark and SyncFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or used any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor products, including parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications using outcomer's technical experts. ON Semiconductor does not convey any license under its patient rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative