

74AC11175

Quadruple D-Type Flip-Flops with Clear

These positive-edge-triggered flip-flops implement D-type flip-flop logic with a direct clear input. Information at the D inputs that meets the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

The 54AC11175 is characterized for operation over the full military temperature range of -55°C to 125°C. The 74AC11175 is characterized for operation from -40°C to 85°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

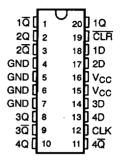
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

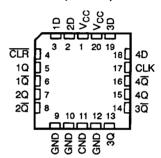
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

D3388, DECEMBER 1989 - REVISED APRIL 1993


- Applications Include: Buffer/Storage Registers, Shift Registers, Pattern Generators
- Flow-Through Architecture Optimizes PCB Lavout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC ™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

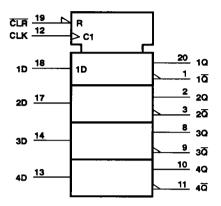
description


These positive-edge-triggered flipflops implement D-type flip-flop logic with a direct clear input. Information at the D inputs that meets the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

The 54AC11175 is characterized for operation over the full military temperature range of – 55°C to 125°C. The 74AC11175 is characterized for operation from – 40°C to 85°C.

54AC11175...J PACKAGE 74AC11175...DW or N PACKAGE (TOP VIEW)

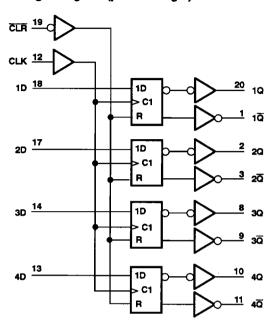
54AC11014...FK PACKAGE
(TOP VIEW)



FUNCTION TABLE (each flip-flop)

ı	NPUTS	OUT	PUTS	
CLR	CLK	D	a	ā
L	Х	Х	L	Н
н	Ť	н	н	L
н	Ť	L	L	Н
н	L	Х	Q_0	\overline{Q}_0

EPIC is a trademark of Texas instruments incorporated.


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the DW, J and N packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to Vcc + 0.5 V
Output voltage range, VO (see Note 1)	0.5 V to Vcc + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC)	±50 mA
Continuous output current, IO (VO = 0 to VCC)	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Storage temperature range	-65°C to 150°C

[‡]Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

D3388, DECEMBER 1989 - REVISED APRIL 1993

recommended operating conditions

			54	AC1117	5	74AC11175			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vcc	Supply voltage		3	5	5.5	3	5	5.5	٧
		V _{CC} = 3 V	2.1			2.1			
VιΗ	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 5.5 V	3.85		4.	3.85			
V _{IL}		V _{CC} = 3 V		Š	4 0.9			0.9	
	Low-level input voltage	V _{CC} = 4.5 V		Q.	1.35			1.35	٧
		V _{CC} = 5.5 V		X	1.65			1.65	
		V _{CC} = 3 V		3	-4			-4	
ЮН	High-level output current	VCC = 4.5 V	٥	7	-24			-24	mA
		V _{CC} = 5.5 V	Q	\$	-24			-24	
		V _{CC} = 3 V			12			12	
loL	Low-level output current	V _{CC} = 4.5 V			24			24	mA
	V _{CC} = 5				24		,	24	
VI	Input voltage	•	0		Vcc	0		Vcc	٧
۷o	Output voltage		0		Vcc	0		Vcc	٧
Δt/Δν	Input transition rise or fall rate		0		10	0		10	ns/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	Т,	4 = 25°C	;	54AC1	1175	74AC11175		
- ANAMETER	1207 00101110110		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4		4.4		
]		5.5 V	5.4			5.4		5.4		
Voн	I _{OH} = - 4 mA	3 V	2.58			2.4	7	2.48		v
*0#	I _{OH} = - 24 mA	4.5 V	3.94			3.7	N.	3.8		, v
	IOH = - 54 MA	5.5 V	4.94			4.7	<i>\$</i>	4.8		
	I _{OH} = - 50 mA [†]	5.5 V				3.85	,			
	I _{OH} = - 75 mA [†]	5.5V				2.4 3.7 4.7 3.85		3.85		
		3 V			0.1	Ò,	0.1		0.1	
	i _{OL} = 50 μΑ	4.5 V			0.1	4	0.1		0.1	
		5.5 V			0.1		0.1		0.1	
VOL	I _{OL} = 12 mA	3∨		_	0.36		0.5		0.44	v
'01	I _{OL} = 24 mA	4.5 V			0.36		0.5		0.44	V
	- E4 IIIA	5.5 V			0.36		0.5		0.44	
	IOL = 50 mA	5.5 V					1.65			
	IOL = 75 mAt	5.5 V							1.65	
lţ	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μΑ
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		160		80	μΑ
Cį	V _I = V _{CC} or GND	5 V		4						pF

Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

D3388, DECEMBER 1989 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V $_{\pm}$ 0.3 V (unless otherwise noted) (see Figure 1)

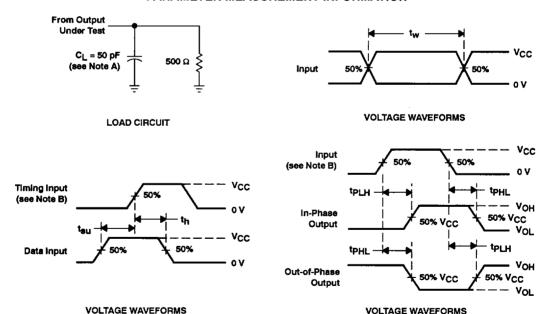
			T _A = 25°C		54AC11175		74AC11175		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	ONII
fclock	Clock frequency		0	90	0	90	0	90	MHz
		CLR low	5.5		5.5	Ć,	5.5		ns
t _W	Pulse duration	CLK high or low	5.5		5.5		5.5		10
		Data	8		4,5%		8		ns
^t su	Setup time before CLK†	CLR inactive	8		8		8		+10
th	Hold time, data after CLK†		0.5		0.5		0.5		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	· · · · · ·		T _A =	T _A = 25°C		T _A = 25°C 54AC11175		1175	74AC11175		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	CIVIT		
^f clock	Clock frequency		0	125	0	125	0	125	MHz		
	Pulse duration	CLR low	4		4	ζĈ.	4		ns		
t _w		CLK high or low	4		-85	No.	4		118		
	0-1	Data	5.5		4	8,	5.5		ns		
t _{su}	Setup time before CLK†	CLR inactive	5,5		5.5		5.5		12		
th	Hold time, data after CLK†		0.5		0.5		0.5		ns		

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V $_{\pm}$ 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	Т,	4 = 25°C	;	54AC1	1175	74AC11175		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	O.F.	
f _{max}			90	120		90		90		MHz	
	<u> CUD</u>	Any Q	2.6	7	8.7	2.6	<u>(6</u>	2.6	9.3	ns	
tPLH	CLR	Any Q	2.6	7	8.7	2.6	39 .9	2.6	9.3	2	
		Any Q	2.5	10	11.6	2.5	(2 13	2.5	12.4	ns	
^t PHL	CLR	Any Q	2.5	10	11.6	2.5	13	2.5	12.4	2	
	CLK	Any Q	2.4	6.8	8.7	A ^N	9.4	2.4	9.1	ns	
tPLH	CLK	Any Q	2.4	6.8	8.7	Q2.4	9.4	2.4	9.1	110	
t _{PHL}	CLK	Any Q	1.7	9.4	11.7	Q* 1.7	13	1.7	12.5		
	CLK	Any Q	1.7	9.4	11.7	1.7	13	1.7	12.5	ns	


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C		54AC11175		74AC1	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONI
fmax			125	150		125		125		MHz
•=	CLR	Any Q	2.2	4.5	6.3	2.2	Ŕ	2.2	6.8	
tPLH	CUH	Any Q	2.2	4.5	6.3	2.2	37.1	2.2	6.8	ns
*=	CLR	Any Q	2.4	6.7	8.5	2.4	9.7	2.4	9.3	
^t PHL	OLA	Any Q	2.4	6.7	8.5	2.4	f	2.4	9.3	ns
•=	CLK	Any Q	2.2	4.5	6.3	ĄŽ	7.2	2.2	6.9	
^t PLH	CLK	Any Q	2.2	4.5	6.3	Q.2.2	7.2	2.2	6.9	ns
^t PHL	CLK	Any Q	1.9	6.4	8.5	Q 1.9	9.7	1.9	9.3	ns
		Any Q̄	1.9	6.4	8.5	1.9	9.7	1.9	9.3	

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TY	P	UNIT
Cpd	Power dissipation capacitance	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	48	,	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

