

HA-5221

100MHz, Single and Dual Low Noise, Precision Operational Amplifiers

The HA-5221/5222 are single and dual high performance dielectrically isolated, op amps, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise (3.4nV/ $\sqrt{\text{Hz}}$ at 1kHz), total harmonic distortion (<0.005%), and DC errors are kept to a minimum.

The precision performance is shown by low offset voltage (0.3mV), low bias currents (40nA), low offset currents (15nA), and high open loop gain (128dB). The combination of these excellent DC characteristics with the fast settling time (0.4µs) make the HA-5221/5222 ideally suited for precision signal conditioning.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

HA-5221, HA-5222

100MHz, Single and Dual Low Noise. **Precision Operational Amplifiers**

November 1996

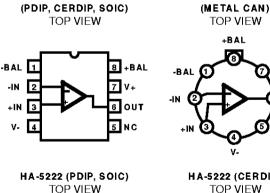
Features Gain Bandwidth Product................. 100MHz Unity Gain Bandwidth 25MHz Low Offset Voltage..... 0.3m V High Open Loop Gain 128dB Channel Separation at 10kHz..... 110dB Low Noise Voltage at 1kHz 3.4n V /√Hz - High Output Current 56m A Low Supply Current per Amplifier 8m A

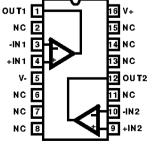
Applications

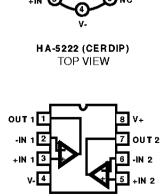
- · Precision Test Systems
- Active Filtering
- · Small Signal Video
- · Accurate Signal Processing
- · RF Signal Conditioning

HA-5221

Description


The HA-5221/5222 are single and dual high performance dielectrically isolated, op amps, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise (3.4nV/VHz at 1kHz), total harmonic distortion (<0.005%), and DC errors are kept to a minimum.


The precision performance is shown by low offset voltage (0.3mV), low bias currents (40nA), low offset currents (15nA), and high open loop gain (128dB). The combination of these excellent DC characteristics with the fast settling time (0.4µs) make the HA-5221/5222 ideally suited for precision signal conditioning.


The unique design of the HA-5221/5222 gives them outstanding AC characteristics not normally associated with precision op amps, high unity gain bandwidth (35MHz) and high slew rate (25V/µs). Other key specifications include high CMRR (95dB) and high PSRR (100dB). The combination of these specifications will allow the HA-5221/5222 to be used in RF signal conditioning as well as video amplifiers.

For MIL-STD-883C compliant product and Ceramic LCC packaging, consult the HA-5221/5222/883C data sheet. Harris AnswerFAX (407-724-7800) Document #3716.

Pinouts

HA-5221

Ordering Information

PART NUMBER (BRAND)	TEMP. Range (°C)	PACKAGE	PKG. NO.	
HA2-5221-5	0 to 75	8 Pin Metal Can	T8.C	
HA3-5221-5	0 to 75	8 Ld PDIP	E8.3	
HA7-5221-5	0 to 75	8 Ld CERDIP	F8.3 A	
HA7-5221-9	-40 to 85	8 Ld CERDIP	F8.3 A	
HA9P5221-5 (H52215)	0 to 75	8 Ld SOIC	M8.15	
HA3-5222-5	0 to 75	16 Ld PDIP	E16.3	
HA7-5222-5	0 to 75	8 Ld CERDIP	F8.3 A	
HA7-5222-9	-40 to 85	8 Ld CERDIP	F8.3 A	
HA9P5222-5	0 to 75	16 Ld SOIC	M16.3	
HA9P5222-9	-40 to 85	16 Ld SOIC	M16.3	

Absolute Maximum Ratings

Operating Conditions

emperature Range	
HA-5221/5222-9	-40°C to 85°C
HA-5221/5222-5	. 0°C to 75°C

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (^o C/W)	θ _{JC} (^o C/W)
Metal Can Package	165	80
CERDIP Package (HA7-5221)	135	50
CERDIP Package (HA7-5222)	115	30
8 Ld PDIP Package		N/A
8 Ld SOIC Package	157	N/A
16 Ld PDIP Package	85	N/A
16 Ld SOIC Package	95	N/A
Maximum Junction Temperature (Hermetic	Package)	175°C
Maximum Junction Temperature (Plastic F	Package)	150°C
Maximum Storage Temperature Range .	65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. Input is protected by back-to-back zener diodes. See applications section.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications V_{SUPPLY} = ±15V, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP.	HA-5221-9, HA-5222-9			HA-5221-5, HA-5222-5			
			MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
INPUT CHARACTERISTICS									
Input Offset Voltage		25	-	0.30	0.75	-	0.30	0.75	mV
		Full	-	0.35	1.5	-	0.35	1.5	mV
Average Offset Voltage Drift		Full	-	0.5	-	-	0.5	-	μV/ ^o C
Input Bias Current		25	-	40	80	-	40	100	nA
		Full	-	70	200	-	70	200	nA
Input Offset Current		25	-	15	50	-	15	100	nA
		Full	-	30	150	-	30	150	nA
Input Offset Voltage Match		25	-	400	750	-	400	750	μ٧
		Full	-	-	1500	-	-	1500	μ٧
Common Mode Range		25	±12	-	-	±12	-	-	V
Differential Input Resistance		25	-	70	-	-	70	-	kΩ
Input Noise Voltage	f = 0.1Hz to 10Hz	25	-	0.25	-	-	0.25	-	μV _{P-P}
Input Noise Voltage	f = 1 0Hz	25	-	6.2	1 0	-	6.2	1 0	nV/√ Hz
Density (Notes 3, 12)	f = 100Hz	25	-	3.6	6	-	3.6	6	nV/√ Hz
	f = 1000Hz	25	-	3.4	4.0	-	3.4	4.0	nV/√ Hz
Input Noise Current	f = 10Hz	25	-	4.7	8.0	-	4.7	8.0	p A /√ Hz
Density (Notes 3, 12	f = 100Hz	25	-	1.8	2.8	-	1.8	2.8	p A /√ Hz
	f = 1000Hz	25	-	0.97	1.8	-	0.97	1.8	p A /√ Hz
THD+N	Note 4	25	-	<0.005	-	-	<0.005	-	%

Electrical Specifications $V_{SUPPLY} = \pm 15V$, Unless Otherwise Specified (Continued)

	TEST CONDITIONS	TEMP.	HA-52	21-9, HA-5	5222-9	HA-5221-5, HA-5222-5			
PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TRANSFER CHARACTERIS	TICS								
Large Signal Voltage Gain	Note 5	25	106	128	-	1 06	128	-	dB
		Full	100	120	-	1 00	120	-	dB
CMRR	$V_{CM} = \pm 10V$	Full	86	95	-	86	95	-	dB
Unity Gain Bandwidth	-3dB	25	-	35	-	-	35	-	MHz
Gain Bandwidth Product	1kHz to 400kHz	25	-	100	-	-	100	-	MHz
Minimum Stable Gain		Full	1	-	-	1	-	-	V/V
OUTPUT CHARACTERISTIC	es								
Output Voltage Swing	$R_L = 333\Omega$	Full	±1 0	-	-	±1 0	-	-	٧
	$R_L = 1k\Omega$	25	±12	±12.5	-	±12	±12.5	-	٧
	$R_L = 1k\Omega$	Full	±11.5	±12.1	-	±11 .5	±12.1	-	٧
Output Current	$V_{OUT} = \pm 10V$	Full	±30	±56	-	±30	±56	-	mA
Output Resistance		25	-	10	-	-	10	-	Ω
Full Power Bandwidth	Note 6	25	239	398	-	239	398	-	kHz
Channel Separation	Note 7	25	-	11 0	-	-	11 0	-	dB
TRANSIENT RESPONSE (N	ote 11)								
Slew Rate	Notes 8, 12	Full	15	25	-	15	25	-	V/µs
Rise Time	Notes 9, 12	Full	-	13	20	-	13	20	ns
Overshoot	Notes 9, 12	Full	-	28	50	-	28	50	%
Settling Time (Note 10)	0.1%	25	-	0.4	-	-	0.4	-	μs
	0.01%	25	-	1.5	-	-	1.5	-	μs
POWER SUPPLY	-								_
PSRR	$V_S = \pm 10 \text{V to } \pm 20 \text{V}$	Full	86	100	-	86	100	-	dB
Supply Current		Full	-	8	11	-	8	11	mA/Op Aı

NOTES:

- 3. Refer to typical performance curve in data sheet.
- 4. $A_{VCL} = 10$, $f_{O} = 1$ kHz, $V_{O} = 5V_{RMS}$, $R_{L} = 600\Omega$, 10Hz to 100kHz, Minimum resolution of test equipment is 0.005%.
- 5. $V_{OUT}=0$ to ±10V, $R_L=1k\Omega\,,\,C_L=50pF.$
- 6. Full Power Bandwidth is calculated by: FPBW = $\frac{\text{Slew Rate}}{2\pi V_{PEAK}}$, $V_{PEAK} = 10 \text{ V}$.
- 7. HA-5222 only, f = 10kHz, R_L = 1k $\Omega,\,C_L$ = 50pF.
- 8. $V_{OUT} = \pm 2.5 V$, $R_L = 1 k \Omega$, $C_L = 50 p F$.
- 9. $V_{OUT} = \pm 100 mV$, $R_L = 1 k\Omega$, $C_L = 50 pF$.
- 10. Settling time is specified for a 10V step and $A_V = -1$.
- 11. See Test Circuits.
- 12. Guaranteed by characterization.

Test Circuits and Waveforms

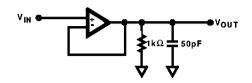
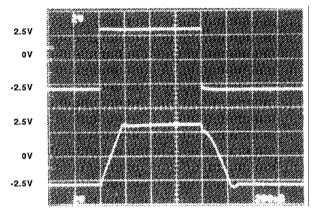
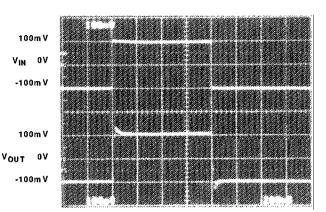
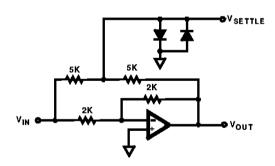




FIGURE 1. TRANSIENT RESPONSE TEST CIRCUIT


V_{OUT} = 2.5V Vertical Scale = 2V/Div., Horizontal Scale = 200ns/Div.

 $V_{OUT} = \pm 100 mV$ Vertical Scale = 100 mV/Div., Horizontal Scale = 200 ns/Div.

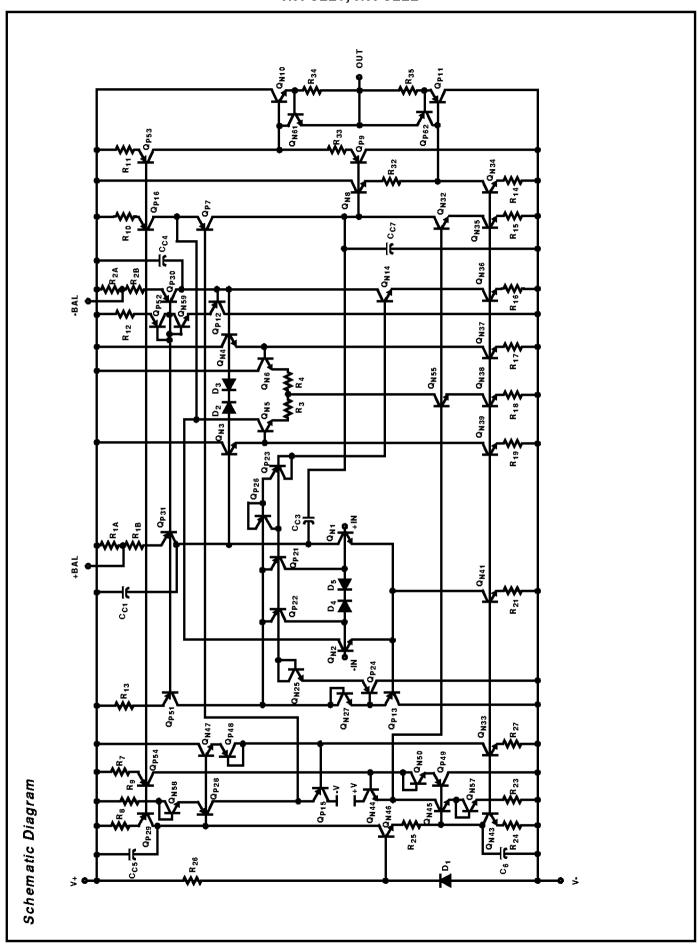
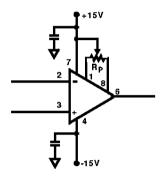

FIGURE 2. LARGE SIGNAL RESPONSE

FIGURE 3. SMALL SIGNAL RESPONSE

- 13. AV = -1.
- 14. Feedback and summing resistors must be matched (0.1%).
- 15. HP5082-2810 clipping diodes recommended.
- 16. Tektronix P6201 FET probe used at settling point.

FIGURE 4. SETTLING TIME TEST CIRCUIT


Application Information

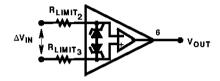
Operation at Various Supply Voltages

The HA-5221/5222 operates over a wide range of supply voltages with little variation in performance. The supplies may be varied from ±5V to ±15V. See typical performance curves for variations in supply current, slew rate and output voltage swing.

Offset Adjustment

The following diagram shows the offset voltage adjustment configuration for the HA-5221. By moving the potentiometer wiper towards pin 8 (+BAL), the op amps output voltage will increase; towards pin 1 (-BAL) decreases the output voltage. A $20k\Omega$ trim pot will allow an offset voltage adjustment of about 10mV.

Capacitive Loading Considerations


When driving capacitive loads >80pF, a small resistor, 50Ω to 100Ω , should be connected in series with the output and inside the feedback loop.

Saturation Recovery

When an op amp is over driven, output devices can saturate and sometimes take a long time to recover. By clamping the input, output saturation can be avoided. If output saturation can not be avoided, the maximum recovery time when overdriven into the positive rail is 10.6µs. When driven into the negative rail the maximum recovery time is 3.8µs.

Input Protection

The HA-5221/5222 has built in back-to-back protection diodes which limit the maximum allowable differential input voltage to approximately 5V. If the HA-5221/5222 will be used in circuits where the maximum differential voltage may be exceeded, then current limiting resistors must be used. The input current should be limited to a maximum of 10mA.

PC Board Layout Guidelines

When designing with the HA-5221 or the HA-5222, good high frequency (RF) techniques should be used when building a PC board. Use of ground plane is recommended. Power supply decoupling is very important. A $0.01\mu\text{F}$ to $0.1\mu\text{F}$ high quality ceramic capacitor at each power supply pin with a $2.2\mu\text{F}$ to $10\mu\text{F}$ tantalum close by will provide excellent decoupling. Chip capacitors produce the best results due to ease of placement next to the op amp and basically no lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance.

Typical Performance Curves $V_S = \pm 15V$, $T_A = 25^{\circ}C$

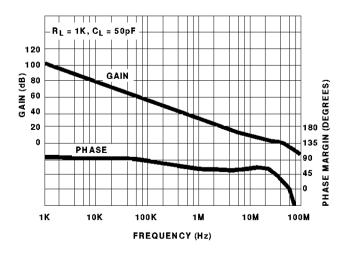
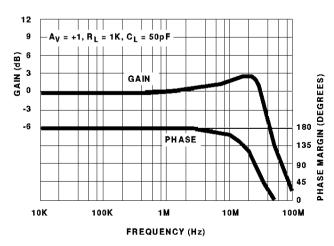
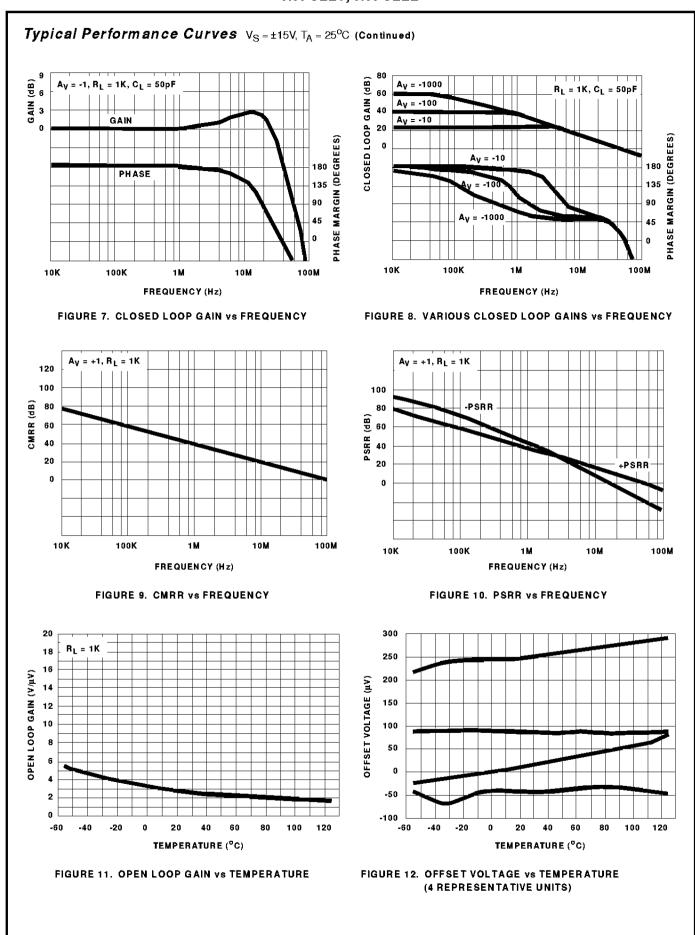
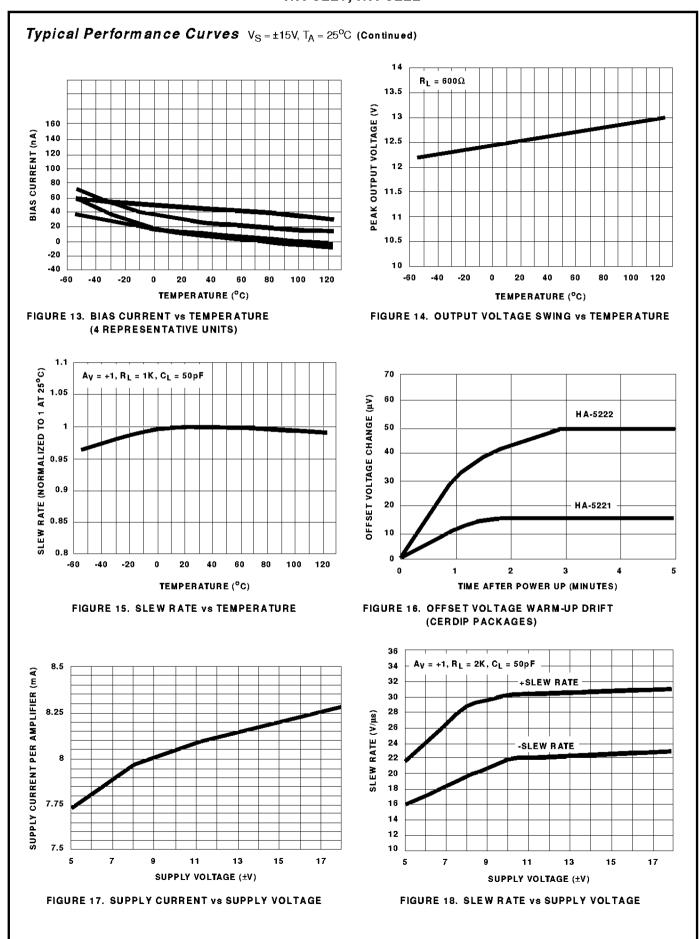
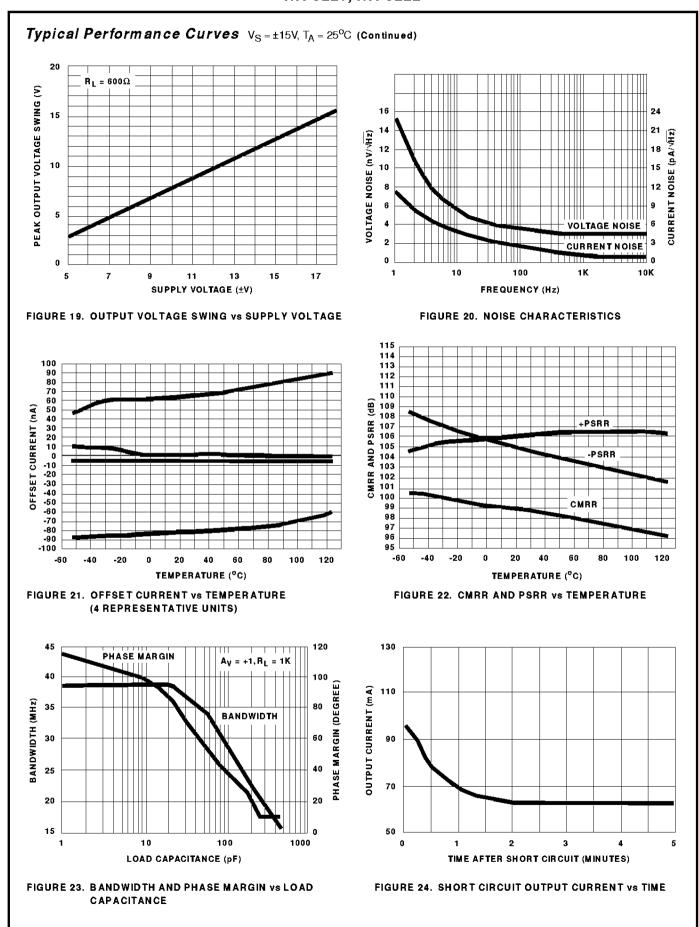
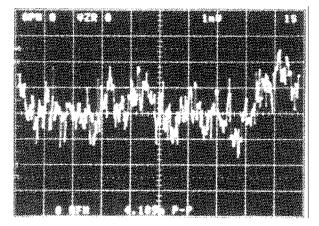


FIGURE 5. OPEN LOOP GAIN AND PHASE VS FREQUENCY


FIGURE 6. CLOSED LOOP GAIN VS FREQUENCY

Typical Performance Curves $V_S = \pm 15 V, T_A = 25^o C$ (Continued)

Vertical Scale = 1mV/Div.; Horizontal Scale = 1s/Div. Ay = +25,000; $E_N = 0.168\mu V_{P-P}$ RTI

FIGURE 25. 0.1Hz TO 10Hz NOISE

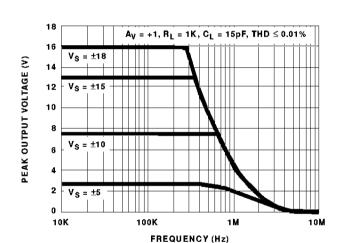


FIGURE 27. OUTPUT VOLTAGE SWING VS FREQUENCY

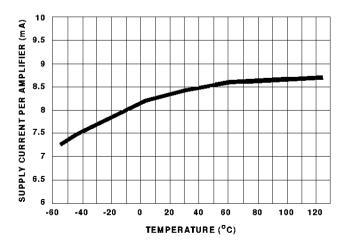
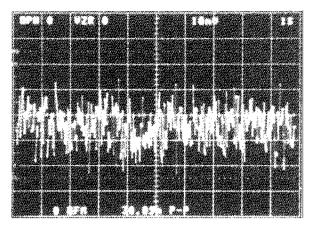



FIGURE 29. SUPPLY CURRENT/AMPLIFIER vs TEMPERATURE

Vertical Scale = 10mV/Div.; Horizontal Scale = 1s/Div. $A_V = +25,000$; $E_N = 1.5\mu V_{P-P}$ RTI

FIGURE 26. 0.1Hz TO 1MHz

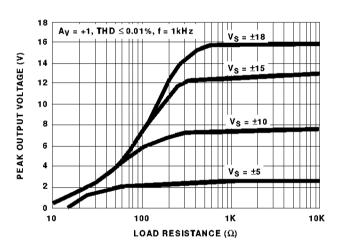


FIGURE 28. OUTPUT VOLTAGE SWING VS LOAD RESISTANCE

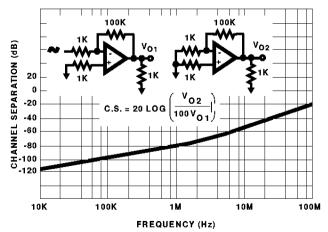


FIGURE 30. CHANNEL SEPARATION VS FREQUENCY (HA-5222 ONLY)

Die Characteristics

DIE DIMENSIONS:

72 mils x 94 mils x 19 mils 1840µm x 2400µm x 483µm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ±2kÅ

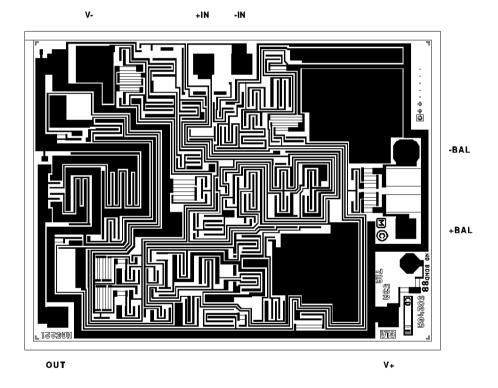
PASSIVATION:

Type: Nitride (Si $_3$ N $_4$) over Silox (SiO $_2$, 5% Phos.) Silox Thickness: 12kÅ \pm 2kÅ

Nitride Thickness: 3.5kÅ ±1.5kÅ

Metallization Mask Layout

SUBSTRATE POTENTIAL (Powered Up):


TRANSISTOR COUNT:

62

PROCESS:

Bipolar Dielectric Isolation

HA-5221

Die Characteristics

DIE DIMENSIONS:

78 mils x 185 mils x 19 mils 1980µm x 4690µm x 483µm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ±2kÅ

PASSIVATION:

Type: Nitride (Si_3N_4) over Silox (SiO_2 5% Phos.) Silox Thickness: $12k\mathring{A} \pm 2k\mathring{A}$

-IN 1 +IN 1

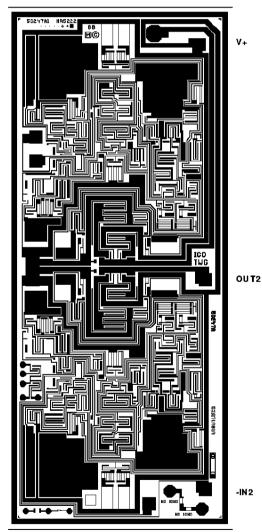
Silox Thickness: 12kA ±2kA Nitride Thickness: 3.5kÅ ±1.5kÅ

Metallization Mask Layout

SUBSTRATE POTENTIAL (Powered Up):

V-

TRANSISTOR COUNT:


128

PROCESS:

Bipolar Dielectric Isolation

HA-5222

OUT1

+IN 2